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Factorization in Fq[x] and Brownian motion

Jennie C. Hansen

Actuarial Mathematics and Statistics Department

Heriot-Watt University

Edinburgh, Scotland

Abstract. We consider the set of polynomials of degree n over a finite field and put the uniform

probability measure on this set. Any such polynomial factors uniquely into a product of its irre-

ducible factors. To each polynomial we associate a step function on the interval [0,1] such that the

size of each jump corresponds to the number of factors of a certain degree in the factorization of

the random polynomial. We normalize these random functions and show that the resulting random

process converges weakly to Brownian motion as n→∞. This result complements earlier work by

the author on the order statistics of the degree sequence of the factors of a random polynomial.

This research was partially supported by NSF grant DMS- 90 099074.
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1. Introduction

In this paper we study the factorization of random polynomials over the finite field Fq, q a prime

power. Specifically, let Πn denote the monic polynomials of degree n over Fq and let µn denote the

uniform measure on Πn. Any f(x) ∈ Πn factors uniquely and the degrees of its factors determine

a partition of the integer n. To investigate the limiting distribution of such partitions with respect

to the measure µn as n → ∞, we introduce the counting functions αk :
⋃∞
n=1 Πn → Z defined by

setting αk(f) equal to the number of factors in f of degree k. Now let p(n) = |Πn| = qn and let

c(n) denote the number of irreducible monic polynomials of degree n, then the joint distribution of

α1, α2, ...αn with respect to µn can be expressed in terms of p(n) and c(1), c(2), ..., c(n) as follows.

µn(α1 = m1, ..., αn = mn) =
1

p(n)

n∏
k=1

(
mk + c(k)− 1

mk

)
(1)

provided
∑n
k=1 kmk = n, (µn(α1 = m1, ..., αn = mn) = 0 otherwise). We call the vector

(α1(f), ..., αn(f)) the type vector of f ∈ Πn.

We define an associated counting function Xn : [0, 1] ×Πn → Z by

Xn(t, f) =
nt∑
k=1

αk(f).

In other words, Xn(t, f) equals the number of irreducible monic factors of f with degree less than

or equal to nt. Note that Xn(1, f) equals the total number of factors of f . Our main result is the

following theorem.

Theorem 1.1. For n ≥ 1, let Xn : [0, 1] × Πn → Z be defined as above and suppose Yn :

[0, 1] ×Πn → R is defined by

Yn(t, f) =
Xn(t, f)− t log n√

log n
.

Then the induced measures µn ◦ Y −1
n on D[0, 1] converge weakly to the standard Wiener measure

on D[0, 1] as n→∞.

The space D[0, 1] consists of right-continuous functions with left limits on the interval [0,1] and

is endowed with the Skorohod topology. Billingsley [4] is an excellent reference on convergence of

probability measures on this space. We discuss criteria for convergnece below.

Theorem 1.1 says that the process Yn converges to standard Brownian motion on [0,1]. This

result generalizes a central limit theorem obtained by Flajolet and Soria [7]. Their result follows

from Theorem 1.1 by noting that Yn(1, ·) = Xn(1,·)−log n√
n

converges in distribution to a standard
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normal distribution with mean 0 and variance 1. Theorem 1.1 also complements a result concerning

the limiting distribution of the order statistics of the sequence α1, α2, ..., αn (normalized by n) which

is established in Hansen [11]. In particular, the central limit theorem says that a random polynomial

of degree n has roughly log n factors, and Theorem 1.1 shows that “most” of these factors have

degree on the order of nt. On the other hand, the limiting distribution of the largest degree of the

degree sequence, normalized by n, is nondegenerate (i.e. the largest degree in the degree sequence

for a random polynomial of degree n is O(n)).

The statement of Theorem 1.1 is virtually the same as the statement for the Brownian motion

results that have been established for random permutations by DeLaurentis and Pittel [6] and for

random matrices over a finite field by Goh and Schmutz [8]. In all three cases the joint distribution

for the variables which count cycles of a certain size or polynomial factors of a certain degree is equal

to the joint distribution of an associated sequence of independent counting variables conditioned on

a certain function of these variables. These associated sequences of variables are not the same in

these three examples, but asymptotically each associated sequence is close (in some sense) to the

same sequence of independent (but not identically distributed) Poisson variables. Shepp and Lloyd

[13] were perhaps the first to use an associated sequence of counting variables to investigate the

cycle structure of a random permutation, and the transform that we use in the proof given below

is analogous to a transform used in their paper. The author has used similar methods (see [9]

and [10]) to prove functional central limit theorems for random mappings and the Ewens sampling

formula. A further investigation of the “equivalence” of the results for random polynomials and

the results for random matrices is contained in Hansen and Schmutz [12].
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2.Preliminaries

