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Universal quantum computation by the unitary control of ancilla qubits
and using a fixed ancilla-register interaction

Timothy J. Proctor,1,* Erika Andersson,2 and Viv Kendon1,†
1School of Physics and Astronomy, E C Stoner Building, University of Leeds, Leeds, LS2 9JT, United Kingdom

2SUPA, Institute for Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
(Received 23 July 2013; published 24 October 2013)

We characterize a model of universal quantum computation where the register (computational) qubits are
controlled by ancillary qubits, using only a single fixed interaction between register and ancillary qubits. No
additional access is required to the computational register and the dynamics of both the register and ancilla
are unitary. This scheme is inspired by the measurement-based ancilla-driven quantum computation of Anders
et al. [Phys. Rev. A 82, 020301(R) (2010)], but does not require measurements of the ancillas, and in this
respect is similar to the original gate-based model of quantum computation. We consider what possible forms
this ancilla-register interaction can take, with a proof that the interaction is necessarily locally equivalent to SWAP

combined with an entangling controlled gate. We further show which Hamiltonians can create such interactions
and discuss two examples; the two-qubit XY Hamiltonian and a particular case of the XXZ Hamiltonian. We then
give an example of a simple, finite, and fault-tolerant gate set for universal quantum computation in this model.

DOI: 10.1103/PhysRevA.88.042330 PACS number(s): 03.67.Lx, 03.65.−w

I. INTRODUCTION

Quantum computing promises fundamentally faster com-
putation than classical computers could ever provide [1], but
the experimental challenges in building a quantum computer
are formidable. The basic theoretical setting for quantum
computation, the quantum circuit model [1,2], has been studied
in detail for many years. To implement a quantum circuit
directly requires accurately controlled unitary dynamics in the
form of one- and multiqubit gates on a computational register
of qubits. However, both the individual qubit addressability
required for single-qubit unitaries and the multiqubit entan-
gling interactions can be experimentally challenging, each
requiring different conditions to optimize their performance.
Other schemes have therefore been developed. One such
scheme is measurement-based computation, or the one-way
quantum computer, introduced by Raussendorf et al. [3,4].
In this scheme, the computation is achieved entirely by
single-qubit measurements applied to a highly entangled initial
state and classical feed-forward dependent on the outcome
of each measurement [5–7]. This separates the process into
two steps: first the creation of entanglement which can be
done by global operations, and then accurate single-qubit
measurements. Another way to increase the physical viability
of a scheme is to make use of “always on” interactions, such
as the Heisenberg Hamiltonian for a spin chain: This allows
the computation to be controlled entirely by precisely timed
global operations [8–12].

Alternatively, direct control of the computational qubits can
be avoided altogether by using ancilla systems to mediate the
interactions. One such scheme, based on the gate model of
quantum computation, is the quantum bus model, or qubus.
The qubus employs a continuous variable ancilla to mediate
interactions between qubits in a computational register. This is
done either with homodyne detection of the bus mode [13,14]
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to complete the gates, or via entirely unitary dynamics [15–17].
In the latter case, either some access to the qubits for local
operations, or more than one form of bus-register interaction,
is required. Although only one interaction Hamiltonian is
necessary, in general the interaction time must be varied to
produce different gates.

Quantum computations are fragile to the effects of noise,
therefore error correction schemes are required, to build
in fault tolerance. Error correction works by duplicating
the information in one logical qubit across several physical
qubits by forming an entangled state, which can then be
used collectively to detect and correct uncorrelated errors
arising from noise or inaccurate control operations [18–20].
Examples of such schemes include those based on a lattice
of qubits with only nearest neighbor interactions [21–24],
which can be used to develop fault-tolerant fully scalable
architectures for quantum computers [25]. These error cor-
recting schemes can be layered on top of any universal
physical qubit substrate, so long as the architecture avoids
the propagation of correlated errors, which are problematic
to reliably detect or correct [26]. This motivates the study of
simple physical quantum architectures which can be fully char-
acterized against the requirements of fault tolerance and error
correction.

A hybrid between the circuit model and measurement-based
computation, known as ancilla-driven quantum computation
(ADQC), was recently developed by Anders et al. [27,28].
Like the qubus, no interactions are needed between register
qubits. The computation can be performed using a single fixed
interaction between the ancilla and a register qubit, with full
control of the ancillary qubit. The unitary evolution of the
register is then driven by back-action onto the register, from
measurements of the ancilla. The evolution is deterministic up
to corrections that can be accounted for in the feed-forward,
as in the one-way quantum computer [3,27]. In both this
model and the one-way computer, for a fixed inaccuracy of
measurement, the gate fidelity decreases with increased overall
entanglement [29,30].
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In the work presented here, we take a route to universal
quantum computation similar in certain respects to both
ancilla-driven and qubus computation. We begin, as with the
ancilla-driven model, with the physically motived constraint of
a register of computational qubits to which no access is allowed
except through a single interaction, K ∈ U(4), between an
ancilla qubit and a single register qubit at a time. This is rel-
evant to many experimental setups, particular where there are
low-decoherence qubits between which it is hard to implement
interactions. If it is possible to engineer an interaction with
an ancillary system over which there is greater control, but
which could have a shorter decoherence time, schemes such
as the one presented here may be employed. Physical systems
with such properties include nitrogen-vacancy (NV) centers
in diamonds, where a nuclear spin is strongly coupled to the
electron spin of the NV center [31–33], and the coupling of spin
qubits via flying photonic qubits [34]. It should, however, be
noted that, in both the model presented here and in ADQC, the
computational qubit data is stored briefly in the ancillary qubits
and so is vulnerable to the decoherence rate of the ancillary
system for short periods of time. The total time the data spends
in the ancillary system will scale linearly with the number of
gates applied.

