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Abstract: Buried channel waveguides in Nd:LuVO4 were fabricated by 

femtosecond laser writing with the double-line technique. The 

photoluminescence properties of the bulk materials were found to be well 

preserved within the waveguide core region. Continuous-wave laser 

oscillation at 1066.4 nm was observed from the waveguide under ~809 nm 

optical excitation, with the absorbed pump power at threshold and laser slope 

efficiency of 98 mW and 14%, respectively. 
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1. Introduction 

Neodymium doped vanadate crystals, including yttrium vanadate (Nd:YVO4), gadolinium 

vanadate (Nd:GdVO4), and lutetium vanadate (Nd:LuVO4), etc., are considered as favorite gain 

media for solid state lasers owing to their large emission cross-section, high absorption and 

high thermal conductivity [1–8]. For example, Nd:YVO4 has become the mostly widely used 

working medium for the green laser pointers in the hybrid “Nd:YVO4 + KTiOPO4” intracavity 

self frequency doubling system. Among the vanadate family, Nd:LuVO4 is a new member, 

which was successfully grown, for the first time, by Maunier et al. in 2002 [5]. The absorption 

cross section σabs at 808 nm for Nd:LuVO4 (0.04 at.%), Nd:YVO4(0.4 at.%) and Nd:GdVO4 

(1.2 at.%) are reported to be 69 × 10
−20

 cm
2
, 57 × 10

−20
 cm

2
 and 52 × 10

−20
 cm

2
, respectively, 

whilst the emission cross section σem at ~1064 nm are determined to be 146 × 10
−20

 cm
2
, 135 × 

10
−20

 cm
2
 and 76 × 10

−20
 cm

2
, respectively [5–9], which prove that Nd:LuVO4 crystals possess 
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even greater absorption and emission cross sections than those of conventional vanadate 

crystals. Meanwhile, Nd:LuVO4 laser operating at 1064 nm [8], 1343 nm [9], 916 nm [10], and 

880 nm [11] have been realized. 

With respect to bulk geometry, the confinement of light in very small volumes through 

optical waveguides increases the light intensity to a great extend, resulting in the considerable 

improvement of some performances in the guiding structures [12, 13]. Waveguide lasers are 

expected to have relatively low lasing thresholds and comparable efficiencies with respect to 

their bulk counterparts. In addition, the compact size of the waveguide components offers 

possibility for further integration of various devices on a single chip to achieve multifunctional 

photonic applications. Although several techniques, such as oxygen ion implantation [14] and 

pulsed laser deposition [15], have been utilized to fabricate optical waveguides in Nd:LuVO4, 

no laser oscillations were reported based on these waveguides. 

Direct femtosecond (fs) laser writing has recently emerged as one of the most efficient 

techniques for three-dimensional (3D) volume microstructuring of transparent optical materials 

[16]. By focusing the fs laser pulses on selected positions inside the substrates, permanent 

refractive index changes, either in the irradiated region or in the surrounding area of modified 

region, are produced, in such a way that optical waveguides are fabricated. This technique has 

been proved to be an almost universal technique for waveguide writing in a wide range of 

transparent materials, including optical crystals [17–22], ceramics [23–26], glasses [27–30], 

and polymers [31]. By using this method, buried channel waveguides have been produced in 

Nd:YVO4 and Nd:GdVO4 [17–19]. As for Nd doped fs-laser written waveguide lasers, up to 

now, the highest efficiency (70% slope efficiency) was obtained in Nd:GdVO4 platform [18], 

and the maximum output power was 1.3W for Nd:YAG crystalline waveguides [21]. 

In this work, we focus on the fabrication of buried channel waveguides in Nd:LuVO4 crystal 

by using direct fs laser writing and the continuous wave (cw) laser actions in the waveguide. 

2. Experiments in details 

 

Fig. 1. (a) The experimental set-up for femtosecond laser writing experiments, and (b) the 

end-face microscope image of Nd:LuVO4 waveguide sample. The waveguide is located in the 

open dashed circular region. 