In order to prove Theorem 1.1, we develop a transform for computing expectations with respect

to µn. To construct this transform we make use of an equation which relates the generating functions

P (z) =
∑∞
n=0 p(n)zn (p(0) = 1) and C(z) =

∑∞
k=1 c(k)zk. It follows from (1) that

(1− qz)−1 = P (z) =
∞∏
k=1

(1− zk)−c(k) = exp

( ∞∑
l=1

C(zl)
l

)
. (2)

Let % = q−1 denote the radius of convergence of P (z) and C(z).

Now define the auxiliary space Ω = {{mk} : mk ≥ 0,mk ∈ Z, k ≥ 1} and a product measure

µz on Ω such that for each k ≥ 1 and j ≥ 0,

µz(mk = j) =
(

c(k) + j − 1
j

)
(1− (%z)k)c(k)(%z)kj

where z is a parameter. Thus each coordinate of the product space Ω has a negative binomial

distribution with respect to µz. Intuitively, a sequence {mk} ∈ Ω can be thought to specify a type

vector for a random polynomial with random degree ν =
∑∞
k=1 kmk. Of course, ν may be infinite,

but if 0 < z < 1 the random variable ν is finite a.s. with respect to µz and its distribution is given

by the following lemma.

Lemma 2.1. For 0 < z < 1 and n ≥ 0,

µz(ν = n) =
p(n)(%zn)

P (%z)
= zn(1− z) (3)

where % is the radius of convergence of P (z).

Proof:

Recall that P (z) = (1−qz)−1, p(n) = qn, and % = q−1, so p(n)(%zn)
P (%z)

= zn(1−z). Now compute

the probability generating function for ν.

E(uν) =
∞∏
k=1

E(ukmk) =
∞∏
k=1

(1− (%z)k)c(k)

(1− (%zu))c(k)
=

P (%zu)
P (%z)

.

The last equality follows from (2). Extracting the coefficient of un in E(uν) yields (3). •

The key feature of this construction is that by conditioning on the event {ν = n} we can

recover the joint distribution of the type vector (α1, α2, ..., αn) with respect to the measure µn on

Πn. We state this as a lemma.
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Lemma 2.2. For 0 < z < 1 and n > 0,

µz((m1,m2, ...)|ν = n) = µn(α1 = m1, ..., αn = mn).

Proof: Note that if ν(m1,m2, ...) = n, then we must have mk = 0 for all k > n. Hence

µz((m1,m2, ...)|ν = n) =

∏∞
k=1

(
mk+c(k)−1

mk

)
(1− (%z))c(k)(%z)kmk

µz(ν = n)

=
P (%z) ·

∏∞
k=1(1− (%z)k)c(k) ·

∏n
k=1

(
mk+c(k)−1

mk

)
· (%z)n

p(n)(%z)n

=
1

p(n)

n∏
k=1

(
mk + c(k)− 1

mk

)
= µn(α1 = m1, ..., αn = mn).

The third equality follows from (2).•

We can use Lemma 2.2 to compute expectations with respect to µn in terms of expectations

with respect to the product measure µz. Suppose that Ψ : Ω → R and for n ≥ 1, define functions

Ψn : Πn → R by

Ψn(f) = Ψ((α1(f), α2(f), ..., αn(f), 0, 0, ...))

for each f ∈ Πn. Let Ez denote expectation with respect to µz and let En denote expectation with

respect to µn on Πn. Using Lemma 2.2., we have

Ez(Ψ) =
∞∑
n=0

Ez(Ψ|ν = n)µz(ν = n)

=
∞∑
n=1

En(Ψn)zn(1− z) + Ψ(0̄)(1− z).

Hence

En(Ψn) = [zn](1 − z)−1Ez(Ψ) (4)

where [zn](1− z)−1Ez(Ψ) denotes the coefficient of zn in the series (1− z)−1Ez(Ψ).
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3. Proof of Theorem 1.1

We begin by defining a process Ȳn which is “close” to Ȳn. For 0 ≤ t ≤ 1 and f ∈ Πn, let

Ȳn(t, f) =
Xn(t, f)−En(Xn(t))√

log n
.

For all t and f ,

|Ȳn(t, f)− Yn(t, f)| = |En(Xn(t))− t log n|√
log n

.

