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Non-Galilean response of Rashba-coupled Fermi gases
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We consider the effect of a momentum kick on the ground state of a noninteracting two-dimensional Fermi gas
subject to Rashba spin-orbit coupling. Although the total momentum is a constant of motion, the gas does not
obey the rules of Galilean relativity. Upon imprinting a small overall velocity to the noninteracting gas, we find
that the Fermi sea is deformed in a nontrivial way. We also consider a weakly repulsive Fermi gas and find, from
its Hartree shift, that the total ground state of the system may change into a deformed, finite-momentum ground
state as the repulsion is increased beyond a critical value, without the need for any external Zeeman fields. We
also discuss possible experimental signatures of these effects.
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I. INTRODUCTION

Recent progress on synthetic spin-orbit coupling for neutral
atoms [1–4] provides new ways to study its effects in both
bosonic [5–7] and fermionic [8,9] systems. For atomic Fermi
gases, many theoretical studies have shown that the spin-
orbit coupling has nontrivial consequences on the BCS-BEC
crossover when an attractive interaction is present [10–14].
Even when the attraction is small, the BCS-BEC crossover can
be induced by increasing the spin-orbit coupling strength. Due
to the absence of Galilean invariance in the spin-orbit coupled
gases, fermionic superfluids can exhibit highly nontrivial
properties [15–17]. These systems can undergo quantum phase
transitions to some topological superfluid phases [18–21], and
it has also been shown that the finite-momentum pairing state
or the so-called Fulde-Ferrell-Larkin-Ovchinnikov state can
be energetically favored in spin-orbit coupled Fermi gases
[22–26]. However, these more exotic phenomena require an
additional, carefully engineered Zeeman field.

In this work, we study the response of a Fermi gas
with pure Rashba spin-orbit coupling to a small momentum
kick, in two spatial dimensions for concreteness. We find
that, even in the low-momentum regime, the Fermi sea
is deformed in a nontrivial way, the Fermi sea is highly
degenerate, and its energy is bound from above by that of trivial
Galilean-like boosts. We then consider repulsive interactions.
Unlike the bosonic case, where an energetic instability can be
induced by a momentum kick [27], we find, using mean-field
theory, that the ground state acquires a finite momentum for
interaction strengths beyond a critical value. The Fermi sea
is consequently deformed, without the need to include any
external Zeeman fields. We also describe realistic experimental
signatures of these effects in systems of ultracold atoms with
the use of standard techniques.

II. NONINTERACTING SPIN-ORBIT-COUPLED
FERMI GAS

The single-particle Hamiltonian of the system is given by
[28]

H0 = p2 + h̄2λ2

2m
1̂ + h̄λ

m
σ · p, (1)

where σ = (σx,σy) is the vector of spin- 1
2 Pauli matrices.

The constants of motion are the helicity H ≡ σ · p, with
its corresponding eigenvectors |ψ (±)〉 forming the helicity
basis, with eigenvalues h = ±|p| for momentum p = h̄k,
and the momentum itself. The common eigenstates of the
Hamiltonian, helicity, and momentum have the form

|ψ (±)(r)〉 = eik·r[|↑〉 ± eiφ|↓〉], (2)

where φ is the polar angle of k, given by tan φ = ky/kx .
The two energy branches of the system, corresponding to
negative (lower branch) and positive (upper branch) helicity,
respectively, are given by

ε±(k) = h̄2

2m
(|k| ± λ)2. (3)

For the sake of simplicity, we assume that the Fermi gas
is dilute enough that in the ground state particles occupy only
negative-helicity states. For this to hold, the Fermi energy must
be EF ≡ h̄2k2

F /2m � h̄2λ2/2m, with the Fermi momentum
kF = πρ/λ. Defining the only dimensionless parameter of the
gas z = πρ/λ2, the single-branch condition reads z < 1. The
Fermi sea in two dimensions has the form of a concentric
annulus. For convenience, we define “radii” RI = λ − kF =
λ(1 − z) and RO = λ + kF = λ(1 + z) for the inner and outer
circumferences, respectively, which are the borders of the
Fermi sea. The ground-state energy density E is given by