Looking for a simple, fully unitary model, we enforce
further constraints on our scheme. We will develop a model
whereby the ancilla qubit is fully controllable, but where
no measurements (except for final readout) are required. By
fully controllable we mean that we may perform single-qubit
unitaries on the ancilla. Although in practice multiple ancillas
would be employed to implement gates in parallel, we will add
the restriction that no ancilla-ancilla interactions are required
since these could propagate correlated errors. Furthermore we
wish to minimize the required physical interactions that need
to be engineered, and in any physical realization of such a
scheme it is highly likely that different complementary systems
will be employed as ancillary and register qubits. Hence any
additional interaction between the ancilla will require a further
physically distinct interaction to be engineered.

For universal quantum computation, we need to be able
to implement, via the ancilla, both single-register-qubit gates
and multi-register-qubit entangling gates. It is desirable to
minimize the number of interactions required for each gate.
We will see that any single-qubit gate on a register qubit can
be implemented using only two interactions with the ancilla,
with unitary control of the ancilla applied in between. This
is in contrast to ADQC, where one interaction is sufficient.
Although for universal computation only a finite set of
single-qubit gates is required, and in practice this is all that
will be used, we will determine the interactions that allow
any single-qubit gate to be performed. This is so that the
interactions can be considered universal for our model of
computation regardless of which unitaries can be implemented
on the ancilla (as long as some finite universal set can be
implemented).

It is not possible to implement entangling gates between
register qubits via an ancilla sequentially with only unitary
dynamics [35], that is, by interacting an ancilla with one qubit
and then the other without interacting with the first qubit again.
This is in contrast to ADQC, where the use of measurement
enables this. We will show, however, that we can perform

two-qubit gates with only three ancilla interactions, two with
one qubit and one with the other. We will begin by giving a
simple example of an interaction with which we can perform
universal quantum computation within the strong constraints
of this model, and from there we will characterize all possible
forms this interaction could take. We will then discuss possible
Hamiltonians with which this could be implemented and in
doing so give a suitable finite universal gate set. We will
refer to our model throughout as ancilla-controlled quantum
computation (ACQC).

II. AN INTERACTION FOR ACQC

In what follows, all two-qubit unitaries will be denoted by
upper case roman letters and single-qubit unitaries by lower
case roman letters, with exceptions for well-known operators,
such as the Pauli operators (I , X, Y , Z) and the Hadamard
gate (H ), where the appropriate standard notation is used.

Define the computational basis, {|0〉,|1〉}, by the +1 and
−1 eigenstates of the Pauli Z operator, respectively. Using the
standard definitions, let

SWAP = |00〉〈00| + |01〉〈10| + |10〉〈01| + |11〉〈11|, (1)

C(Z) = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|, (2)

which can also be written as matrices in the computational
basis:

SWAP =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠, (3)

C(Z) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠. (4)

If we take the ancilla-register interaction of SWAP, it is trivial
to perform the single-qubit unitaries, simply by swapping the
state of the register qubit and ancilla, performing the unitary
on the ancilla and then swapping the states back. However, this
interaction is not entangling, so it cannot create entanglement
between register qubits. To use the SWAP interaction we would
need a second ancilla-register interaction, or an ancilla-ancilla
interaction, both of which are forbidden in this model. Instead
we can use the same method for the single-qubit gates using
a different interaction. Let the fixed interaction be of the form
K = SC(Z) where

SV ≡ SWAP · V, (5)

V ∈ U(4). Then,

K = |00〉〈00| + |01〉〈10| + |10〉〈01| − |11〉〈11|, (6)

which in matrix notation is given by

K =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

⎞
⎟⎠. (7)

We will now show that ACQC is possible with this interaction,
provided the ancilla is initialized in the |0〉 state. We first of
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FIG. 1. A simple example of a single-qubit gate in ACQC where
the interaction is SC(Z).

all show how to perform arbitrary single-qubit unitaries on a
register qubit (subscript R), by interacting the register qubit
twice with the ancilla (subscript A). By linearity, we do not
need to consider the whole register. It is sufficient to consider
the action that this operation has on a general single register
qubit state, |φ〉, and an ancilla qubit initially in the state |0〉.

As our ancilla is initialized in the state |0〉, the initial state
is |0〉|φ〉 ≡ |0〉A ⊗ |φ〉R , where |φ〉 is an arbitrary state of one
qubit. We will omit the subscripts to denote which qubit(s) a
state represents, or an operator acts on, when no ambiguity will
arise. We first interact the register qubit and the ancilla: It is
simple to confirm that K|0〉|φ〉 = |φ〉|0〉. We then perform
the desired single-qubit unitary, u ∈ U(2), on the ancilla,
giving the state u|φ〉 ⊗ |0〉. We then repeat the qubit-ancilla
interaction giving the final state K[u|φ〉 ⊗ |0〉] = |0〉 ⊗ u|φ〉.
We have performed the unitary u on the register qubit by only
manipulating the ancilla and using a fixed interaction twice.
This procedure is shown in Fig. 1. It can be seen that if the
state of either input qubit is |0〉 then K has the same action
as SWAP. Using this, it is simple to see how we can perform
two-qubit gates. Our initial state is now |0〉 ⊗ |φ〉R1,2

where |φ〉
is the (arbitrary) state of the two register qubits, R1 and R2.
We first interact the ancilla with the first register qubit, which
swaps the state of that qubit with the ancilla. We then interact
the ancilla with the second qubit and finally interact the ancilla
with the first qubit again, swapping the |0〉 state back to the
ancilla. This can be seen to be the operation,