Using transfrom (4), we have

En(Xn(t)) = [zn](1− z)−1Ez

 nt∑
k=1

mk


=

[zn]
(1− z)

nt∑
k=1

c(k)(%z)k

(1− (%z)k)

and hence
nt∑
k=1

c(k)%k ≤ En(Xn(t)) ≤
nt∑
k=1

c(k)%k

(1− %k)
.

It is known [3] that
qk

k

(
1− 1

qk/2

)
≤ c(k) ≤ qk

k
.

Thus
nt∑
k=1

1
k

(
1− 1

qk/2

)
≤ En(Xn(t)) ≤

nt∑
k=1

1
k

.

It follows that there is a constant C, independent of t and n such that

sup
t,f
|Ȳn(t, f)− Yn(t, f)| ≤ C√

log n
.

The measures µn ◦ Y −1
n converge to Wiener measure if and only if the measures µn ◦ Ȳ −1

n converge

to Wiener measure.

To show that the measures µn ◦ Ȳ −1
n converge weakly to standard Wiener measure on D[0, 1]

we must check that the finite-dimensional distributions associated with µn ◦ Ȳ −1
n converge to the

finite- dimensional distributions of Wiener measure and that the sequence of measures µn ◦ Ȳ −1
n is

tight.

6



Convergence of the finite-dimensional distributions

It is enough to show that for any 0 < t1 < t2 < ... < tk ≤ 1, the random vector

(Ȳn(t1), Ȳn(t2)− Ȳn(t1), ..., Ȳn(tk)− Ȳn(tk−1)) converges in distribution to the random vector

(Z(t1), Z(t2 − t1), ..., Z(tk − tk−1)) where the variables Z(t1), Z(t2 − t1), ..., Z(tk − tk−1)) are inde-

pendent normal random variables with mean zero and variances t1, t2− t1, ..., tk− tk−1 respectively.

The first step is to show that for 0 < t1 < t2 < ... < tk < 1

(Ȳn(t2)− Ȳn(t1), ..., Ȳn(tk)− Ȳn(tk−1))→ (Z(t2 − t1), ..., Z(tk − tk−1))

in distribution as n→∞. We then use a Chebyshev argument to extend this to the general case.

We give the argument in detail for the case 0 < t1 < t2 < t3 < 1. The argument can be

easily generalized for any 0 < t1 < t2 < ... < tk < 1, though the notation becomes quite messy and

cumbersome. Fix 0 < t1 < t2 < t3 < 1. To show that (Ȳn(t2)− Ȳn(t1), Ȳn(t3) − Ȳn(t2)) converges

in distribution to (Z(t2 − t1), Z(t3 − t2)), it suffices to show (see [5], p. 335 ) that for any a, b ∈ R,

a(Ȳn(t2)− Ȳn(t1)) + b(Ȳn(t3)− Ȳn(t2))→ aZ(t2 − t1) + bZ(t3 − t2) (5)

in distribution as n→∞. Fix a, b ∈ R. We establish (5) by using the Method of Moments, i.e. we

show that for any r ∈ Z+,

lim
n→∞

En(a(Ȳn(t2)− Ȳn(t1)) + b(Ȳn(t3)− Ȳn(t2)))r = E(aZ(t2 − t1) + bZ(t3 − t2))r.

Fix r ∈ Z+ and let ξn = En(Xn(t2)−Xn(t1)) and ξ′n = En(Xn(t3)−Xn(t2)). Then

En(a(Ȳn(t2)− Ȳn(t1)) + b(Ȳn(t3)− Ȳn(t2)))r =

=
r∑

k=0

(
r

k

)
akbr−kEn(Ȳn(t2)− Ȳn(t1))k(Ȳn(t3)− Ȳn(t2))r−k

=
[zn](1 − z)−1

(log n)r/2

r∑
k=0

akbr−kEz(
nt2∑
l>nt1

ml − ξn)k(
nt3∑
l>nt2

ml − ξ′n)
r−k.

Now suppose that 0 ≤ k ≤ r, then

Ez

 nt2∑
i>nt1

mi − ξn)

k nt3∑
l>nt2

mi − ξ′n

r−k

=

r−k∑
j=0

k∑
l=0

(−1)r−l−j
(

k

l

)(
r − k

j

)
(ξn)

(k−l) (ξ′n)
(r−k−j)

Ez

 nt2∑
i>nt1

mi

l

Ez

 nt3∑
i>nt2

mi

j

. (6)
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This equation follows from the independence of
∑nt2

i>nt1 mi and
∑nt3

i>nt2 mi with respect to the

measure Pz . Now for 0 ≤ l ≤ k and 0 ≤ j ≤ r − k, write

Ez

 nt2∑
i>nt1

mi

l

Ez

 nt3∑
i>nt2

mi

j

=
∞∑
i=0

ai(l, j, n)zi = fl,j,n(z).