E0 = 1

(2π )2

∫ 2π

0
dφ

∫ RO

RI

dkkε−(k) = h̄2ρ

6m
πzρ. (4)

We study now the properties of the lowest energy Fermi sea
when the gas is given an infinitesimally small momentum kick.
The momentum kick per particle is denoted as k0. Without loss
of generality, we choose the momentum kick in the positive x

direction, k0 = k0k̂x , with k0 > 0.
We begin by considering the obvious Galilean-like boost,

consisting of assigning an extra momentum k0 to each fermion
in the Fermi sea. We note that, formally, these are not Galilean
boosts since they also involve a nontrivial spin rotation, as is
observed from Eq. (2). Geometrically, these transformations
correspond to displacing the Fermi sea to the right by an
amount k0. The excess energy density 	EG is calculated by
replacing k → k + k0 in the single-particle dispersion, Eq. (3),
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as

	EG = 1

(2π )2

∫ 2π

0
dφ

∫ RO

RI

dkkε−(k + k0) − E0. (5)

Before performing the integration, we expand the modulus
|k + k0| in the single-particle dispersion to second order in k0,
given by

|k + k0| = k

(
1 + k0

k
cos φ + k2

0

2k2
sin2 φ

)
+ O

(
k3

0

)
. (6)

By inserting the expansion in Eq. (5), we obtain the excess
energy for Galilean-like boosts to O(k2

0),

	EG = h̄2k2
0

4m
ρ. (7)

Below, we see that the energy of these transformations is an
upper bound for the ground-state energy at finite momentum
and is only attained for a saturated lower branch (z = 1).

If the momentum kick per particle k0 to the gas is small,
the ground state in the thermodynamic limit can be modeled
by infinitesimal transformations, which describe the response
of the system to small momentum kicks. These must fulfill
two conditions: (i) the density ρ is preserved and (ii) the
momentum per particle of the resulting Fermi sea equals k0.
If we consider infinitesimally small momenta, we can safely
rule out breaking the Fermi sea into disjoint pieces. We are
then left with two possibilities, namely displacements of the
inner and outer circumferences and multipolar deformations
of these [29].

We now consider displacements of the inner and outer
circumferences with respect to each other, which always
preserve the density of the system. The resulting momentum
density is easy to calculate if we regard the empty region
|k| < RI as a virtual Fermi sea of holes with density ρI , and
the partially filled region |k| < RO as a virtual Fermi sea of
particles with density ρO , which are defined as

ρj = 1

(2π )2

∫ 2π

0
dφ

∫ Rj

0
dkk = R2

j

4π
, (8)

where j = I,O. If we displace the inner and outer circum-
ferences by momenta qI and qO , respectively, the momentum
density of the system is given by

k0ρ = qOρO − qI ρI . (9)

Finally, deformations of the Fermi sea can be parametrized
in polar coordinates by allowing the radii become angle depen-
dent as RI (φ) = RI + fI (φ) and RO(φ) = RO + fO(φ), with
fI and fO real periodic functions. Clearly, not all deformations
preserve the density. This is given by ρ = ρO − ρI , which is
computed from Eq. (8) with Rj → Rj (φ), and implies the
following condition:∫ 2π

0
dφ{[fO(φ)]2 − [fI (φ)]2} = 0, (10)

or, equivalently ||fO || = ||fI ||, with || · || the norm on
L2([0,2π )). This condition is very relaxed, since it allows very
different deformations of the two circumferences provided that
their norms are equal. Since, by convention, we have chosen to
imprint a momentum to the system in the positive x direction,

we can restrict ourselves to deformations in the horizontal
axis. Therefore, we parametrize the functions fi (i = O,I ) by
a multipolar expansion of the form

fi(φ) =
∑
m�1

c(i)
m

cos(mφ)√
π

, (11)

where every coefficient c(i)
m is real. The condition on the norms

takes the form
∑

m�1(c(O)
m )2 = ∑

m�1(c(I )
m )2. The momentum

density of the deformed Fermi sea is given by k0ρ = k0ρk̂x ,
with

k0ρ = 1

(2π )2

∫ 2π

0
dφ

∫ RO+fO (φ)

