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Directed assembly via selectively positioned host
functionality†

Piotr P. Cholewa,a Christine M. Beavers,b Simon J. Teatb and Scott J. Dalgarno*a

Introduction of distal carboxylic acid groups over two positions at the

upper-rim of a di-O-alkylcalix[4]arene provides facile control over

coordination polymer or discrete metal–organic capsule formation.

Attaining high levels of control over the formation of discrete and
polymeric assemblies from multi-component small-molecule systems
is a continuing challenge in supramolecular coordination chemistry.
The calix[n]arenes are a class of host molecule that have featured
extensively as supramolecular building blocks due to their ability to
adopt different conformations and the relative ease with which they
can be functionalised.1 Calix[4]arenes (C[4]s) have attracted signifi-
cant attention in this regard as they are typically bowl-shaped
(C4-symmetric) due to lower-rim H-bonding interactions (Fig. 1A);
in this conformation neutral or functionalised C[4]s present a cleft
that is suitable for either inorganic or organic guest binding.2 In
addition the conformation of the general C[4] framework can be
readily controlled through synthetic modification at the lower-rim;
di-O-alkylation affords a C2-symmetric partially pinched-cone C[4]
that is stabilised by two lower-rim H-bonds and that retains a cavity
for guest binding, whilst tetra-O-alkylation affords the fully pinched-
cone conformer due to steric bulk at the lower-rim (Fig. 1B).1b

The p-carboxylatocalix[n]arenes (general notation pCO2[n]) are
a relatively unexplored family of building block. This is somewhat
surprising given the importance of benzoates in the programmed
formation of metal–organic frameworks and polyhedra (MOFs
and MOPs respectively),3,4 and that these molecules present the
opportunity to construct novel materials from cavity containing
sub-units. We recently began investigating their supramolecular
chemistry and reported the non-covalent assembly of a series of
rare p-carboxylatocalix[4]arene nanotubes, utilising pyridine (Py)

as a template in the formation of constituent hydrogen-bonded
capsules.5 We have also used coordination chemistry motifs to
program the formation of metal–organic supermolecules that
promote the assembly of novel nanotube arrays due to solid state
packing constraints (Fig. 1C),6 and 1-D coordination polymers
synthesised from targeted transition metal/pCO2[4] panels linked
by bipyridyl co-ligands (Fig. 1D).7 The former structures comprise
pinched-cone tetra-O-alkylcalix-[4]arene tetracarboxylic acids,
while the latter are formed from tetra-O-alkylcalix[4]arene mono-
carboxylic acids. With respect to the current contribution it is note-
worthy to mention that de Mendoza and co-workers reported the
formation of giant regular polyhedra through assembly of pCO2[4]s
and pCO2[5]s with the uranyl ion.8 These assemblies have huge
internal volumes and conform to the expected polyhedral structures
based on calixarene size. More recently Burrows and co-workers
reported a series of pCO2[4] MOFs formed with a tetra-O-
alkylcalix[4]arene dicarboxylic acid;9 the tetra-O-alkylcalix[4]arene

Fig. 1 (A) The common C4-symmetric bowl conformation found for C[4]s. (B)
Examples of common C2-symmetric partially pinched-cone and pinched-cone
conformations found for C[4]s when di- or tetra-functionalised at the lower-rim
respectively. (C) Metal–organic super-molecules containing sufficient tilt to
promote nanotube formation in the solid state based on packing preferences.7

(D) 1-D coordination polymer chains formed from TMII
2(pCO2[4])4 panels and

4,4-bipyridine linkers.8
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dicarboxylic acids in these MOFs are pinched-cone conformers,
with upper-rim CO2

� functionality directed away from the C[4]
centre.

Here we show that controlling the position of two distal
carboxylic acid groups across the upper-rim of a C2-symmetric,
cavity containing C[4] has dramatic consequences over metal-
directed assembly to afford either a metal–organic capsule or
coordination polymer from a tri-component mixture. As a general
strategy we used 1,10-phenanthroline (phen) as a co-ligand to
block off coordination positions around directing Cd centres and
prevent the formation of systems akin to those reported by
Burrows et al.9 In the case of the coordination polymer we found
that symmetry equivalent phen ligands also function as comple-
mentary guests for C[4] cavities from a neighbouring chain.
Assembly of the molecular components clearly relies on the angles
associated with this partially pinched-cone C[4] conformer in a
manner akin to that observed for benzene dicarboxylic acids in
the formation of MOPs and MOFs.3,4

Upper-rim formylation para to the lower-rim OH groups of
di-O-butylcalix[4]arene (1) to afford compound 2 is readily
achieved by reaction with tin(IV) chloride and dichloromethyl-
methylether in DCM, and subsequent oxidation with sodium
chlorite and sulfamic acid furnishes the di-carboxylic acid, 3
(Scheme 1).10 ‡ In order to formylate at the alternative upper-rim
positions it is first necessary to protect the remaining lower-rim OH
groups by reaction with nosyl chloride.11 Subsequent formylation
with HMTA in trifluoroacetic acid, oxidation with sodium chlorite
and sulfamic acid and deprotection of the lower-rim affords the
alternative di-carboxylic acid, 6, in good yield (Scheme 1).5c

In order to make structural comparison with metal complexes
formed in dmf we attempted to crystallise both 3 and 6 from this
solvent. Single crystals were only obtained for 3�dmf (Fig. S1,
ESI†) and structural analysis showed that the calixarene adopts
the expected partially pinched-cone conformation with narrow
and wide cone angles of B881 and B1081 respectively (Fig. S1,
ESI†).§ It is unlikely that a change in upper-rim positioning
(from 3 to 6) would cause significant deviation from this partially
pinched-cone conformation and we therefore assume that the
associated cone angles for 6�dmf would be similar.