It is straightforward to verify that the coefficients ai(l, j, n) are non- negative. Observe that

fl,j,n(1) = E

 nt2∑
i>nt1

m̃i

l nt3∑
i>nt2

m̃i

j

where m̃1, m̃2, ... is a sequence of independent random variables defined on a common probability

space such that m̃k is negative binomial with P (m̃k = j) =
(
j+c(k)−1

j

)
(1− %k)c(k)%kj for j ≥ 0. We

show that

|[zn](1 − z)−1fl,j,n(z)− fl,j,n(1)| =
∑
i>n

ai(l, j, n) = O(n2j+2l%n/2) (7)

from which it follows that

lim
n→∞

[zn]
(1− z)−1

(log n)r/2
Ez

 nt2∑
i>nt1

mi − ξn

k nt3∑
i>nt2

mi − ξ′n

r−k

= lim
n→∞

(log n)−r/2E

 nt2∑
i>nt1

m̃i − ξn

k nt3∑
i>nt2

m̃i − ξ′n

r−k

= E(Z(t2 − t1))kE(Z(t3 − t2))r−k. (8)

The last equality on the right side of (8) follows from the convergence of the moments of the sums∑nt2

nt1 m̃i and
∑nt3

nt2 m̃i (when normalized). to the moments of Z(t2− t1) and Z(t3− t2) respectively.

To establish (7), we expand
(∑nt2

i>nt1 mi

)l (∑nt3

i>nt2 mi

)j
. This yields no more than nj+l terms of

the form mi1mi2 ...mij+l (indices need not be distinct). It suffices to show that

|[zn](1− z)−1Ez(mi1 · · ·mij+l)−E(m̃i1 , · · ·m̃ij+l)| = O(nj+l%n/2) (9)

for each term mi1 · · ·mij+l in the expansion of
(∑nt2

i>nt1 mi

)l (∑nt3

i>nt2 mi

)j
. We outline the proof

of (9) for one case. The general case follows by a similar argument, though messier to write down.

Consider Ez((mi1)
l(mi2)

j) where nt1 < i1 ≤ nt2 and nt2 < i2 ≤ nt3 . It can be verified that

Ez(mi1)
l =

l∑
s=1

αs
[c(i1)]s(%z)i1s

(1− (%z)i)s

8



Ez(mi2)
j =

j∑
s′=1

βs′
[c(i2)]s

′
(%z)i2s

′

(1− (%z)i2)s′

where the α’s and β’s are non-negative coefficients and [c]s = c(c + 1) · · · (c + s− 1). Since

qd

d

(
1− q−d/2

)
≤ c(d) ≤ qd

d

there exist a constant C, which may depend on j and l but does not depend on n, such that

[c(d)]k%dk ≤ C
d for all k ≤ l ∨ j. Now fix 1 ≤ s ≤ l and 1 ≤ s′ ≤ j, then for m ≥ i1s + i2s

′,

[zm]
[c(i1)]s[c(i2)]s

′
(%z)i1s+i2s

′

(1− (%z)i1)s(1− (%z)i2)s′

≤
(

C

i1

)s(
C

i2

)s′
[zm

′
](1− (%z))−s−s

′

=
(

C

i1

)s(
C

i2

)s′ (
m′ + s + s′ − 1

m′

)
%m
′

≤ (C)s+s
′
(m′)s+s

′
%m
′

(10)

where m′ = m− i1s− i2s
′. Hence for all large n,∣∣∣∣∣[zn](1 − z)−1 [c(i1)]s[c(i2)]s

′
(%z)i1s+i2s

′

(1− (%z)i1)s(1− (%z)i2)s′
− [c(i1)]s[c(i2)]s

′
%i1s+i2s

′

(1− %i1)s(1− %i2)s′

∣∣∣∣∣
=
∑
m>n

[zm]
[c(i1)]s[c(i2)]s

′
(%z)i1s+i2s

′

(1− (%z)i1)s(1− (%z)i2)s′

≤
∑

m′>n−i1s−i2s′
(C)s+s

′
(m′)s+s

′
(%)m

′

≤ (C)s+s
′
(n− i1s− i2s

′)s+s
′
%n−i1s−i2s

′
∞∑
k=0

(1 + k)s+s
′
%k

≤ (C)s+s
′
ns+s

′
%n/2

∞∑
k=0

(1 + k)2r%k

(11)

since n− i1s− i2s
′ ≥ n/2 for all sufficiently large n. Therefore, summing (11) over 1 ≤ s ≤ l and

