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Abstract 
In this paper two silica hollow core microstructured fibres (Negative Curvature Fibre and Photonic Bandgap 
Fibre) are presented with attenuations of 0.06 dB/m and 1.1 dB/m at 2.94 µm wavelength, respectively.  This is 
an important regime for medical applications, specifically surgery due to the existence of a strong absorption 
peak for water around 3 µm. The guidance of high energy pulses of the order of 195 mJ and 14.4 mJ 
respectively has been demonstrated. These energies are sufficient to ablate soft and hard biological tissue. As 
verification porcine bone was ablated in air and submerged in a water to simulate practical application of a 
surgical device. These fibres open the way to a new and fully flexible delivery system for high energy Er:YAG 
laser radiation. 
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Introduction  
An Er:YAG laser (λ=2.94 µm) is particularly suitable for laser surgery because the water contained in human 
tissue strongly absorbs this radiation (α~12000 cm-1 [1]). If this laser beam is precisely delivered only to the 
areas that need cutting or ablating via surgical operation then damage to surrounding tissue can be minimised. 
Because of this surgical lasers are being increasingly used in medical fields like dentistry and optometry. 
Additional generic advantages of laser based procedures are that no pressure is applied reducing the pain for the 
patient e.g.  dental drilling [2] and the cut geometry is not limited by the drill/scalpel geometry but is dictated by 
the focused spot size which generally can be significantly smaller than traditional surgical tools. 

Currently the most common method of delivery of surgical lasers, for use in the operating theatre, is using 
articulated arms.  These, although useful for delivering laser light to the patient, is perhaps less user friendly 
than a surgeon using a blade and there is significant restriction to movement. Therefore the benefits of using 
laser light for surgery are offset by the restriction to the surgeon’s skill that the articulated arms can impose. 
Consequently, because of this need for truly flexible IR fibre delivery there have been extensive studies carried 
out with the aim of developing a practical system. A robust delivery fibre, as proposed here, would alleviate 
these problems and radically increase the usefulness of surgical lasers. Also, the flexibility and small physical 
size of a fibre system opens new fields for lasers in medicine like endoscopy and minimal invasive surgery.  

Many groups have carried out research into fibres delivering laser radiation around 2.94 µm, which are 
mainly based on Chalcogenides [3, 4], GeO2 [4], Fluoride [5] or Sapphire [6]. As shown appreciable powers 
could be delivered with those fibres, however to overcome the Laser Induced Damage Threshold (LIDT) these 
generally tend to be large core fibres. This leads to a multimode behaviour of the fibre and therefore to a high 
bend sensitivity, due to bend-induced mode coupling [7]. Also, some of these fibres contain toxic materials and 
compared to silica, are mechanically and chemically less robust; hence they are not ideal for medical 
applications. 
 One approach to overcome the limitations of the above mentioned fibres is to use a hollow-core fibre 
design. These fibres guide the laser radiation mainly by Bragg reflection, or by internal reflection at a dielectric 
coated metallic interface in the case of the leaky tube waveguide [7-9]. Due to the nature of the hollow-core the 
light is mainly guided through air/gas, and therefore the LIDT can be significantly higher than in solid core 
fibres [10-14].  
 In this paper two recently developed fibre designs are described based on the principles of hollow core 
microstructured fibres. Due to the shape of the central hollow core geometry, as shown in Figure 1a [15], the 
first fibre is referred to as a Negative Curvature Fibre (NCF).  The second type is the Photonic Bandgap Fibre 
(PBF), which is also referred to as hollow-core Photonic Crystal Fibre (HC-PCF) as shown in Figure 1b [14]. 
 