KAR1KAR2KAR1 |0〉A|φ〉R1,2
= |0〉A ⊗ K|φ〉R1,2

, (8)

where identity operators are omitted for simplicity. This is
shown in Fig. 2. The overall effect of this sequence of
operations is the entangling gate K = SC(Z) between the two
register qubits, where a two-qubit gate is called entangling
if it can create entanglement between two qubits initially in
a separable state [36]. As a single entangling gate combined
with arbitrary single-qubit unitaries is sufficient for universal
quantum computation [36,37], the above scheme is a universal
quantum computer, where the only interaction with the register
qubits is via the fixed interaction SC(Z). To perform the final
measurement readout of a register qubit, that qubit interacts
with the ancilla which is then measured.

FIG. 2. A simple example of a two-qubit entangling gate in
ACQC where the ancilla-register interaction is SC(Z) and the
effective register qubit interaction created is also of this form.

III. INTERACTIONS FOR ACQC

We now characterize all possible forms that K can take for
which this form of computation is possible. Two operators,
KAR and K

′
AR ∈ U(4), are called locally equivalent if

KAR = k
(1)
A ⊗ k

(1)
R · K

′
AR · k

(2)
A ⊗ k

(2)
R , (9)

for some k
(i)
j ∈ U(2).

Proposition 1a. The fixed ancilla-register interactions,
KAR ∈ U(4), that are sufficient for ACQC must necessarily be
locally equivalent to SC(p) for some p ∈ U(2), where C(p) is
entangling.

The full proof of this is included in Appendix A, however, it
can be outlined as follows. Clearly to implement two-register-
qubit entangling gates the ancilla-register interaction must be
entangling. We now consider what constraints the need to
implement single-qubit unitaries enforces on the form of the
interaction. To implement an arbitrary unitary u on the register
in ACQC, we require that for each u there exists some ũ such
that

K · ũ ⊗ I · K|ψ0〉|φ〉 = |ψf 〉 ⊗ u|φ〉, (10)

for all |φ〉 and some initial ancilla state |ψ0〉 which should not
depend on |φ〉. This is because in this model we require that
any single-qubit unitary can be performed by an interaction
with the ancilla, an operation on the ancilla, and then a
second interaction with the ancilla. If the state K|ψ0〉|φ〉 is
nonseparable for at least some register input, then it can be
shown that the final state for that input is nonseparable for
some u, and so hence it is not possible to implement the
single-qubit unitaries with this choice of interaction and initial
ancilla state. This is done by representing K|ψ0〉|φ〉 as an
entangled state in its Schmidt basis and then showing that the
concurrence [38] (a measure of entanglement that is zero for
product states) of the final state cannot be zero for every u.
Hence, as nonzero concurrence implies entanglement, we see
that if K|ψ0〉|φ〉 is not separable for some |φ〉 then we cannot
perform the single-qubit unitaries and so hence K|ψ0〉|φ〉 must
be separable for all register input states |φ〉. This means that
under the ancilla input state |ψ0〉, the operator K is equivalent
to a nonentangling operator.

Nonentangling operators are locally equivalent to either the
identity or SWAP [36]. For u to take all possible values in U(2)
then so must ũ, as the K operator is fixed and so the only effect
it can have on ũ is constant rotations in U(2). If K is equivalent
to a separable operator on the input of the ancilla state |ψ0〉 then
we may write K|ψ0〉|φ〉 = f |ψ0〉g|φ〉 for some f,g ∈ U(2).
Under this condition the left-hand side of (10) can be written
as K · ũf |ψ0〉 ⊗ g|φ〉. This state cannot be separable for all ũ

and |φ〉 as K is entangling and so it cannot create separable
states from all separable inputs which implies that, for this
form of K , (10) cannot hold for all ũ and |φ〉. Therefore K

is locally equivalent to SWAP on the ancilla input of |ψ0〉. It is
then straightforward to show that K must be locally equivalent
to SC(p), which concludes the proof.

While it is necessary for the interaction to be locally
equivalent to SC(p) to implement ACQC, not every gate that
is locally equivalent to SC(p) is sufficient. We can instead
state the following stronger proposition:
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Proposition 1b. Let k
(1)
A ,k

(1)
R ,k

(2)
A ,k

(2)
R ∈ U(2) and |ψ〉 ≡

k
(2)
A |ψ0〉, where |ψ0〉 is the state the ancilla is initialized to

before each gate, and define |ψ⊥〉 such that 〈ψ,ψ⊥〉 = 0. An
interaction K is sufficient for ACQC if and only if K is of the
form,

K = k
(1)
A ⊗ k

(1)
R · SCψ⊥(p) · k

(2)
A ⊗ k

(2)
R , (11)

where Cψ⊥(p) is the operator that implements p on the target
(register) qubit if the control (ancilla) qubit is in the state
|ψ⊥〉, for some local unitaries k

(i)
j such that k

(2)
R k

(1)
R k

(2)
A |ψ0〉 is

an eigenstate of p. These operators are a subset of those that
are locally equivalent to SC(p). Given an interaction which
can be written in the form of (11), there is not necessarily
an initial ancilla state that satisfies the above conditions. The
nonlocal part of the interaction, SCψ⊥ (p) fixes |ψ〉. The choice
of initial ancilla state is then fixed by |ψ0〉 = k

(2)†
A |ψ〉 but this

will not always satisfy the condition that k
(2)
R k

(1)
R k

(2)
A |ψ0〉 is an

eigenstate of p. Hence it is not only the nonlocal part of the
interaction which determines whether or not it is suitable for
ACQC but also the local unitaries. The proof of proposition
1b is shown in Appendix A, and follows in a straightforward
manner from the proof of proposition 1a.

