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Non-Markovian probes in ultracold gases
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We present a detailed investigation of the dynamics of two physically different qubit models, dephasing under
the effect of an ultracold atomic gas in a Bose-Einstein-condensed (BEC) state. We study the robustness of each
qubit probe against environmental noise; even though the two models appear very similar at a first glance, we
demonstrate that they decohere in a strikingly different way. This result holds significance for studies of reservoir
engineering as well as for use of the qubits as quantum probes of an ultracold gas. For each model we study
whether and when, upon suitable manipulation of the BEC, the dynamics of the qubit can be described by a
(non-)Markovian process and consider the the effect of thermal fluctuations on the qubit dynamics. Finally, we
provide an intuitive explanation for the phenomena we observe in terms of the spectral density function of the
environment.

DOI: 10.1103/PhysRevA.87.012127 PACS number(s): 03.65.Yz

I. INTRODUCTION

All realistic quantum systems interact with an environment
and a proper description of their dynamics calls for the toolbox
of open quantum systems theory [1,2]. In this framework the
simplest type of noise is described by a Markovian master
equation in the Lindblad form, corresponding to a completely
positive, trace-preserving dynamical map satisfying the semi-
group property [3]. The latter condition means that the map
can be divided into infinitely many time steps, each identical
and independent of the past and future steps [4], and therefore
a Markovian dynamical map has the intuitive interpretation
of memoryless dynamics. Markovian processes successfully
describe a plethora of physical processes, particularly in the
field of quantum optics, but can fail if applied to more
complex system-environment interactions where memory ef-
fects become important. In such situations one must resort to
non-Markovian dynamical maps.

Recently the theory of non-Markovian dynamics has beau-
tifully taken shape as a result of proposals for the definition
of non-Markovian dynamics [4–9]. Amazingly, in the past
the whole concept has lacked a simple, model-independent
definition. The application of non-Markovianity quantifiers,
constructed on the basis of these definitions, has led to a deeper
understanding of the microscopic mechanisms underlying
non-Markovian dynamics [10], and to the clarification of
hazy concepts [11]. Moreover, it turns out that the quantifiers
can be used to witness initial correlations in the composite
system-environment state [12], and in the environment state,
and to probe quantum phase transitions of the environment
[13], to name just a few examples. The quantifier put forward
by Breuer et al., equating non-Markovianity with bidirectional
information flow, has also been studied in a linear optics setup,
thus establishing that non-Markovianity quantifiers are not
merely a theoretical tool [14].

In the spirit of these advances we recently conducted an
investigation of the non-Markovian dynamics of a qubit cou-
pled to an ultracold Bose-Einstein-condensed (BEC) gas with
a twofold motivation [15]. On one hand, experimentalists have
discovered astonishingly accurate means of controlling and
manipulating ultracold gases [16]. This raises a question as to

whether ultracold gases could provide a tailored environment
for a quantum system such that its decohering effect on the
system is minimized. Indeed, we discovered that simple and
experimentally feasible manipulation of the ultracold reservoir
leads to significant changes in the way the qubit dephases and
enables a perfect control of the Markovian to non-Markovian
transition in the qubit dynamics. On the other hand, the way
a qubit decoheres may reveal important information about the
environment, leading to the concept of a probe qubit [17–19].
Here the fundamental question is to what extent one may probe
a large, complicated environment by looking at a simple and
accessible quantum system that interacts with it. This work
aims to dive deeper into these two aspects in the context of
qubits embedded in ultracold gases.

More specifically, we study the dynamics of two different
qubit models, each embedded in an identical environment,
namely, a BEC gas. The scattering length of the bosons forming
the BEC can be controlled using the Feshbach resonances
and therefore we have access to an environment that can
be chosen to consist of either free or interacting bosonic
particles. It is worth stressing that the latter regime is widely
unexplored and prototypes of open system models are mainly
built on the assumption of an environment of free particles.
Intuitively one may expect the interacting environment to
have better memory-keeping properties than a noninteracting
one and this was exactly what we discovered in Ref. [15]:
non-Markovian effects take place when the environment is
sufficiently strongly interacting. It was left as an open question,
however, whether this phenomenon is specific to the model we
studied in Ref. [15] or if one can generally associate interacting
environments with non-Markovian dynamics. By comparing
and contrasting the reduced dynamics of two different qubit
models we find the answer to be negative: an interacting
environment can induce Markovian dynamics on one qubit
architecture and non-Markovian on another.