RI +fI (φ)
dkk2 cos φ. (12)

For an infinitesimally small momentum kick, we can restrict
the expansion in Eq. (11) to lowest (dipolar) order, in which
case condition (10) reduces to c

(I )
1 = ±c

(O)
1 . Defining q±

1 =
c

(O)
1 /

√
π , with the upper (lower) sign corresponding to equal

(opposite) dipolar coefficients, we have k0 = q+
1 , while for

c
(I )
1 = −c

(O)
1 we have

k0ρ =
(

ρ + R2
I

2π

)
q−

1 + (q−
1 )3

8π
. (13)

To lowest order in k0, q−
1 is given by q−

1 = 2zk0/(1 + z2).
Intuitively, dipolar coefficients with opposite sign will yield
a lower energy, since a weaker deformation (|q−

1 | < |q+
1 |)

is needed in order to have the required momentum k0. The
excess energy density 	E± for dipolar deformations is readily
calculated, to leading order in q±

1 , giving

	E± = h̄2(q±
1 )2

4m
ρ. (14)

From the above relation, we see that for equal deformations
the excess energy is that of Galilean-like boosts, as in Eq. (7),
	E+ = 	EG. For opposite dipolar coefficients we obtain a
lower energy given by

	E− = h̄2k2
0

m

[
z

1 + z2

]2

ρ, (15)

which is bound from above by 	EG. The excess energy due
to pure deformations can be lowered further by considering
either displacements or both displacements and deformations.
We show next that the resulting ground state at small nonzero
momentum is highly degenerate.

We now study the energy of the Fermi gas when we impose
displacements qI and qO of the inner and outer circumfer-
ences, together with deformations of opposite coefficients,
parametrized by q1 ≡ q−

1 . The energy density of the system is
calculated as the difference between the energy of the virtual
Fermi sea of particles, EO , and that of the virtual Fermi sea of
holes, EI , where

Ei = 1

(2π )2

∫ 2π

0
dφ

∫ Ri+fi (φ)

0
dkkε−(k + qi), (16)

with i = O,I . To lowest order in the momenta, we can isolate
the excess energy from the energy at zero momentum, which
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takes the form

(2π )2 2m

h̄2 	E = πk2
F

(
q2

O − q2
I

) + πλkF

(
q2

O + q2
I

)
+ 2πkF [kF q1(qO + qI ) + λq1(qO − qI )]

+ 2πλkF q2
1 . (17)

If the momentum per particle is set to k0 = k0k̂x , the three
momenta of the system must fulfill the condition

qOρO − qIρI + 1 + z2

2z
ρq1 = k0ρ. (18)

Using the momentum constrain above to clear qI in favor of qO

and q1, and inserting this into Eq. (17), we obtain an expression
for the excess energy density, which is minimized for any qO

satisfying

qO = −q1 + 2z(1 + z)

1 + 3z2
k0, (19)

with the only constraint that both qO and q1 have to be small
(�kF ) for our theory to be valid. We thus see that the ground
state at fixed finite momenta is infinitely degenerate. Finally,
the excess energy density is given by

	E = h̄2k2
0

m

z2

1 + 3z2
ρ, (20)

which is bound from above by 	EG for all z and by 	E− for
each z.

III. WEAKLY INTERACTING FERMI GAS

We consider now the effect of weak interactions, which we
model with a zero-range potential. At mean-field level, the
Dirac δ needs not be regularized and has the form gδ(2)(r),
where r is the interparticle distance. The dimensionless inter-
action parameter ξ = mg/4πh̄2 [30] must here be compared
with the only dimensionless parameter z of the noninteracting
gas. The typical interaction energy gρ/4 [31] should be smaller
than the Fermi energy EF = πh̄2ρz/2m, which gives ξ < z/2.