IV. HAMILTONIANS FOR ACQC

We will now characterize the possible Hamiltonians capable
of this form of computation. Let V ∈ U(4), and define m(V )
by

m(V ) ≡ (Q†V Q)T Q†V Q, (12)

where in the computational basis,

Q ≡ 1√
2

⎛
⎜⎝

1 0 0 i

0 i 1 0
0 i −1 0
1 0 0 −i

⎞
⎟⎠. (13)

The local invariants of V , first introduced by Makhlin [39],
are defined as

G1(V ) ≡ tr2[m(V )]

16 det V
,

G2(V ) ≡ tr2[m(V )] − tr[m2(V )]

4 det V
, (14)

and are equal for V and V
′
if and only if V and V

′
are locally

equivalent [39,40]. Using (12) it is straightforward to show
that m(SV ) = m(V ). Now as det[SWAP] = −1 we have that

det[SV ] = det[SWAP] det[V ] = − det[V ]. (15)

From (14) it can then be seen that

G1(SV ) = −G1(V ), G2(SV ) = −G2(V ). (16)

We can parametrize a general U(2) matrix p by

p = eiη

(
eiφ cos θ e−iψ sin θ

eiψ sin θ −e−iφ cos θ

)
. (17)

Using this parametrization it can be shown that

G1(C(p)) = cos2 θ sin2 φ, G2(C(p)) = 1 + 2G1. (18)

We note that taking θ = 0 in C(p) gives a local equivalent
of C(R(−2φ)), where R(φ) ≡ |0〉〈0| + eiφ|1〉〈1|, and as from
(18) the range of the local invariants for C(R(−2φ)) and C(p)
is the same, that each controlled unitary is locally equivalent to
a controlled rotation. The local invariants of C(Z) (and CNOT)
are G1 = 0 and G2 = 1 [39]. From (16) and (18) it can then be
seen that the operators capable of ACQC have local invariants,

G1(SC(p)) = − cos2 θ sin2 φ, G2(SC(p)) = −1 + 2G1.

(19)

A general operator in U(4) may be parametrized using the
canonical decomposition as

K = k
(1)
A ⊗ k

(1)
R · M · k

(2)
A ⊗ k

(2)
R , (20)

where M = e
i
2 (α1X⊗X+α2Y⊗Y+α3Z⊗Z), ki

j ∈ U(2), and
α1,α2,α3 ∈ R, where each αi has period π [41,42]. We
therefore see that the nonlocal properties of an operator can
be represented by three parameters, which are related to its
local invariants by

G1 = cos2 α1 cos2 α2 cos2 α3 − sin2 α1 sin2 α2 sin2 α3

+ i

4
sin 2α1 sin 2α2 sin 2α3, (21)

G2 = 4 cos2 α1 cos2 α2 cos2 α3 − 4 sin2 α1 sin2 α2 sin2 α3

− cos 2α1 cos 2α2 cos 2α3, (22)

as shown in [40].
Setting the equations of (19) equal to (21) and (22) results

in a pair of simultaneous equations for α1, α2, and α3. The
solutions are the possible values in the canonical decompo-
sition for which the nonlocal properties of the interaction
are those that allow for ACQC. It is straightforward to show
that the possible solutions are given by α1 = (2n + 1)π

2 and
α2 = (2m + 1)π

2 , where n,m ∈ N, with remaining coefficient
a solution to sin2 α3 = cos2 θ sin2 φ. We can then see that the
Hamiltonian,

H = −h̄χ (α1(n)X ⊗ X + α2(m)Y ⊗ Y + α3(θ,φ)Z ⊗ Z),

(23)

applied for a time t = 1
2χ

, with any choice of n and m,
implements a local equivalent of the unitary SC(p) where
p = p(θ,φ). The only further constraint is that θ and φ must
be chosen such that the unitary is not locally equivalent to
SWAP, or equivalently that the unitary is entangling. The local
invariants of SWAP are [39] G1(SWAP) = −1 and G2(SWAP) =
−3. Hence, from (19), θ and φ may not be solutions to
cos2 θ sin2 φ = 1. Clearly the αi can be exchanged as G1 and
G2 are symmetric in swapping αi . From these conditions it is
simple to show that we cannot choose all αi the same as this
results in implementing a local equivalent to SWAP. It is also
important to note that the local unitaries implemented by the
Hamiltonian need to satisfy the conditions for ACQC given in
proposition 1b. The above conditions only guarantee that the
nonlocal part of the interaction is as required.