We also address another unresolved question of non-
Markovian open quantum systems, namely, the connection
between the emergence of memory effects and the form of the
spectral density function characterizing the dynamical map.
Non-Markovianity is often associated with structured spectra.
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In the case of the Jaynes-Cummings model, for example,
a decrease in the width of the Lorentzian spectral density
function always leads to a higher degree of non-Markovianity
[20]. The connection is much more subtle for purely dephasing
processes, as shown in Ref. [21], where two of us unveiled a
condition on the form of the spectrum needed to create non-
Markovian dynamics. In this article we study this connection
for the rather complex dephasing dynamics induced by the
BEC environment and show that, quite unexpectedly, purely
Markovian dynamics can arise from spectral density functions
with rich structure.

II. THE TWO MODELS

We compare two different qubit models composed of a
trapped impurity atom interacting with an ultracold bosonic
gas. In model I, originally introduced in Ref. [22] and displayed
in Fig. 1(a), the impurity atom is trapped in a deep double-well
potential and forms an effective qubit system where the two
qubit states are represented by occupation of the impurity in the
left |l〉 or the right |r〉 well. In model II [see Refs. [18,19] and
Fig. 1(b)], the impurity is trapped in one site of an optical lattice
and has two internal states |e〉 and |g〉 representing the qubit
states. The Hamiltonians for both models are composed of
three parts: Hamiltonians of the impurity and of the interacting
background gas and the interaction Hamiltonian, respectively,

HA =
∫

dx�†(x)

[
p2

A

2mA

+ VA(x)

]
�(x),

HB =
∫

dx�†(x)

[
p2

B

2mB

+ VB(x) + gB

2
�†(x)�(x)

]
�(x),

HAB = gAB

2

∫
dx�†(x)�†(x)�(x)�(x). (1)

Here mA, �(x), and VA(x) are the mass, field operator, and
trapping potential of the impurity atom, mB , �(x), gB =
4πh̄2aB/mB , and VB(x) are the mass, field operator, coupling
constant, and trapping potential of a background-gas atom,
and aB is the scattering length of the boson-boson collisions.
Finally, gAB = 4πh̄2aAB/mAB is the coupling constant of the
impurity-boson interaction, where mAB = mAmB/(mA + mB)
is the effective mass.

In both models we expand the impurity field operator in
terms of Wannier functions {φk} localized in the lattice sites
or the two wells. Assuming that the lattice sites or the two

|e
|g|l |r

L

Model I: Double well qubit Model II: Atomic quantum dot

FIG. 1. (Color online) The two qubit architectures considered in
this article. Model I is comprised of an impurity atom trapped in a
double-well potential and model II assumes a single impurity atom,
with an internal level structure, trapped in a deep harmonic trap. Each
qubit interacts with a Bose-Einstein-condensed ultracold atomic gas
in a shallow harmonic trap.

wells are very deep, hopping and tunneling effects are both
suppressed and the Wannier functions take a Gaussian form.
We assume that the background gas is weakly interacting
and can be treated in the Bogoliubov approximation, neglect
all terms that are quadratic in the creation and annihilation
operators of the Bogoliubov modes and assume that the
background is homogeneous.