Material and methods  

The laser used in our experiments was an Impex High Tech ERB 15 laser.  The operating wavelength is 
2.937 µm and the pulse-length is 225 µs FWHM with an M2 of ~2.5 at a repetition rate of ~15 Hz.  The spatial 
profile of the laser has a donut shape.  
 

a) b) 



 
Figure 1: SEM pictures of the fibres used for this paper. a) Negative Curvature Fibre (NCF) b) Photonic Bandgap Fibre (PBF) 

Both fibre types are fabricated from fused silica in a conventional stack and draw technique.  The structure 
inside the NCF is formed from 8 stacked capillaries of circular cross section. However, these round capillaries 
become triangular during drawing as a direct effect of the pressure difference applied to the core and the 
interstitial ring structure.  The material is Suprasil F300 which has a bulk attenuation of ~50 dB/m at 2.94 µm 
[16], however as light is mainly confined to the hollow core the influence of this high absorption is significantly 
reduced allowing low loss fibres to be made in this wavelength region [10]. 

The broad band guidance of the NCF has been previously described, with low attenuation ranges from 2 µm 
to 2.5 µm and from 2.8 µm to 3.8 µm [15] (Figure 2).  The lowest attenuation achieved was 0.034 dB/m at 
3.05 µm and 0.06±0.01 dB/m at 2.94 µm. A cutback measurement was carried out from 83 m to 3 m. The core 
size is 94 µm, the core wall thickness 2.66µm and the radius of curvature for the core wall is 38 µm (Figure 1a). 
The NA of the fibre was measured to be 0.03.  
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         Figure 2: Attenuation of the Negative Curvature Fibre               Figure 3: Attenuation of the Photonic Bandgap Fibre  

 
The attenuation measurement for the PBF is shown in Figure 3. The average loss in the wavelength range 
2.9 µm to 3.15 µm is ~1.2 dB/m and the loss at the wavelength of 2.94 µm is 1.1 dB/m.  Attenuation was 
measured using a Bentham TM300 monochromator with a spectral resolution of ~20 nm using a cut-back 
technique.  A tungsten halogen bulb was used as a broadband light source. The core size is 24 µm with a pitch 
of 7 µm and a NA of 0.12. The pitch is the distance between two neighboured air holes.  It should be noted that 
no particular care or special procedures were taken during fabrication of the fibres to control or minimise OH 
levels. The fibre was stored in a desiccator when it was not in use and no OH grow could be detected. 
 
Theory 
The guidance of the NCF is achieved by the Anti-resonant reflecting Optical Waveguide (ARROW) principle 
[17].  As described by Litchinitser et. al. [17] wavelengths which are in resonance with the core wall cannot be 
confined in the core but leak away through the wall, resulting in a high attenuation.  However, frequencies that 
are anti-resonant with the wall cannot propagate within it and will be more confined inside the core.  The two 
interfaces of wall and air can be described as a Fabry-Perot-like resonator.  Anti-resonant wavelengths 
experience a low leakage through the wall and hence a lower attenuation as a result of destructive interference in 
the Fabry-Perot resonator. As the wavelength which is confined inside the core is dependent on the wall 
thickness it can be selected by adjusting this parameter. The losses can be explained by a coupling of core 
modes into modes supported by the nodes where two cladding elements meet [18].  The numerical simulation 
and first experimental presentation of the feasibility of guidance in similar fibres was shown by Pryamikov et. 
al. [19]. 

The guidance of the PBF on the other hand is described by Russell et. al. [20]. The periodic structure 
surrounding the fibre core leads to a photonic bandgap effect, so that no states are available and the light is 



guided along the fibre. The wavelength which is confined inside the core is dependent on the pitch of the 
surrounding structure, where the pitch is the distance between the air holes.  By changing the pitch of the fibre 
structure selection of the guided wavelength is possible. 
 
Experimental  
The laser light was coupled into both of the fibres using a CaF2 lens of focal length f=100 mm.  The beam 
diameter onto this lens was adjusted to fit the focus spot size to the different core sizes of the fibres, 24µm and 
94 µm for the PBF and NCF, respectively.  For the NCF a focus spot size diameter of 67 µm and a NA of 0.03 
was used resulting in a coupling efficiency of  ~35%.   