We will now find some specific examples of appropriate
Hamiltonians. A perfect entangler is a U(4) operator that
can produce maximally entangled states from product states.
A controlled gate is a perfect entangler only if it is locally
equivalent to C(Z) [40]. Therefore, if we wish the interaction
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K to be a perfect entangler then we require that K is
locally equivalent to SC(Z). From the local invariants of
C(Z) we have that G1(SC(Z)) = 0 and G2(SC(Z)) = −1.
It is straightforward to show from (21) and (22) that taking
α1 = (n + 1)π

2 , α2 = (2m + 1)π
2 , α3 = nπ

2 in the canonical
decomposition, where n and m are integers, gives local
equivalents to SC(Z). In particular, letting n = m = 0 gives
the solution α1 = π

2 , α2 = π
2 , α3 = 0. Therefore the two-qubit

XY exchange Hamiltonian,

H1 = −h̄χ (X ⊗ X + Y ⊗ Y ), (24)

applied for a time t = π
4χ

is locally equivalent to SC(Z).
However, we have seen that local equivalence is not enough to
infer that the interaction is capable of implementing ACQC.
Using the spectral theorem it can be shown that applying this
Hamiltonian for a time t gives the unitary,

U1(t) =

⎛
⎜⎝

1 0 0 0
0 cos 2χt i sin 2χt 0
0 i sin 2χt cos 2χt 0
0 0 0 1

⎞
⎟⎠. (25)

When t = π
4χ

we have

Uc
1 ≡ U1

(
π

4χ

)
=

⎛
⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎠. (26)

We therefore have that our interaction term is

Uc
1 = s ⊗ s · SC(Z), (27)

where s = |0〉〈0| + i|1〉〈1|. For this interaction to be capable
of implementing ACQC we require that their exists a choice of
initial ancilla state that satisfies the conditions of proposition
1b. If we write our interaction in the form k

(1)
A ⊗ k

(1)
R ·

SCψ⊥(p) · k
(2)
A ⊗ k

(2)
R then the two conditions of proposition

1b are that the initial ancilla state, |ψ0〉, must be such that
k

(2)
R k

(1)
R k

(2)
A |ψ0〉 is an eigenstate of p and |ψ0〉 = k

(2)†
A |ψ〉, where

|ψ〉 is the state such that 〈ψ,ψ⊥〉 = 0. As the interaction Uc
1 ,

expressed in this form, has p = Z, |ψ〉 = |0〉, |ψ⊥〉 = |1〉,
k

(1)
A = k

(1)
R = s, and k

(2)
A = k

(2)
R = I it is straightforward to see

that |ψ0〉 = |0〉 satisfies these conditions. It is then simple to
show that

Uc
1 · u ⊗ I · Uc

1 |0〉 ⊗ |φ〉 = |0〉 ⊗ s · u · s|φ〉. (28)

Therefore, in order to implement the unitary u on the register,
we implement the unitary ũ = s†us† on the ancilla. It is
then possible to show that the effective two-register-qubit
entangling operation is SC(Z), as

Uc
AR1

Uc
AR2

Uc
AR1

|0〉A ⊗ |φ〉R1,2
= |0〉A ⊗ SC(Z)|φ〉R1,2

,

(29)

up to an irrelevant global phase.

V. UNIVERSAL GATE SETS

Any two-qubit entangling gate, along with arbitrary single-
qubit unitaries, is a universal set. It is, however, desirable, for
error correcting and practicality, to find a finite set that is also
universal (up to arbitrary accuracy). As much of the work in

developing quantum computation is based around the C(Z) or
CNOT primitives, it is useful to see how we can simulate CNOT

with our interaction. As the local invariants of SC(Z) are not
the same as those of CNOT, it is clear that the minimum number
of applications of SC(Z) required to implement a CNOT is two.
Using a variation on the results of Bremner et al. in [36] it is
possible to derive that

CNOT = X ⊗ X · Uc
1 · HY ⊗ Z · Uc

1 · Xs ⊗ Hs†H, (30)

up to an irrelevant global phase, where H = 1√
2
(|0〉〈0| +

|0〉〈1| + |1〉〈0| − |1〉〈1|) is the Hadamard gate. If we can
perform each of these single-qubit operations (or simulate
them), multiplied on either side by s†, then we can simulate
CNOT. However, CNOT and all these single-qubit gates are
members of the Clifford group and so by the Gottesman-
Knill theorem we need a further single-qubit operation for
universal quantum computation based on CNOT simulation
[43]. Such an additional gate is the T (or π

8 ) gate where
T = |0〉〈0| + ei π

4 |1〉〈1|.
If, however, we wished to implement the computation

entirely by simulating CNOT gates, then we could choose an
alternative unitary with which it is more convenient to simulate
CNOT. Such a unitary does not need to be a perfect entangler
and so does not need to be locally equivalent to SC(Z). One
such choice arises from taking the Hamiltonian,

H2 = −h̄χ

2
(2X ⊗ X + 2Y ⊗ Y + Z ⊗ Z) . (31)

This Hamiltonian, applied for a time t , implements the unitary,

U2(t) = ei
χt

2

⎛
⎜⎝

1 0 0 0
0 e−iχt cos 2χt e−iχt i sin 2χt 0
0 e−iχt i sin 2χt e−iχt cos 2χt 0
0 0 0 1

⎞
⎟⎠,

(32)

which at t = π
4χ

gives

Uc
2 ≡ U2

(
π

4χ

)
=

⎛
⎜⎜⎝

ei π
8 0 0 0

0 0 ie−i π
8 0

0 ie−i π
8 0 0

0 0 0 ei π
8

⎞
⎟⎟⎠. (33)

It is easy to see that this unitary fulfills the criteria required for
ACQC, with the choice of initial ancilla state |ψ0〉 = |0〉, as
it is locally equivalent to SC(s), where the local rotations are
diagonal. Now we have that

Uc
2 Uc

2 =

⎛
⎜⎜⎝

ei π
4 0 0 0

0 −e−i π
4 0 0

0 0 −e−i π
4 0

0 0 0 ei π
4

⎞
⎟⎟⎠, (34)

which is locally equivalent to C(Z), and hence CNOT, via the
local rotation on each qubit of R = e−i π

8 |0〉〈0| − ei 3π
8 |1〉〈1|.