It turns out that when we focus on a single impurity the
Hamiltonians HA and HB in both models are effectively the
same. Any differences in these Hamiltonians will not have
an effect on the dynamics of information flow characterizing
non-Markovian effects (they are all related to the phase of
the evolving qubit) and can be safely neglected in this study.
The interaction Hamiltonians, instead, have a small but crucial
difference, arising from the different trapping potentials of the
impurities:

H model I
AB = gAB

√
n0

�

∑
k, p=L,R

n̂pĉk

√
εk

Ek

×
∫

dx|φ(xp)|2eik·x + H.c.,

H model II
AB = gAB

√
n0

�

∑
k

n̂ĉk

√
εk

Ek

×
∫

dx|φ(x)|2eik·x + H.c., (2)

where n0 is the condensate density, � is the quantization
volume, Ek = √

εk(εk + 2n0gB) is the Bogoliubov dispersion
relation, εk = h̄2k2/(2mB) is the dispersion relation of a
noninteracting gas with k = |k|, and ĉk is the Bogoliubov
excitation operator. The operator n̂ is the number operator of
the impurities: For model I we assume that there is exactly one
impurity atom in the double-well system and therefore n̂R =
1
2 (1 + σz) and n̂L = 1

2 (1 − σz), where σz = |l〉 〈l| − |r〉 〈r|.
The two wells are spatially separated by distance L so that
xR = xL − L. For model II we also assume one impurity in
the lattice site. The atom has one internal state |g〉 which
decouples from the environment and one |e〉 which does not,
and therefore n̂ = |e〉 〈e|.

We note that H model I
AB effectively describes two spatially

separated qubits of model II, albeit with a restricted state
space {|eg〉,|ge〉}. Interestingly these states span the so-
called subdecoherent state |eg〉 + |ge〉, which is very robust
against dephasing noise induced by the environment [23,24].
Therefore we can expect the qubit architecture of model I to
be less affected by noise than model II.

III. REDUCED DYNAMICS AND INFORMATION FLOW

The reduced dynamics of both models can be solved
analytically [23,25]. Each qubit dephases under the effect
of the ultracold gas, i.e., the diagonal elements of the qubit
remain constant while the off-diagonals decay as ρ01(t) =
e−
(t)+iθ(t)ρ01(0). The phase θ (t) has no effect on the in-
formation flow and therefore we do not consider it in this
work. Instead we focus on the decoherence function 
(t).
When 
′(t) > 0 information flows from the system to the
environment and if there is an interval where 
′(t) < 0 then the
flow of information is temporarily reversed. We associate this
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reversal with non-Markovian effects, adopting the proposal
of Breuer et al. as our definition for non-Markovianity
[5]. Indeed, this measure of non-Markovianity, applied to a
dephasing model such as the two models considered here, is

N =
∫


′(t)<0
ds 
′(s). (3)

Recall that this measure captures the maximal amount of
information that can flow back from the environment to the
system. In general the measure of Breuer et al. requires an
optimization over all pairs of initial states. In the case of
dephasing qubit dynamics, however, the maximizing pair has
been shown to consist of antipodal states on the equator of the
Bloch sphere [26], and hence in this case we have an analytical
expression for N . The ensuing measure N does not depend
on the initial state in which the system is prepared, being a
property of the dynamical map. Moreover, the decoherence
factor can be extracted from any initial state by following
the evolution of its off-diagonal element, and hence the
measure can be calculated, in principle, from the dynamics
of a single evolving state.

The decoherence functions for the two physical systems
considered here are


(t)model I = g2
ABn0

�

∑
k

e−k2σ 2/2 εk

Ek

sin2(Ekt
2h̄ )

E2
k

sin2 k · L,

(4)


(t)model II = g2
ABn0

�

∑
k

e−k2σ 2/2 εk

Ek

sin2(Ekt
2h̄ )

E2
k

,

where σ is the variance parameter. Interestingly the deco-
herence factor of model I has exactly the structure of the
decoherence factor of two qubits of model II with spatial
separation L in a subdecoherent state [22], as we anticipated
in the preceding section. Therefore we can expect some
“coherence trapping” in model I that we would not observe
in model II.