The Hartree shift E (1) is given by [31]

E (1) = g

4
ρ2 − g

4(2π )4

∫
F

dk
∫

F

dk′ cos(φk − φk′). (21)

The first term is independent of the shape of the Fermi sea,
and the second term vanishes identically in the noninteracting
ground state. However, the second term reduces the interaction
energy for repulsive interactions (g > 0) if the Fermi sea is
modified to acquire a nonzero total momentum. Without loss
of generality, we again consider a momentum per particle k0

in the x direction, in which case the extra contribution to the
Hartree shift reads

I ≡ − g

4(2π )4

∫
F

dk
∫

F

dk′ cos(φk − φk′)

= −g

4

[
1

(2π )2

∫
F

dk cos φ

]2

. (22)

In the following, we minimize the total energy
excess 	ET = 	E + I at a constant, infinitesimally
small momentum k0, with respect to the displacement
parameter qO . We consider displacements, parametrized

by qI and qO , together with deformations, parametrized
by q1 ≡ q−

1 . The Fermi sea is the set F of
momenta k defined as F = {k|κI � |k| � κO}, with
κi(φ) =

√
(Ri ± q1 cos φ)2 + q2

i + 2qi(Ri ± q1 cos φ) cos φ

(i = I,O). The extra Hartree shift of Eq. (22) is easily
calculated and reads

I = − gρ

64πz
[qO(1 + z) − qI (1 − z) + 2q1]2, (23)

where qO , qI , and q1 are related via Eq. (18), which is now valid
to lowest order in k0. The energy excess 	ET is minimized at
the point

qO = 2k0z(−2 + 2ξ [1 − z]) + q1(2 − z − 2z[z + ξ ])

2(−1 + 2z2 + zξ [1 − z2])
,

(24)

and its value is

	ET = F(ξ,z)
h̄2k2

0

m
ρ, (25)

where

F(ξ,z) = z
z − ξ

ξz(z2 − 1) + 1 + 3z2
. (26)

Note that F(ξ,z) is independent of choice of deformation
parameter q1, which shows the infinite degeneracy at small
momenta holds even in the presence of interactions. As we
infer from Eq. (25), the system’s ground state, to first order
in the interaction, will change from the noninteracting Fermi
sea to a Fermi sea with an infinitesimally small momentum—
which denotes continuity—at a critical value ξ = ξc(z), where
F(ξc,z) = 0. This is given by

ξc(z) = z. (27)

Our results are consistent with the strong-coupling limit
considered in Refs. [32,33], where the Fermi surfaces were
shown to be deformed by using a self-consistent Hartree-Fock
calculation. However, with their choice of self-consistent
Zeeman field, the degeneracy of the ground state or absence
thereof was not investigated. It is important to note that,
while we are considering the system’s noninteracting energy
to order O(k2

0), the interaction energy is not approximate but
is indeed proportional to k2

0 in the cases qI = qO = 0 with
q1 
= 0 and q1 = 0 with qI ,qO 
= 0, and therefore the above
critical value is exact at the mean-field level. The critical
value we have obtained lies slightly outside the regime of
validity of the mean-field approximation. This is a typical
situation that also occurs, for instance, in the study of the
ferromagnetic transition [34] in repulsive Fermi gases [35–37]
and is resolved by going beyond first-order perturbation theory,
which can result in an apparent first-order transition [37,38],
or using nonperturbative methods [39,40], which predict a
second-order phase transition and are in good agreement
with Monte Carlo simulations [41]. Our findings are the
natural starting point for higher order corrections [31] and
nonperturbative treatments, and can still be improved at the
mean-field level [42]. Moreover, if, as our results suggest,
the transition to finite momentum is continuous, the critical
point can be obtained by calculating only the second-order
response function F(ξ,z) but with improved treatments of the
interactions.
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The low-momentum theory we have presented predicts
only whether the system evolves towards a finite-momentum
ground state in a continuous manner. This is to say that our
theory can describe, correctly, only derivatives in the energy
at zero momenta

m

2h̄2ρ

d2E
dk2

0

(k0 = 0) = F(ξ,z). (28)

The first derivative of the energy with respect to k0 vanishes
always at k0 = 0, while its second derivative F(ξ,z) > 0 for
ξ < ξc and F(ξ,z) � 0 for ξ � ξc (strictly speaking, until its
pole at ξ∞ = (1 + 3z2)/(z − z3) � ξc, which is far beyond
the limit of validity of the mean-field theory). The change
of sign in F(ξ,z) denotes the transition from a minimum to a
maximum at k0 = 0, which implies that for repulsions stronger
than the critical value ξc the system’s ground state has nonzero
momentum. To calculate the actual momentum of the ground
state for ξ > ξc it is necessary to go beyond leading order in k0.