The local invariants are given by

G1
(
Uc

2

) = − 1
2 , G2

(
Uc

2

) = −2. (35)

The entangling power of a U(4) operator K is defined as the
average entanglement produced by K when acting on product
states [44,45]. Entangling power can be related to the local
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invariants of an operator by

ep(K) = 2
9 (1 − |G1(K)|). (36)

Hence, two operators that have the same |G1| have the same
entangling power [46]. As |G1| � 1, we have that 0 � ep � 2

9 .
We therefore see that ep(Uc

2 ) = 1
2ep(CNOT) = 1

9 .
We can implement the single-qubit unitaries as before,

however, there is a more convenient way to implement the
CNOT gate, by instead implementing

Uc
2AR1

(
Uc

2AR2

)2
Uc

2AR1
|0〉A|φ〉R1,2

= |0〉AZ ⊗ s · C(Z)|φ〉R1,2
.

(37)

By using the same procedure as earlier for single-qubit gates,
we can see that implementing the gate u ∈ U(2) on the ancilla
results in the gate u · s being applied to the register qubit.
Therefore, as s = T 2, Z = T 4, and s† = T 6 we can simulate
C(Z) with only T gates and SC(s) interactions with only a
minor T gate overhead. As CNOT is locally equivalent to C(Z)
via Hadamard rotations and {CNOT, H, T} is a universal and
fault-tolerant gate set [47], a simple universal gate set for this
model of computation is the SC(s) ancilla-register interaction
in conjunction with H and T gates on the ancilla.

VI. DISCUSSION

We have presented a form of universal quantum com-
putation, ACQC, in which the only access required to
the computational qubits is via a fixed interaction with a
fully controllable ancilla qubit. In contrast to ancilla-driven
quantum computation, the ancillary qubits evolve through
unitary dynamics only. This removes the need for accurate
ancilla measurements, except for the final readout, which can
potentially increase the speed and fidelity of computation. In
order to keep all of the dynamics unitary in ACQC, it was
necessary to increase the number of interactions between the
ancilla and register qubits in comparison to ADQC, from one to
two in the case of single-qubit gates, and two to three in the case
of two-qubit gates. It is clear that the relevant source of errors
for this model will then be inaccurate unitary control of both the
ancillary system and the ancilla-register interaction. Standard
error correction protocols can be applied to this scheme if the
ancilla is reset (or a fresh ancilla used) after the completion
of each single or multi-register-qubit gate. The resetting of
the ancilla will remove any residual entanglement between the
ancilla and the register, due to imperfect gate implementation,
and hence prevent correlated errors from propagating through
the computation.

We have shown that any interaction capable of this form of
computation is locally equivalent to the SWAP gate combined
with an entangling controlled unitary. It has been shown
that the only interactions that allow (stepwise) deterministic
ancilla-driven quantum computation, where only Pauli cor-
rections are required, as in the one-way quantum computer,
are locally equivalent to C(Z) or SC(Z), although not all
locally equivalent interactions are sufficient [28]. This restricts
the applicability of deterministic ADQC. It can, however, be
generalized to further interactions if probabilistic schemes
are employed [48]. It is interesting to note that the class
of interactions that allow for ACQC and those that allow

for the (stepwise) deterministic ancilla-driven model overlap
but are not the same. In ACQC we are free to use gates of
any nonzero entangling power. This is because, unlike in
ADQC, the entangling properties of the interaction are not
used to implement the single-qubit gates. We have given
appropriate Hamiltonians for implementing this model and
some simple universal gate sets. In particular, the ability to
implement a certain case of the XXZ two-qubit Hamiltonian as
the ancilla-register interaction, along with T and H gates on
the ancilla, form a simple universal fault-tolerant set.
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APPENDIX

In this appendix we prove propositions 1a and 1b. We
wish to show that the only ancilla-register interactions that
allow for ACQC are a subset of those locally equivalent to
SC(p) where C(p) is entangling, and that all members of this
subset are sufficient for ACQC. We will do this by considering
the constraints that the need to implement single-qubit gates
enforces on the form of this interaction.

When defining the ACQC model of computation, it was
stated that we wish any single-qubit unitary, u ∈ U(2), to be
implementable on a register qubit by interacting the ancilla
with that register qubit twice with ancilla control in between.
This was chosen as a condition as, although in practice
only a finite universal gate set will be implemented on the
ancilla, we want the interactions characterized to be valid for
ACQC independent of what particular universal set can be
implemented on the ancilla. We now state the precise condition
on the interaction. We do this by first stating a relation that
holds only for those K that are capable of ACQC, and then
justify why interactions for ACQC must satisfy this relation.

Take k
(1)
A ,k

(1)
R ,k

(2)
A ,k

(2)
R ∈ U(2) and let |ψ〉 ≡ k

(2)
A |ψ0〉, where

|ψ0〉 is the state to which the ancilla is initialized before each
gate. Define |ψ⊥〉 such that 〈ψ,ψ⊥〉 = 0 and let K ∈ U(4) be
an entangling operator. There exists a ũ ∈ U(2) for each u ∈
U(2) such that

K · ũ ⊗ I · K|ψ0〉 ⊗ |φ〉 = |ψf 〉 ⊗ u|φ〉. (A1)

∀ |φ〉 ∈ C2 only if K = k
(1)
A ⊗ k

(1)
R · SCψ⊥(p) · k

(2)
A ⊗ k

(2)
R and

k
(2)
R k

(1)
R |ψ〉 is an eigenstate of p. It is necessary for (A1) to

hold, for all u ∈ U(2), in order for the single-qubit unitaries to
be implementable in the ACQC model and hence we require
that K is of a form that satisfies this condition. The condition
that K must be entangling is required for the implementation
of the two-qubit gates. This is a restating of proposition 1b. We
will now prove the above statement and so hence propositions
1a and 1b.