Reaction of 3 or 6 (in equivalent stoichiometries) with
cadmium nitrate tetrahydrate and phen in dmf produced single
crystals that were suitable for X-ray diffraction studies (ESI†).
Structural analysis of crystals formed from reaction with 3 (with
two splayed upper-rim carboxylic acid groups) shows that the
components form a 1-D coordination polymer (7) with formula
[Cd(3-2H)(phen)(H2O)0.5(dmf)0.5]�(H2O)0.5(dmf)0.5.§ The Cd(II)

centre bonds to one carboxylate of 3, the phen and one solvent
molecule (found to be disordered dmf–H2O) in the asymmetric
unit (Fig. 2A). Structure expansion reveals that it also bonds to a
symmetry equivalent of the distal carboxylate group within 3,
generating a 1-D coordination polymer chain (Fig. 2B). Expan-
sion of the asymmetric unit around the cavity of 3 reveals that
this is occupied by a symmetry equivalent phen ligand, with the
two fragments knitting together through two crystallographically
unique host–guest CH� � �p interactions (Fig. 2A). The result of this
is that the extended structure contains interwoven pairs of 1-D
chains as shown in Fig. 2B. These assemble to form bi-layer type
arrays as is often observed for C[4] building blocks.12 Analysis of the
cone angles of crystallographically unique 3 found in 7 shows
that the molecule retains the partially pinched-cone conforma-
tion with narrow and wide cone angles of B881 and B1111
respectively (Fig. S2, ESI†).

Structural analysis of the crystals formed from reaction with 6
(with two proximal upper-rim carboxylic acids) shows that the
components form a discrete metal–organic capsule (8) of formula
[Cd2(3-2H)2(phen)2(H2O)(dmf)C(dmf)]�(H2O)3(MeOH).§ The asym-
metric unit in 8 contains the entire molecular capsule and the two
Cd(II) centres display slight, yet important differences in their
coordination chemistry, a feature presumably linked to the pro-
nounced distortion in the assembly (Fig. 3). One Cd(II) centre bonds
to two upper-rim carboxylates (one from each unique molecule of 6),
one phen and a dmf that is positioned within a calixarene cavity as
shown in Fig. 3A. The second Cd(II) centre also bonds to two upper-
rim carboxylates and a phen, but displays different coordination by
ligation of a water molecule rather than dmf. Inspection of the
structure (Fig. 3A) suggests that ligation of dmf would be impossible
based on steric interactions, which is supported by the fact that
second cavity in the capsule is occupied by a dmf guest; this occurs
with a hydrogen bonding interaction from the ligated water to
the dmf carbonyl with an O� � �O distance of 2.653 Å.

Analysis of the pairs of narrow and wide cone angles in the
two unique molecules of 3 found in 8 shows that the partially
pinched-cone conformation is again retained in both calixarenes;
the pairs of narrow and wide cone angles have values of B911/
B1071 and B891/B1131. The coordination chemistry associatedScheme 1 Synthetic routes to building blocks 310 and 6.5c,11

Fig. 2 (A) Section of the extended structure in 7 showing complementary host–
guest CH� � �p interactions (blue dashed lines) between neighbouring cavities of 3
and ligated phenanthrolines. (B) Extended structure in 7 showing the interdigita-
tion of 1-D chains and the bi-layer assembly. H atoms except those involved in
CH� � �p interactions are omitted for clarity. Disordered solvent ligands are shown
only as dmf.
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with the two directing Cd(II) centres also results in tilting of the two
calixarenes due to coordination of the phen ligands; the tilt angle
found between calixarene lower-rim centroids and one generated
between the two Cd(II) centres is B1281. Inspection of the proximal
H atoms para to the OH groups in Fig. 3B shows that these are
offset. This could be due to steric reasons, or result from the
coordination chemistry imposed on the Cd(II) centres by the phen
ligands, or be a combination of both effects. These features clearly
show that the acute angle between the acid functionalities in 6
(which is in the partially pinched-cone conformation) direct the
assembly of this new discrete capsule.

We have demonstrated that selective positioning of distal
carboxylic acid functionality across a C2-symmetric C[4] upper-
rim affords facile control over the assembly of metal–organic
capsule and coordination polymer motifs from tri-component
small-molecule systems. Phenanthroline restricts the coordina-
tion sites available around the directing cadmium centres and
the prevailing structure depends on the acid/lower-rim centroid/
acid cone angle. An obtuse angle produces a coordination polymer,
whilst a more acute building block results in discrete metal–organic
capsule formation. Future work will focus on host–guest solution
behaviour of this new capsule and enhanced design of new metal–
organic frameworks and polyhedra possessing cavity-containing
components.

The Advanced Light Source is supported by the Director,
Office of Science, Office of Basic Energy Sciences, of the US
Department of Energy under contract no. DE-AC02-05CH11231.
We thank the EPSRC for financial support of this work.
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