IV. EXPERIMENTAL CONSIDERATIONS

In the previous section we considered the momentum
acquired by the gas after the critical point to be in a particular
direction. In an experiment, however, no direction is in princi-
ple preferred. Obviously, after the critical point is reached, the
ground state is highly degenerate, since the same momentum
in any direction yields the same energy. The many-body wave
function is therefore an arbitrary superposition of states with
momenta pointing at different directions. For instance, we may
expect to observe an equal superposition of these states, up to
arbitrary phases, which yields a circularly symmetric momen-
tum distribution. Even if a finite momentum is acquired in a
particular direction, this will be different in each experimental
realization, and the averaged momentum distribution after
many realizations will be spherically symmetric. Momentum
distributions are especially relevant to cold atom experiments
where these can be obtained via time-of-flight measurements
[43], in combination with spin-injection spectroscopy [9] or
momentum-resolved rf spectroscopy [8].

We can easily map out, starting from a Fermi sea at
finite momentum in a particular direction, the integrated,
circularly symmetric momentum distribution. The momen-
tum distribution is denoted by n(k), and is such that ρ =∫

dkn(k)/(2π )2. We define the integrated, angle-independent
momentum distribution ñ(k) as

2πñ(k) =
∫ 2π

0
dφn(k). (29)

Geometrically, ñ(k) is the arc length of occupied states on a
circumference of radius k in momentum space. Closed circum-
ferences map into unit length—fully occupied states—while
open arcs give shorter lengths—smaller average occupations.
The circularly symmetric momentum distribution arising from
the superposition of the different states is obtained as a surface
of revolution by rotating the Fermi sea at finite momentum in
a particular direction with respect to the origin in momentum
space. Clearly, the resulting momentum distribution coincides
with ñ(k).

In Fig. 1, we show the integrated momentum distribution
for a particular case of an interacting Fermi sea at nonzero

0.75 1 1.250

0.5

1

|k|/λ

ñ(k)

FIG. 1. (Color online) Integrated momentum distribution (black
solid line) at critical interaction strength ξ = z, with k0/λ = 5 × 10−2

and z = 1/5, compared to the noninteracting momentum distribution
(red [gray] dashed line).

total momentum compared to the noninteracting momentum
distribution. There, we observe a shortening of the unit occu-
pation plateau, together with a smoothing of the momentum
distribution at the edges of the Fermi sea, with an obvious
change in concavity, which can be a relevant experimental
signature for finite-momentum states. In cold-atom experi-
ments, where an external trap is always present, the Fermi sea
and the homogeneous momentum distribution can be observed
by selectively probing fermions around the center of the trap
[44,45]. An alternative way to observe these effects consists of
adding to the system a small symmetry-breaking term, i.e., a
small momentum kick in a chosen direction, in order to observe
the deformations per se. This can routinely be done nowadays
with the use of standing-wave light-pulse sequences [46]. This
technique has been successfully applied to ultracold atom
systems subject to artificial spin-orbit coupling [47].

V. CONCLUSIONS

In this paper, we have studied the response of a dilute two-
dimensional Fermi gas with Rashba spin-orbit coupling to a
small overall constant velocity kick. We have found that the
moving Fermi sea deforms in a nontrivial manner due to the
non-Galilean nature of the system and is highly degenerate. We
have then considered repulsive interactions at the Hartree-Fock
level and found that the ground state of the system acquires a
finite momentum. The Fermi sea becomes deformed beyond
a critical interaction strength in a continuous fashion, which
we identified as a possible experimental signature. Our results
open the path towards the observation of finite-momentum
ground states, constitute the starting point for more elaborate
treatments of interactions, and can be generalized to higher
dimensions and more general types of spin-orbit coupling.
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