Proof. It is necessary for (A1) to hold for all possible
register input states |φ〉. We consider two distinct cases. Either
K|ψ0〉|φ〉 is separable for all register inputs |φ〉, or it is not
separable for at least some |φ〉 ∈ C2.

Let us first consider the case where it is not separable
for at least some particular register input |φe〉. Using the
Schmidt decomposition theorem, we have that K|ψ0〉|φe〉 =
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α|u1〉|v1〉 + β|u2〉|v2〉 for some orthonormal basis’ {|u1〉,|u2〉}
and {|v1〉,|v2〉}, and real, positive coefficients α and β. As the
state is not separable, we have that α,β �= 0. Now for (A1) to be
satisfied for all u ∈ U(2) we require that K · ũ ⊗ I · K|ψ0〉|φe〉
is separable for all ũ ∈ U(2). This is because for u to take all
possible values in U(2) then so must ũ, as the K operators
are fixed and so the only effect they can have on ũ is constant
rotations in U(2).

We parametrize K using the canonical decomposition, giv-
ing the condition that k

(1)
A ⊗ k

(1)
R · M · k

(2)
A ũ ⊗ k

(2)
R · K|ψ0〉|φe〉

is separable for all ũ, where M = e
i
2 (α1X⊗X+α2Y⊗Y+α3Z⊗Z). As

a Schmidt basis is separable, then if we represent this in a
Schmidt basis, M may still be written in the same form as when
represented in the computational basis, as the basis-changing
rotations can be absorbed into the arbitrary k matrices. Using
the spectral theorem, in the computational basis,

M =

⎛
⎜⎝

m1 0 0 m2

0 m3 m4 0
0 m4 m3 0

m2 0 0 m1

⎞
⎟⎠,

with m1 = ei
α3
2 cos α−, m2 = ei

α3
2 i sin α−, m3 =

e−i
α3
2 cos α+, m4 = e−i

α3
2 i sin α+, and α− = α1−α2

2 , α+ =
α1+α2

2 . We therefore have that in the Schmidt basis of
K|ψ0〉|φe〉 we can write the left-hand side of (A1) as

k
(1)
A ⊗ k

(1)
R ·

⎛
⎜⎝

m1 0 0 m2

0 m3 m4 0
0 m4 m3 0

m2 0 0 m1

⎞
⎟⎠ · k

(2)
A ũ ⊗ k

(2)
R

⎛
⎜⎝

α

0
0
β

⎞
⎟⎠.

For the left-hand side to be equal to the right-hand side of
(A1) we require that the left-hand side is separable. Clearly
the terms acting after M can have no effect on the separability
of the state, and so we require that, relabeling k

(2)
A ũ by v, and

for labeling simplicity letting k = k
(2)
R that

⎛
⎜⎝

m1 0 0 m2

0 m3 m4 0
0 m4 m3 0

m2 0 0 m1

⎞
⎟⎠ · v ⊗ k

⎛
⎜⎝

α

0
0
β

⎞
⎟⎠

is separable for all v ∈ U(2).
We now calculate the concurrence of this state, where

the concurrence of a pure state is given by C(ψ) =
2|ψ11ψ22 − ψ12ψ21| with |ψ〉 = ψ11|u1〉|v1〉 + ψ12|u1〉|v2〉 +
ψ21|u2〉|v1〉 + ψ22|u2〉|v2〉. In order for this state to be separa-
ble for all v this must be zero for all v. By parametrizing v,
this results in 10 simultaneous equations. Here we write only
three of them as that is all that is required for a contradiction.
They are

k2
11m1m2 − k2

21m3m4 = 0, (A2)

k12k22
[(

m2
1 + m2

2

) − (
m2

3 + m2
4

)] = 0, (A3)

k11k22
(
m2

1 + m2
2

) − k12k21
(
m2

3 + m2
4

) = 0, (A4)

where the kij are the components of k. Now if k11 = 0, then
due to unitarity we have k22 = 0 and k12 and k21 are nonzero.

From Eq. (A2), we therefore have that m3m4 = 0. But now
(A4) gives that m2

3 + m2
4 = 0. This implies that m3 = m4 = 0

which contradicts the unitarity of M . The same argument
applies if k12 = k21 = 0. We therefore have that all the
components of k are nonzero. We now take a parametrization of
k as

k = eiξ

(
eiζ cos ε e−iγ sin ε

eiγ sin ε −e−iζ cos ε

)
.

As all the components are nonzero (A3) gives that m2
1 + m2

2 =
m2

3 + m2
4, but (A4) gives that (m2

1 + m2
2) = k12k21

k11k22
(m2

3 + m2
4).

Therefore k12k21
k11k22

= 1, but from our parametrization of k we have
k12k21
k11k22

= − sin2 ε
cos2 ε

� 0, so we have a contradiction. We assumed
that K|ψ0〉|φ〉 was nonseparable for at least some |φ〉 and
have shown that for that register input the left-hand side of
(A1) is not separable for at least some ũ ∈ U(2) and so hence
(A1) cannot hold. Therefore, we have shown that the state
K|ψ0〉A|φ〉R must be separable for all register inputs |φ〉 to
satisfy (A1) for all ũ.