In the case of the PBF the spot size was set to be 46 µm with an NA of 0.1, this is larger than the core of the 
fibre, however due to the relatively poor laser beam quality a compromise had to be made between the optimal 
spot size and NA.  Tests with other NA values (0.2 and 0.05) resulted in reduced coupling efficiencies.  
However, it was apparent that there was still a significant mismatch between the laser and fibre fundamental 
mode which led to a very low coupling efficiency of around 5%.  We would expect this coupling efficiency to 
be significantly improved by using a laser with improved beam quality to allow optimised matching into the 
fundamental mode of the fibre.   

Optimal fibre alignment conditions were achieved by using a 3-axis micro block with the additional 
alignment of pitch and yaw, to maximise the output power.  The initial alignment was performed with the laser 
running just above threshold and additional attenuation with microscope slides  (T=47% per slide) [21]. This 
was done to protect the fibres from unwanted damage around the core.  After the alignment was optimized the 
slides were removed and the laser power increased until the maximum output power could be determined. The 
input facet of the fibres was monitored with a camera to detect any damage due to laser radiation.  
 
Results 
The maximum output energy delivered through the NCF was 195±1 mJ for a 33 cm length of fibre and 54±4 mJ 
for a 988 cm length. The attenuation for these measurements appears higher than the value in Figure 2 however 
this is due to the fact that for practical reasons the 988 cm length was bent whereas the 33cm length was held 
straight. These pulse energies translate to energy densities of 2300 J/cm2 for the short length and 764 J/cm2 for 
the long length immediately at the end of the fibre with a core diameter of 94 µm. It should also be noted that 
the limiting factor for the power delivery capability of the fibre was the laser source so in this case the 
maximum threshold of the fibre could not be determined. Both the input and output facets of the fibre were 
undamaged during the transmission experiments. It is likely that given a laser with higher output energy and/or 
better beam quality higher pulse energies could be delivered.  

The maximum output energy delivered through the PBF was measured to be 14 mJ for a 44 cm long fibre. 
This translates to an energy density of 3465 J/cm2 at the output end of the fibre with a core diameter of 24 µm.  
At higher powers the fibre launch end sustained catastrophic damage and the cladding area surrounding the core 
was completely destroyed.  The output facet was undamaged during any of the experiments and it had the 
appearance of a pristine cleaved end (as shown in Figure 1b). This gives confidence that optimised coupling 
would lead to improved performance.  

A key parameter for a surgical laser delivery system is that the power delivered should not vary as it is 
manipulated. In endoscopy bend radii in the order of 15 cm are required [1] however for future minimally 
invasive procedures bend diameters in the order of 10’s mm are envisaged hence it is desirable to develop fibres 
that show little or no bend sensitivity at these curvatures. 
Both fibres guide in a single mode and are relatively bend insensitive.  The NCF shows no appreciable loss of 
power at bend radii of around 15 cm whereas the PBF can be bent to diameters of less than 5 mm with no effect. 
 To demonstrate that tissue ablation is possible with this system a porcine bone was used. The fibre was 
sealed with a sapphire tip as was reported in [22], to protect the fibre core from debris and other contaminations. 
Successful cutting/drilling of the bone was performed using the fibre in contact and non-contact mode in air and 
under water. Figure 2 shows ablation using single shot pulses in contact mode. 
 

 
Figure 2: Demonstration of porcine bone ablation. a) Single shot in air. b) Single shot under water. 



 
 
Discussion and conclusion 
The delivered power energies for both types exceed the energies needed for biological tissue ablation by far. As 
reported by Pierce et. al. [23], human dental enamel has the highest ablation threshold with 35 J/cm2. For a 10m 
long NCF fibre the energy density delivered is a factor of >21 higher than that required. To verify this statement 
ablation of porcine bone was demonstrated in different environments. Both fibres demonstrate that they would 
be suitable components in a surgical laser delivery system and hence a promising alternative to the existing 
delivery systems already used in medicine and other high power applications at 2.94 µm. Ultimately it is 
believed that these fibres may pave the way for novel minimally invasive surgical procedures.  
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