The Nd:LuVO4 (doped by 0.1 at.% Nd
3+

) crystal used in this work was grown by Czochralski 

method. It was optically polished and cut to dimensions of 2.5(x) × 5.7(y) × 4(z) mm
3
. The 

waveguides were produced by using the well-known “double line” technique. An IMRA 

µJewel mode-locked laser system, delivering pulses with a central wavelength of 1047 nm, 

pulse duration of 360 fs and repetition rate of 200 kHz, was employed to write waveguides in 

the crystal. The laser beam, with horizontal polarization, was focused 100 µm below the 

polished surface by an achromatic lens with a numerical aperture (NA) of 0.6. The sample, 

fixed onto an Aerotech 3D translation stage, was translated perpendicularly to the laser beam 

and parallel to the crystallographic y axis (see Fig. 1(a)) with a speed of 1 mm/s and 10 mm/s, 

respectively. Figure 1(a) shows the schematic diagram of the waveguide fabrication 
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experimental setup. During the writing process, pairs of parallel tracks with separation distance 

of 25 µm were formed, one of which is shown in Fig. 1(a). The waveguide was therefore formed 

in the region between the two tracks due to the stress-induced refractive index changes. For the 

guiding properties and laser experiments discussed in this paper a waveguide was used, which 

was fabricated with an average power of 274 mW (corresponding to pulse energy of 1.4 µJ) and 

a sample translation speed of 10 mm/s. The cross-sections of the tracks are shown in Fig. 1(b). 

An end-face coupling arrangement was utilized to investigate the near-field modal profiles 

of the waveguide with a He-Ne laser at wavelength of 632.8 nm. 

The confocal micro-photoluminescence (µ-PL) properties were obtained by using an argon 

laser providing 10 mW cw radiations at 488 nm. An Olympus BX-41 fiber-coupled confocal 

microscope and an XY motorized stage with a spatial resolution of 100 nm were employed. The 

laser beam was focused into the sample by an oil immersion 100 × microscope objective with 

NA = 0.8, exciting the transition of Nd
3+

 ions through from the ground state 
4
I9/2 up to the 

2
G3/2 

excited state. Then the Nd
3+

 fluorescence emission spectra corresponding to the 
4
F3/2 to 

4
I9/2 

emission band was back-collected by the same microscope objective and analyzed on a high 

resolution spectrometer (SPEX500M). Three dimensional spectral maps including the emitted 

intensity, emission bandwidth, and energy position of the main fluorescence line were obtained 

by fitting the collected spectra and plotting the obtained values with the aid of software 

LabSpec© and WSMP©. 

The waveguide laser experiment was performed by using a typical end-face coupling 

system. A cw Ti:sapphire laser (Coherent MBR 110) generating a linearly polarized beam at 

~809 nm was employed as a pump source. A convex lens with a focal length of 25 mm was used 

to focus the pump light beam into the waveguide. The generated laser beam from the output 

facet was collected by a 20 × microscope objective. The laser oscillation was realized without 

any cavity mirrors (i.e., the laser cavity was formed directly by two polished facets of the 

sample). The transmittance of the crystal’s faces can be estimated from the refractive index of 

Nd:LuVO4 to be close to 90%. After being separated from the residual pump through a dichroic 

mirror with high reflection at around 808 nm and high transmission at about 1064 nm, the laser 

emission from the waveguide was detected by the spectrometer, CCD camera or powermeter. 

3. Results and discussion 

 

Fig. 2. (a) Reconstructed 2D refractive index profile of the Nd:LuVO4 waveguide on the cross 

section, (b) measured near-field intensity of the light of TM00 mode, (c) calculated modal profile 

distribution of TM00 mode. 

We constructed the 2D refractive index profile of the femtosecond laser written Nd:LuVO4 

waveguide showed in Fig. 1(b) with the method introduced in previous works (see Ref [32].). 

The reconstructed index profile of waveguides at the cross section is depicted in Fig. 2(a). With 

these index profiles, we simulated the light propagation in the waveguide by using a 

commercial software BeamPROP© based on the finite difference beam propagation method 

(FD-BPM) [33]. Figure 2(c) shows the calculated modal profiles of fundamental TM mode 

(TM00). As can be seen, the combination of refractive index reduction within the tracks 

(∆n≈-0.08) and stress induced positive refractive index change (∆n≈ + 0.004) results in an 

index distribution, which supports guiding and excellent confnement of the fundamental mode 
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at a wavelength 633 nm. Meanwhile, the image of the near field light intensity distributions of 

TM mode from the out facets of the samples, which are captured by a CCD camera, is shown in 

Fig. 2(b). The waveguide mainly shows a clear single mode character, which is an outstanding 

feature of relevance in many practical applications. By comparing Fig. 2(c) with 2(b), one can 

conclude that there is a reasonable agreement between the calculated and experimental data. 

The propagation loss of the waveguide was estimated to be ~2 dB/cm. 