If it is separable for all |φ〉, we may write K|ψ0〉|φ〉 =
|ν〉|μ〉 for some |ν〉 and |μ〉. We need this to hold for all
register inputs |φ〉. As this is a nonentangling mapping for
all register inputs, we have that under the ancilla input of
|ψ0〉, the entangling operator K creates no entanglement for
any register input. The only U(4) operators that create no
entanglement for all input states are locally equivalent to the
identity or to SWAP. Therefore under the ancilla input state |ψ0〉,
K has the effective operation of one of these two operators.
That implies that either |ν〉 = f |ψ0〉 and |μ〉 = g|φ〉, or |ν〉 =
f |φ〉 and |μ〉 = g|ψ0〉 for some f,g ∈ U(2). Now we require
that K · ũ ⊗ I · |ν〉|μ〉 is separable for all ũ. However, if we
take the first possible choice for |ν〉, and |μ〉 we have that
K · ũ ⊗ I · f |ψ0〉g|φ〉 is separable for all ũ and |φ〉. This is not
possible as this implies that K creates separable states for all
separable input states, which contradicts our demand that K is
entangling. We therefore have the latter of our two options, that
is, that K|ψ0〉|φ〉 = f |φ〉g|ψ0〉 for all |φ〉. We therefore must
be able to write K in the form K = k

(1)
A ⊗ k

(1)
R · K̃ · k

(2)
A ⊗ k

(2)
R

where k
(1)
A k

(2)
R = f , k(1)

R k
(2)
A = g, and K̃|ψ〉|θ〉 = |θ〉|ψ〉 for all

|θ〉, where |ψ〉 = k
(2)
A |ψ0〉 and |θ〉 = k

(2)
R |φ〉. In the |ψ〉, |ψ⊥〉

basis,

K̃|ψ〉(α|ψ〉 + β|ψ⊥〉) = (α|ψ〉 + β|ψ⊥〉)|ψ〉,
for all α, β such that |α|2 + |β|2 = 1. This partially defines K̃ .

If we represent K̃ in the |ψ〉, |ψ⊥〉 basis (for both qubits),
which we denote [K̃]ψ to distinguish between an operator and
its representation in a particular basis, this fully defines the
first two columns as

[K̃]ψ =

⎛
⎜⎝

1 0 0 0
0 0 p11 p12

0 1 0 0
0 0 p21 p22

⎞
⎟⎠,

for some unitary p ∈ U(2). We have that

[K̃]ψ =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 p11 p12

0 0 p21 p22

⎞
⎟⎠.
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As SWAP has the same matrix representation in any separable
basis where the same basis is used for each qubit, we
therefore have K̃ = SCψ⊥ (p). So we now have that K = k

(1)
A ⊗

k
(1)
R · SCψ⊥ (p) · k

(2)
A ⊗ k

(2)
R where |ψ〉 = k

(2)
A |ψ0〉 and Cψ⊥(p)

is entangling. We have therefore proven proposition 1a, as
SCψ⊥(p) is locally equivalent to SC(p).

We now wish to enforce the full required condition of (A1),
and hence prove proposition 1b. We put the current form of K

into this equation which, after applying the first K operator to
the state, gives

k
(1)
A ⊗ k

(1)
R · SCψ⊥(p) · k

(2)
A ũk

(1)
A k

(2)
R |φ〉 ⊗ k

(2)
R k

(1)
R |ψ〉

= |ψf 〉u|φ〉.

Now if the left-hand side of this is to be a product state we
must have that Cψ⊥(p)|η〉|τ 〉 is separable for all |η〉 where
|η〉 = k

(2)
A ũk

(1)
A k

(2)
R |φ〉, |τ 〉 = k

(2)
R k

(1)
R |ψ〉. Therefore we re-

quire Cψ⊥(p)(α|ψ〉 + β|ψ⊥〉)|τ 〉 = α|ψ〉|τ 〉 + β|ψ⊥〉p|τ 〉 to
be separable for all α and β such that |α|2 + |β|2 = 1. This
is only true if |τ 〉 = k

(2)
R k

(1)
R |ψ〉 is an eigenstate of p. Let the

eigenvalue be eiθ . We then have that the final state is

k
(1)
A k

(2)
R k

(1)
R k

(2)
A |ψ0〉 ⊗ k

(1)
R Rψ⊥(θ )k(2)

A ũk
(1)
A k

(2)
R |φ〉 = |ψf 〉u|φ〉,

where Rψ⊥(θ ) ≡ |ψ〉〈ψ | + eiθ |ψ⊥〉〈ψ⊥|. So to apply u to
the register we apply ũ = k

(2)†
A Rψ⊥(−θ )k(1)†

R uk
(2)†
R k

(1)†
A to the

ancilla. We have shown that K must be of the form K = k
(1)
A ⊗

k
(1)
R · SCψ⊥ · k

(2)
A ⊗ k

(2)
R and furthermore that |ψ0〉 = k

(2)†
A |ψ〉

and k
(2)
R k

(1)
R |ψ〉 is an eigenstate of p. This is the form of K

claimed in proposition 1b.
We have seen that all interactions that allow for ACQC must

be of this form. It is then simple to see that all such interactions
are sufficient for ACQC. The above proof shows how to
implement the single-qubit gates. To implement the two-qubit
gates we start with the same initial ancilla state as for the
single-qubit gates, interact first with one qubit, then with the
other qubit, and then again with the first. This implements an
effective K interaction, up to some local rotations, between the
two register qubits. Hence such interactions are necessary and
sufficient for ACQC. This concludes the proof of proposition
1b.
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