1 ≤ s′ ≤ j, we have

|[zn](1− z)−1Ez(mi1)
lEz(mi2)

j −E(m̃i1)
l(m̃i2)

j | = O(nj+l%n/2)

and by a similar argument (9) holds in all cases. Equation (7) now follows from (9) and the fact

that there are less than nj+l terms in the expansion of
(∑nt2

i>nt1 mi

)l (∑nt3

i>nt2 mi

)j
.
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Chebyshev bounds

To complete the proof that the finite-dimensional distributions converge, we need the bounds

P (|Ȳn(ε)| > 4
√

ε) ≤ 2
√

ε

(1− %)2
(12i)

P (|Ȳn(1)− Ȳn(1− ε)| > 4
√

ε) ≤ 2
√

ε

(1− %)2
(12ii)

for all large n. By Chebyshev’s inequality

P (|Ȳn(ε)| > 4
√

ε) ≤ En(Xn(ε)−En(Xn(ε)))2

√
ε log n

.

Let δn(j) = En(αj) = [zn]
(1−z)Ez(mj), then

En(Xn(ε)−En(Xn(ε)))2

log n
=

[zn](1− z)−1

log n
Ez(

nε∑
k=1

mk −
nε∑
k=1

δn(k))2

=
[zn](1− z)−1

log n

[
Ez(

nε∑
k=1

mk −Ez(mk))2 + (
nε∑
k=1

Ez(mk)− δn(k))2

]

=
[zn](1− z)−1

log n

nε∑
k=1

c(k)(%z)k

(1− (%z)k)2

+
[zn](1− z)−1

log n

(
nε∑
k=1

Ez(mk))2 −
nε∑
k=1

Ez(mk) ·
nε∑
j=1

δn(j)


+

[zn](1− z)−1

log n

(
nε∑
k=1

δn(j))2 −
nε∑
k=1

Ez(mk) ·
nε∑
j=1

δn(j)

 .

(13)

The last term on the right side of (13) is zero, so it remains to bound the other terms. For all

large n, the first term on the right side of (13) is bounded by

(log n)−1
nε∑
k=1

c(k)%k

(1− %k)2
≤ (log n)−1

(1− %)2

nε∑
k=1

1
k
≤ 2ε

(1− %)2
.

Next, let B(z) =
∑nε

k=1 Ez(mk) =
∑∞
k=1 βkz

k and note that
∑n
k=1 βk = [zn]

(1−z)
B(z) =

∑nε

j=1 δn(j).

Also, the coefficients of B(z) are positive. Hence

[zn]
(1− z)

(
nε∑
k=1

Ez(mk))2 −
nε∑
k=1

Ez(mk) ·
nε∑
j=1

δn(j)

 =
n∑
k=1

βk

n−k∑
j=1

βj − (
n∑
k=1

βk)2 ≤ 0.

This establishes (12i). Similar calculations establish the second bound (12ii).
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We now show convergence of the finite-dimensional distributions in the two remaining cases.

First, suppose that 0 < t1 < t2 < ... < tk < 1 and a1, ..., ak ∈ R then

P (Ȳn(t1) ≤ a1, Ȳn(t2)− Ȳn(1) ≤ a2, ..., Ȳn(tk)− Ȳn(tk−1) ≤ ak)

≤ P (Ȳn(t1)− Ȳn(ε) ≤ a1 + 4
√

ε, Ȳn(t2)− Ȳn(t1) ≤ a2, .., Ȳn(tk)− Ȳn(tk−1) ≤ ak) + P (|Ȳn(ε)| > 4
√

ε).

Hence

lim sup
n

P (Ȳn(t1) ≤ a1, Ȳn(t2)− Ȳn(t1) ≤ a2, ..., Ȳn(tk)− Ȳn(tk−1) ≤ ak−1)

≤ P (Z(t1 − ε) ≤ a1 + 4
√

ε, Z(t2 − t1) ≤ a2, ...Z(tk − tk−1) ≤ ak) +
2
√

ε

(1− %)2
(14)

where Z(t1 − ε), ..., Z(tk − tk−1) are independent, mean zero, Gaussian variables with variances

t1 − ε, t2 − t1, ..., tk − tk−1 respectively. Let ε→ 0 on both sides of (14) to obtain

lim sup
n

P (Ȳn(t1) ≤ a1, ..., Ȳn(tk)− Ȳn(tk−1) ≤ ak) ≤ P (Z(t1) ≤ a1, ..., Z(tk − tk−1) ≤ ak).