 

Fig. 3. (a) The room temperature µ-PL emission spectra correlated to Nd3+ ions at 4F3/2→
4I9/2 

transition of the Nd:LuVO4 crystal; the 2D mappings of the (b) spatial dependence of the emitted 

intensity, (c) FWHM and (d) energy shift of the corresponding emission line of Nd3+ around 880 

nm obtained from the channel waveguide; the 1D distribution of the (c) emitted intensity, (f) 

FWHM and (g) energy shift of the 880-nm line from the waveguide (corresponding to the 

regions indicated by dashed lines in the 2D mappings of (b), (c) and (d), respectively). 

Figure 3(a) depicts a typical µ-PL emission spectrum corresponding to the 
4
F3/2→

4
I9/2 

transition of the Nd
3+

 ions in Nd:LuVO4 crystal, which consists of a narrow and intense peak at 

880.1 nm. In order to obtain the detailed modification of fluorescence properties, we focused on 

the 880.1 nm emission line and investigated the spatial distribution of the integrated intensity, 

full width at half maximum (FWHM) of the photoluminescence line and spectral shift in a wide 

area covering the modified and unmodified Nd:LuVO4 volumes. The results are displayed in 

Figs. 3(b), 3(c) and 3(d), respectively. Meanwhile, for easy visualization and comparison, Figs. 

3(e), 3(f) and 3(g) depict the 1-D profiles corresponding to the position indicated by the dashed 

lines in Figs. 3(b), 3(c) and 3(d), respectively. As shown in Figs. 3(a) and 3(d), there is an 

obvious reduction in the luminescence intensity generated from the filaments volume, which 

can be attributed to the high density of lattice defects and imperfections in these areas. 

Similarly, a broadening of the luminescence line also reveals the presence of lattice defects and 

disorder in the filament area, which can be seen from Figs. 3(b) and 3(e). In addition, the 

emission line shifts to lower energies at the filament locations, see Figs. 3(c) and 3(f), which 

correspond to red shifts. It has been proved that red shifts of the µ-PL emission spectra are 

spatially coinciding with the lateral zones of filaments, and is aroused by the compressive stress 

[17, 18, 24]. At the same time, from Figs. 3(a)-3(g), similar Nd
3+

 luminescence intensity, 

FWHM and peak position are observed in the waveguide volumes (between the two filaments) 

and the bulk of Nd:LuVO4 crystal, which, in general, means that the spectroscopic properties of 

the Nd
3+

 ions are well preserved in the waveguide so that the fabricated waveguide emerge as 

promising integrated laser element. 

Figure 4(a) depicts the room temperature waveguide laser power, generated from the 

Nd:LuVO4 waveguide, as a function of the absorbed pump power. The experimental data and 

the linear fit are displayed by solid balls and green solid line, respectively. The laser is found to 

be stable. It can be determined that the absorbed pump power at threshold (Pth) is about 98 mW, 

whilst the slope coefficient (Φ) is:14%. The maximum laser power achieved is:31 mW for the 

maximum absorbed pump power of:318 mW, leading to an optical conversion efficiency 
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of:10%. Figure 4(b) shows the room temperature laser emission spectrum centered at 1066.4 

nm when the absorbed power is above the lasing threshold. The inset of Fig. 4(b) illustrates the 

near-field emission intensity profile of the output laser of TM mode. The laser performance of 

the waveguide fabricated in this work is comparable to that obtained in previous works reported 

in [19] and [20] in term of slope efficiency. Nevertheless, when compared with the prior works 

[17, 18, 21, 25], the performance is relatively low, which might due to the lower concentration 

of Nd
3+

 (0.1 at.%) in Nd:LuVO4 crystal and higher propagation loss of the waveguide. Thus, 

further improvement of the laser performance is expected by increasing the Nd
3+

 concentration 

or optimizing the writing conditions, i.e., the pulse duration, the writing velocity, or by writing 

more complex structures. 

 

Fig. 4. (a) The cw waveguide laser output power as a function of the absorbed pump power. (b) 

Laser emission spectrum of the output light at ~1066.4 nm. The inset shows the normalized 

spatial intensity distribution of the output laser mode 

4. Summary 

We have reported the fabrication of buried channel waveguides in Nd:LuVO4 by using 

femtosecond laser writing. Stable laser operation at 1066.4 nm has been realized with the lasing 

threshold power of 98 mW and the slope efficiency of 14%. The good laser performance 

suggests potential applications on construction of integrated laser devices in Nd:LuVO4. 
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