A. Dynamics of the decoherence factor

We plot the decoherence factors of the two models in Fig. 2,
using the same values of parameters as in Ref. [15] and going to
the limit of a continuum of modes, �−1 ∑

k → (2π )D
∫

dk,
where D is the dimension of the BEC. As anticipated, the
qubit of model I is much more robust against decoherence
than the qubit of model II. This difference is most striking in
the case of a quasi-one-dimensional (quais-1D) environment,
where 
(t)model I saturates quickly to a small value, while

(t)model II increases without bound over all considered time
scales. Hence model I is almost unaffected by the environmen-
tal noise while model II loses all coherence, and all initial states
converge toward the maximally mixed state. The difference in
the dynamics of the two models is less drastic when the en-
vironment is quasi-2D or 3D, where both decoherence factors
saturate to a stationary value, although in these two cases also
model I is more robust against the noise than model II.

Furthermore, the decoherence factor of model II is mono-
tonic in the cases of 1D and 2D background gases, implying
that the flow of information is always from to the qubit to
the environment and the dynamics is Markovian. This is at
variance with the decoherence of model I where we find both
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FIG. 2. Decoherence functions 
(t)model I (solid line) and

(t)model II (dashed line) for (a) one-dimensional, (b) two-
dimensional, and (c) three-dimensional environments for aB =
0.25aRb (black lines) and aB = aRb (gray lines).

Markovian and non-Markovian dynamics in the cases of 1D
and 2D background gases, depending on the value of the
scattering length of the background gas [15]. In the case of a 3D
background gas, shown in Fig. 2(c), both decoherence factors
are nonmonotonic for a large enough value of the scattering
length. This signals non-Markovian effects. In the next section
we quantify these using the measure of Eq. (3).

B. Non-Markovianity

In all cases we have considered we see only one period
of information backflow. This permits the use of a slightly
modified non-Markovianity measure, which captures the
maximal fraction of information that can flow back from the
environment to the system after an initial period of information
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FIG. 3. Non-Markovianity measure for model I in a zero-T
reservoir (solid black line) and a T = 10 nK reservoir (solid gray
line) and for model II in a zero-T reservoir (dashed black line). Here
we have assumed that the BEC surrounding each impurity is made of
ultracold rubidium atoms, whose scattering length aB can be altered
from its natural value aRb via Feshbach resonances.

flowing from the system to the environment [15]. In Fig. 3
we show this modified non-Markovianity measure against the
scattering length of the background gas in the case when the
qubits are immersed in a 3D background gas. We observe a
crossover from Markovian to non-Markovian dynamics for
both models, although with different values of the crossover
point: for a range of scattering lengths model I decoheres
in a non-Markovian way, while the dynamics of model II is
Markovian. We also consider the effect of temperature on
both systems. For a small temperature T = 10 nK we still
observe a Markovian to non-Markovian crossover for model I,
although the crossover point has been shifted slightly to a larger
scattering length. Physically this means that in order to induce
non-Markovian dynamics, the boson-boson interaction has to
be stronger to overcome the detrimental effects of thermal
fluctuations. For model II the measure is zero (the dynamics
is Markovian) for all the considered values of the scattering
length, demonstrating that the non-Markovianity of model II
is very fragile against thermal effects in the environment. We
explain the differences in the dynamics of the two models in
the following section.

IV. SPECTRAL DENSITY FUNCTIONS

The spectral density function J (ω) = ∑
k |gk|2δ(ω − εk)

characterizing the dephasing dynamics of an open quantum
system is determined by the coupling constants gk of the
effective interaction Hamiltonian HAB = σz

∑
k gkb

†
k + H.c.

The spectrum of each qubit model considered in this article
provides a framework for explaining the notable differences
in their dynamics, namely, the Markovian to non-Markovian
crossover and the increased robustness against environmental
noise of model I compared to model II. The spectral density, for
small frequencies, shows a power-law behavior J (ω) ∝ ωs . In
the following we call parameter s > 0 the Ohmicity parameter
since it determines whether the spectral density is Ohmic with
s = 1, sub-Ohmic with s < 1, or super-Ohmic with s > 1.