Similarly,

lim inf
n

P (Ȳn(t1) ≤ a1, ..., Ȳn(tk)− Ȳn(tk−1) ≤ ak) ≥ P (Z(t1) ≤ a1, ..., Z(tk − tk−1) ≤ ak)

since

P (Ȳn(t1) ≤ a1, Ȳn(t2)− Ȳn(t1) ≤ a2, ..., Ȳn(tk)− Ȳn(tk−1) ≤ ak)

≥ P (Ȳn(t1)− Ȳn(ε) ≤ a1− 4
√

ε, Ȳn(t2)− Ȳn(t1) ≤ a2, ..., Ȳn(tk)− Ȳn(tk−1) ≤ ak)−P (|Ȳn(ε)| > 4
√

ε).

This establishes convergence in distribution in the first case.

In the case 0 ≤ t1 < t2 < ... < tk = 1 arguments similar to those given above (employing the

second Chebyshev bound in this case) yield

lim
n→∞

P (Ȳn(t1) ≤ a1Ȳn(t2)− Ȳn(t1) ≤ a2, ..., Ȳn(1) − Ȳn(tk−1) ≤ ak)

= P (Z(t1) ≤ a1, ..., Z(1) − Z(tk−1) ≤ ak).

Tightness

It suffices to show (see Billingsley [4] p.128 ) that there exists a constant C > 0 such that for every

n > 0 and all 0 ≤ t1 < t < t2 ≤ 1,

En(Ȳn(t2)− Ȳn(t))2(Ȳn(t)− Ȳn(t1))2 ≤ C(t2 − t1)2.

11



We note that there are two cases where En(Ȳn(t2)− Ȳn(t))2(Ȳn(t)− Ȳn(t1))2 = 0. First, if

log(k−1)/ log n ≤ t1 ≤ t < log k/ log n for some 2 ≤ k ≤ n then Ȳn(t) ≡ Ȳn(t1) and the expectation

is 0. Likewise, if log(k − 1)/ log n ≤ t ≤ t2 < log k/ log n for some 2 ≤ k ≤ n then Ȳn(t) ≡ Ȳn(t2)

and the expectation is 0. The expectation will be nonzero only if log(k−1)/ log n ≤ t1 < log k/ log n

and log(k + 1)/ log n ≤ t2 for some 2 ≤ k ≤ n− 1. Thus, to avoid trivialities, we assume that

t2 − t1 ≥
log(k + 1)− log k

log n
≥ 1

k log n
≥ 1

2nt1 log n

for some 2 ≤ k ≤ n− 1.

Fix n > 0.

En(Ȳn(t2)− Ȳn(t))2(Ȳn(t)− Ȳn(t1))2

=
[zn]

(1− z)(log n)2
Ez(Ȳn(t2)− Ȳn(t))2(Ȳn(t)− Ȳn(t1))2

=
[zn]

(1− z)(log n)2

V arz(
nt∑

k>nt1

mk) + (Γ(z)− Γ)2

 ·
V arz(

nt2∑
j>nt

mj) + (Γ̃(z)− Γ̃)2

 (15)

where Γ(z) =
∑nt

k>nt1 Ez(mk) =
∑∞
i=1 γiz

i, Γ = [zn]
(1−z)

Γ(z) =
∑n
k=1 γk = En(Xn(t2) − Xn(t)),

Γ̃(z) =
∑nt2

k>nt γ̃kz
k, and Γ̃ = [zn]

(1−z) Γ̃(z) =
∑n
i=1 γ̃i = En(Xn(t)−Xn(t1)). The coefficients of Γ(z)

and Γ̃(z) are positive. We proceed to bound the right side of (15).

First,

[zn]
(log n)2(1− z)

V arz(
nt∑

k>nt1

mk)V arz(
nt2∑
j>nt

mj)

=
[zn]

(log n)2(1− z)

nt∑
k>nt1

c(k)%kzk

(1− (%z)k)2
·
nt2∑
j>nt

c(j)%jzj

(1− (%z)j)2

≤ 1
(log n)2

1
(1− %)2

nt∑
k>nt1

1
k
·
nt2∑
j>nt

1
j

≤ c1(t2 − t1)2

where c1 is a constant that can be chosen independently of n.

Next consider

[zn]
(log n)2(1− z)

V arz(
nt∑

k>nt1

mk)(Γ̃(z)− Γ̃)2

=
[zn]

(log n)2(1− z)
V arz(

nt∑
k>nt1

mk)(Γ̃2(z)− Γ̃(z) · Γ̃) +
[zn]

(log n)2(1− z)
V arz(

nt∑
k>nt1

mk)(Γ̃2 − Γ̃(z) · Γ̃).

12



Let Φ(z) = V arz(
∑nt

k>nt1 mk)Γ̃(z) =
∑∞
k=1 φkz

k (all φk ≥ 0). Then

[zn]
(1− z)

V arz(
nt∑

k>nt1

mk)(Γ̃2(z)− Γ̃(z) · Γ̃) =
[zn]

(1− z)
(Φ(z)Γ̃(z)− Φ(z)Γ̃)

=
n∑
k=1

φk

n−k∑
j=1

γj −
n∑
k=1

n∑
j=1

φkγj

≤ 0

.

On the other hand,

[zn]
(log n)2(1− z)

V arz(
nt∑

k>nt1

mk)(Γ̃2 − Γ̃(z) · Γ̃)

≤ Γ̃
(log n)2

 [zn]
(1− z)

V arz(
nt∑

k>nt1

mk)
nt2∑
j>nt

c(j)%j

(1− %j)

− [zn]
(1− z)

V arz(
nt∑

k>nt1

mk)
nt2∑
j>nt

c(j)%jzj


≤ Γ̃(1)

(log n)2

nt∑
k>nt1

[zn]
(1− z)

c(k)%kzk

(1− (%z)k)2

 nt2∑
j>nt

c(j)%j

1− %j
−

nt2∑
j>nt

c(j)%jzj


≤ Γ̃(1)

(log n)2

nt∑
k>nt1

[zn]
(1− z)

c(k)%kzk

 nt2∑
j>nt

c(j)%j

(1− %j)
−

nt2∑
j>nt

c(j)%jzj


+

Γ̃(1)
(log n)2

nt∑
k>nt1

c(k)%k
(

1
(1− %k)2

− 1
)
·
nt2∑
j>nt

c(j)%j

1− %j
.

(16)

The second term on the right side of (16) is bounded by

1
(log n)2

 1
(1− %)

nt2∑
m>nt

1
m

( ∞∑
k=1

1
k

(
1

(1− %k)2
− 1
)) 1

(1− %)

nt2∑
j>nt

1
j

 ≤ c2(t2 − t1)2

for some positive constant c2 which does not depend on n , but which may depend on %.

It remains to bound the first term on the right side of (16). For k < n/2,

[zn]
(1− z)

c(k)%kzk

 nt2∑
j>nt

c(j)%j

(1− %j)
−

nt2∑
j>nt

c(j)%jzj


≤ c(k)%k

nt2∧n−k∑
j>nt

c(j)%j
(

1
1− %j

− 1
)

+
n∑

j>n/2

c(j)%j

1− %j


≤ 1

k

 nt2∑
j>nt

1
j

(
1

1− %j
− 1
)

+
n∑

j>n/2

1
j

1
1− %j


≤ c3

k

13



for some positive constant c3 which does not depend on n. For k ≥ n/2,

[zn]
(1− z)

c(k)%kzk

 nt2∑
j>nt

c(j)%j

1− %j
−

nt2∑
j>nt

c(j)%jzj



≤ 2
n(1− %)

nt2∑
j>nt

1
j
.

Hence the first term on the right side of (16) is bounded above by

Γ̃(1)
(log n)2

nt∧n/2∑
k>nt1

c3

k
+

2
n(1− %)

nt2∑
j>nt

1
j


≤ c4(t2 − t1)2

for some positive constant c4 which is independent of n (since Γ̃(1) ≤ (1 − %)−1
∑nt2

nt
1
k ). Similar

calculations establish that

[zn]
(1− z)(log n)2

V arz(
nt2∑
k>nt

mk)(Γ2(z)− 2Γ(z) · Γ + Γ2) ≤ c5(t2 − t1)2

for some positive constant c5 which is independent of n.

Finally, we bound
[zn]

(1− z)(log n)2
(Γ(z)− Γ)2(Γ̃(z)− Γ̃)2

=
[zn]

(1− z)(log n)2
(Γ2(z)− 2Γ(z) · Γ + Γ2)(Γ̃(z) − Γ̃)2. (17)

First, by calculations similar to those made above,

Γ2[zn]
(1− z)(log n)2

(Γ̃2(z)− 2Γ̃(z) · Γ̃ + Γ̃2)

=
Γ2

(log n)2

[zn]
(1− z)

(Γ̃2(z)− Γ̃(z) · Γ̃)

≤ 0.