We conjectured in Ref. [15] that the existence of the
crossover from Markovian to non-Markovian dynamics is
closely related to the class of the Ohmic spectral densities (sub-

Ohmic, Ohmic, or super-Ohmic) to which the spectrum be-
longs. In Ref. [21] we further quantified this claim, presenting
a necessary condition for non-Markovian dephasing dynamics:
Non-Markovian dynamics can appear only if the spectrum of
the environment is super-Ohmic. More specifically, we showed
that for a very general dephasing model introduced with a
spectrum of the form J (ω) = η ω1−s

ph ωs exp{−ω/ωc}, where
η is a dimensionless coupling constant that we set to unity
and ωph is a phononic reference frequency introduced to keep
the dimension of the spectrum equal for all values of s [2],
non-Markovian effects take place only if s > scrit = 2, i.e., the
spectrum is strongly super-Ohmic. For the physical models
considered here the form of the spectral density function is
more complicated, but we show that the main results hold also
for these two systems.

A. Spectra at low frequencies

We plot the spectral densities J (ω) for the two models in
Fig. 4, focusing on the low-frequency part of the spectrum
in the right-hand column. We observed in Ref. [15] that
for ultracold environments the effective Ohmicity parameter
depends on the scattering length of the environmental bosons,
s = s(aB), and on the dimensionality of the BEC environment.
Changing these two allows transitions from one Ohmic class
to another. Here we confirm that for both models and for all
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FIG. 4. Spectral density functions J (ω) for model I (solid
lines in all figures) and model II (dashed lines in all figures) in a
(a) one-dimensional, (b) two-dimensional, and (c) three-dimensional
environment. The left-hand side figures show the full spectrum, and
the figures on the right show the low-frequency contribution. In the
latter we show the spectrum for a weakly interacting background gas
with aB = 10−3aRb (black lines) and for a BEC with aB = aRb (gray
lines).
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three dimensions increasing the scattering length increases
the effective value of s for small frequencies ω. This effect
is especially pronounced in the case of model II. When
the environment is a quasi-1D free gas (aB/aRb � 1) the
low-frequency part of the spectrum is sub-Ohmic but as the
scattering length is increased to aB/aRb ≈ 1, the spectrum
approaches an Ohmic form. However, even with further
increase in the strength of the boson-boson coupling in the
environment, the spectrum does not become super-Ohmic,
and indeed we never observe non-Markovian effects in model
II in the 1D regime. In the case of a quasi-2D environment
the spectrum of the environment changes from sub-Ohmic to
super-Ohmic when the scattering length value is increased,
but even in the more strongly interacting case the spectrum
is not sufficiently super-Ohmic to trigger non-Markovian
effects. Instead, in the 3D case the free gas has an Ohmic
spectrum which turns super-Ohmic as the interaction between
the bosons is turned on and increased. In this case the
spectrum can become so strongly super-Ohmic that we observe
non-Markovian effects.

Model I is already naturally more Ohmic than model II
in the sense that when the ultracold gas is essentially
noninteracting both the quasi-2D and the 3D environments
have a super-Ohmic spectrum (the quasi-1D environment is
roughly Ohmic) and the spectra become super-Ohmic in all
dimensions when the scattering length is increased. Critically,
in all dimensions the spectrum becomes super-Ohmic enough
to create non-Markovian effects in the dynamics of the double-
well qubit for some critical value of the scattering length,
and therefore we observe a crossover from Markovian to
non-Markovian dynamics for model I in all three dimensions.