Next,
−2Γ

(log n)2

[zn]
(1− z)

Γ(z)(Γ̃(z) − Γ̃)2

=
2Γ · Γ̃

(log n)2

[zn]
(1− z)

(Γ(z)Γ̃(z)− Γ(z)Γ̃) +
2Γ

(log n)2

[zn]Γ(z)
(1− z)

(Γ̃(z) · Γ̃− Γ̃2(z)) (18)

14



The first term on the right side of (18) is less than 0, so it remains to bound the second term. First

note that there exists a positive constant Ĉ, independent of n, such that for k ≥ 1, γk < Ĉ/k and

γ̃k < Ĉ/k. Now consider

2Γ[zn]
(log n)2(1− z)

Γ(z)(Γ̃(z) · Γ̃− Γ̃2(z)) =
2Γ

(log n)2

n∑
k=1

γkdn−k

where

dn−k =
[zn−k]
(1− z)

(Γ̃(z) · Γ̃− Γ̃2(z))

=
n−k∑
j=1

γ̃j

n∑
m=1

γ̃m −
n−k∑
j=1

γ̃j

n−k−j∑
m=1

γ̃m

=
n−k∑
j=1

γ̃j

n∑
m>(n−k−j)

γ̃m

≤
n−k−1∑
j=1

γ̃j

n∑
m>n−k−j

γ̃m +
Ĉ

n− k
Γ̃.

Hence,
2Γ

(log n)2

n∑
k=1

γk · dn−k

≤ 2Γ
(log n)2

n∑
k=1

γk

n−k−1∑
j=1

γ̃j

n∑
m>n−k−j

γ̃m +
2ΓΓ̃

(log n)2

n∑
k=1

Ĉ

k

Ĉ

n− k
. (19)

The second term on the right side of (19) is bounded by c6(t2 − t1)2 for some positive constant

which is independent of n since

ΓΓ̃
(log n)2

≤ 1
(log n)2

1
(1− %)2

nt∑
k>nt1

1
k

nt2∑
j>nt

1
j
.

Since γk ≤ Ĉ/k and γ̃k ≤ Ĉ/k, the first term is bounded by

8ΓĈ2

(log n)2

n∑
j=1

γ̃j

n−j−1∑
k>n/4

log( n
n−k−j )

n
+

8ΓĈ2

(log n)2

n∑
k=1

γk

n−k−1∑
j>n/4

log( n
n−k−j )

n

+
2Γ

(log n)2

∑ ∑
k+j≤n/2

γkγ̃j · (Ĉ log(
n

n− j − k
))

≤
(

8Ĉ2ΓΓ̃
(log n)2

+
8Ĉ2Γ2

(log n)2

)(
−
∫ 1

0

log(1− x)dx

)
+

4ΓĈ

(log n)2

∑ ∑
k+j<n/2

γk · γ̃j
(

k

n
+

j

n

)
≤ c7(t2 − t1)2 (20)
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where c7 is a positive constant (independent of n). This establishes the bound for (17).

Finally,
[zn]

(log n)2(1− z)
Γ2(z)(Γ̃(z)− Γ̃)2

=
[zn]

(log n)2(1− z)
(Γ2(z)Γ̃2(z)− Γ2(z)Γ̃(z)Γ̃) +

Γ̃
(log n)2

[zn]
(1− z)

(Γ2(z)Γ̃− Γ2(z)Γ̃(z)). (21)

By calculations similar to those made above, it is easy to see that the first term on the right side

of (21) is less than zero, and calculations similar to those used to obtain (20) establish that the

second term is bounded by c8(t2 − t1)2 where c8 is a positive constant which is independent of n.

We add the bounds that we have obtained to establish

En(Ȳn(t2)− Ȳn(t))2(Ȳn(t)− Ȳn(t1))2 ≤ C(t2 − t1)2

where C is a positive constant which does not depend on n. This completes the proof of the

theorem.•

Author’s Note: While preparing this paper I have recently learned that this result has been

independently (and simultaneously) obtained by Arratia, Barbour, and Tavare [1] using methods

which are quite different than the methods used above. Their method involves comparing the

counting variables α1, α2, ... to a sequence of independent variables via a coupling of the sequences

on the same probability space. Using this method they are also able to obtain a bound on the rate

of convergence of O(log log n/
√

log n). Similar calculations for random permutations, the Ewens

sampling formula, and random mappings are contained in [2].
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