B. Full spectrum

Changes in the scattering length have a crucial effect on
the spectral density for small frequencies but they are almost
negligible when looking at the full spectra. Instead, the full
spectra, shown in the left-hand column of Fig. 4, exhibit
another very interesting difference between the two models,
namely, that the spectrum of model I oscillates as a function
of ω. Moreover, the spectral density function vanishes for
some specific values of ω in the quasi-1D case, implying that
some modes of the environment are completely decoupled
from the qubit. We find that the larger is the separation
between the two wells the more roots the spectral density
has, i.e., more modes decouple from the qubit. We observed
numerically that increasing the well separation also increases
the ”coherence trapping,” leading to higher stationary values
of the off-diagonal elements of the qubit density matrix. The
higher is the dimension of the environment, the smaller are
the deviations of the spectrum of model I compared to that of
model II. This phenomenon is also reflected in the differences
in the decoherence factors of the two models; the differences
are most pronounced in the case of a quasi-1D environment
and in the higher dimensions the decoherence factors are more
similar in both value and dynamical behavior.

V. DISCUSSION AND CONCLUSIONS

We have studied the non-Markovian dynamics of two
physically different realizations of a qubit interacting with

a BEC environment. We discovered that the qubit architecture
of model I is much more non-Markovian than the one
used in model II. This statement applies in three ways:
(i) Model I has non-Markovian dynamics in all three dimen-
sions of the BEC, unlike model II, which is Markovian in
1D and 2D environments; (ii) model I has larger values of
the non-Markovianity measure in the cases when both qubits
have non-Markovian dynamics, i.e., it regains previously
lost information more easily; (iii) nodel I is more robust
against thermal fluctuations. We also discovered that the two
qubit architectures can have extremely different sensitivity
to environmental noise, especially in the case when the
environment is effectively one dimensional.

There is increasing evidence that non-Markovianity mea-
sures can be used to probe certain properties of the environ-
ment. In Ref. [13] we demonstrated how the non-Markovianity
of a probe qubit can unambiguously detect the critical point of
the transverse Ising model when it is centrally coupled to all
the spins in the Ising chain. The non-Markovianity measure
vanishes exactly at the critical point and therefore the central
spin probes the quantum phase transition of the environment.
In this article we showed that the behavior of the non-
Markovianity measure of model I, when the scattering length
of the BEC environment is varied, gives information about the
dimensionally of the BEC [15]. Since the dynamics of model II
is typically Markovian, it fails to probe this property of the
BEC. Different systems and system-environment couplings
lead to quantum processes with different (non-)Markovian
properties, and hence the ensuing non-Markovianity measures
have varying sensitivity to properties of the environment. This
highlights the importance of choosing suitable qubit systems
when designing the most suitable quantum probe for a complex
system or quantum simulation.

We also explored the connection between the form of the
spectral density function and the ensuing qubit dynamics.
While the form of the full spectral density function dictates
the general dynamics of the qubit, only a very small part
of it controls the Markovian to non-Markovian crossover.
We noted the importance of the low-frequency part of the
spectrum in the emergence of non-Markovian phenomena in
Ref. [21] in the case of a simple dephasing model, and the study
presented in this article confirms that the statement holds also
for more complex systems. It is nonetheless striking to notice
the overwhelming importance of the low-frequency modes.
The spectral density function of model I in a quasi-1D BEC has
a very rich structure over the frequency range of the order of the
cutoff frequency σ−1, yet this has no effect on the crossover of
the qubit dynamics from Markovian to non-Markovian. The
crossover is fully controlled by the behavior of the spectral
density function for low frequencies ω � σ−1, specifically
whether the spectrum is quadratically increasing or not. It is
worth stressing that this connection seems to be quite specific
to pure dephasing noise. In Ref. [27] the authors studied
a dissipative model and found a direct connection between
roots of the spectral density function and non-Markovian
dissipationless dynamics; here we discovered that in the pure
dephasing qubit model the roots of the spectra do not at all
affect the (non-)Markovianity of the dynamics.

Our results have twofold importance. On one hand they
illustrate in a very clear way how the connection between
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non-Markovianity (or memory effects) and structured envi-
ronments generally has to be taken with great care. On the
other hand, and most importantly, they warn us of the misuse
of the term “non-Markovian environment.” In our study the
environment is exactly the same for the two models, and
in both cases it is interacting with a qubit probe. However,
under certain conditions, perfectly identical environments
induce Markovian dynamics on one qubit and non-Markovian
dynamics on another.
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