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Abstract: We propose a novel receiver configuration using an extreme 
narrow band-optical band pass filter (ENB-OBPF) to reduce the multiple 
access interference (MAI) and beat noises in an optical code division 
multiplexing (OCDM) transmission. We numerically and experimentally 
demonstrate an enhancement of the code detectability, that allows us to 
increase the number of users in a passive optical network (PON) from 4 to 8 
without any forward error correction (FEC). 
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1. Introduction 

Optical code (OC) processing is a flexible all optical technique that can overcome the 
electronic bottleneck in high speed packet switching networks, since optical labels are not 
related to physical resources and are generated and processed directly in the optical domain 
[1,2]. OCs are also used in OCDM systems to provide scalable asynchronous access to a large 
number of users. Whereas 10 Gbps time division multiplexing (TDM)-based PON (10G-
PON) is the technology for the next generation access networks (NGAN), and the 
corresponding standarization activities have been already completed in IEEE802.3av and 
ITU-T G.984.5, OCDM technique is considered one of the possible candidates for future next 
generation PON (NG-PON2) systems, as it presents unique features, such as high data 
confidentiality, soft capacity on demand and possible quality of searvice (QoS) management 
[3]. 

During the past decade, coherent OCs, where the encoding information is embedded in the 
phases of the OC spectrum and/or time chips, have been largely investigated in literature, as 
they present enhanced correlation properties, with respect to incoherent OCs, and larger 
spectral efficiency. Novel coherent time-spreading (TS) encoding systems have been 
demonstrated using only compact optical passive devices, a planar cost-effective multiport 
device has been designed and its prototypes have been used in many different packet 
switching and OCDM experiments. The multiport encoder/decoder (E/D) has the unique 
capability of simultaneously generating/processing multiple phase shift keying (PSK) OCs 
[4]. 

In OCDM coherent systems, MAI and beat noises are the main issues that limit the system 
performance and many techniques have been proposed to overcome these impairments [5]. 
The spectral amplitude of conventional TS OCs, using for instance M-sequence or Gold 
codes, is almost constant over a broad interval of frequencies (as shown in Fig. 1), so that the 
pulse width of autocorrelation signal is only a few picoseconds large; in this case, it is 
possible to reduce the influence of MAI and beat noises by using optical time gating [6,7] and 
optical thresholding [8–10]. On the other hand, the width of the autocorrelation signal of the 
PSK OCs generated by a multiport E/D is much broader and smoother, and it is not possible 
to use optical thresholding, unless we do not refer to a complete synchronous transmission. 

The spectral content of PSK OCs generated by the multiport E/D is equivalent to a single 
Fourier subcarrier of an orthogonal frequency division multiplexing (OFDM) signal and the 
corresponding orthogonality properties stems from the fact that the subcarriers have almost 
non-overlapping frequency spectra. The frequency crosstalk between two subcarriers is 
related to the MAI noise and affects the OC detection parameter. The PSK OCs generated at 
adjacent ports of the multiport E/D have partially overlapping spectra and the largest 
frequency crosstalk [4,11]; this impairment has been the main reason why in all our previous 
experiments, we were not able to fully exploit the encoding/decoding capabilities of the 
device, using all the device ports. 

To increase the number of the available OCs, in this paper we introduce a new filtering 
technique based on an ENB-OBPF, that reduces the crosstalk and enhances the OC 
recognition parameter. We present both numerical simulations and experimental validations 
that demonstrate the reduction of MAI and beat noises. We also analyze the performance of a 
10 Gbps, OCDMA-based PON system using paired multport E/Ds, comparing the bit error 
rate (BER) performances for the cases when the ENB-OBPF is used or not. Opposite to a 
conventional OFDM system that uses the same multiport E/D, all our previous and present 
OCDM experiments have been always characterized by a fully asynchronous transmission, 
that is a key feature for the next generation access systems. 
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Fig. 1. Conventional TS-OC spectrums. 

2. Analysis of the code detection performance 

2.1 Numerical simulations 

To evaluate the code detection performances, we have analyzed three different systems: 
without any filter, using a rectangular profile ENB-OBPF and with an ENB-OBPF obtained 
with an apodized fiber Bragg grating (FBG), as shown in Fig. 2(a). The bandwidths of the 
rectangular and apodized filters have been chosen to fit with the main lobe of the 
autocorrelation spectrum (see Fig. 2(b)). The channel spacing of a 16-port device with 
200GHz free spectral range (FSR) is 0.1nm, that almost equates the main lobe width of the 
autocorrelation spectrum [4]. The choice of an apodized FBG relies on its enhanced filtering 
features, with respect to standard FBG filters; also this device allows a flexible design of the 
optical transfer function and it is extremely compact so that it can be easily placed at the RN 
and OLT. The transfer function of apodized FBG filter is shown in Fig. 2(b). Figure 2(c) 
shows the architecture used to numerically evaluate the code performance: a 2ps pulse from a 
mode locked laser diode (MLLD) is sent to an optical switch (SW) that selects the input port k 
of the encoder. At the receiver output k’, we measure the autocorrelation signal if k’ = k, 
otherwise we detect the crosscorrelation signals. The two main parameters used to evaluate 
the system performance are the power contrast ratio (PCR) [12], i.e. the ratio between the 
average power of autocorrelation and crosscorrelation waveforms, and the ratio between the 
autocorrelation and crosscorrelation (ACP/CCP) peaks [4,11]. Using the formulas of Refs 
[4,11,12], we have calculated the PCR and ACP

2
/CCP

2
 ratio for different bandwidth values 

and different filtering shapes of the ENB-OBPF, that are shown in Fig. 3: we observe that the 
rectangular filter removes a large part of the autocorrelation signal. On the other hand, the 
apodized FBG filter has a narrower filter shape that better fits with the autocorrelation 
spectrum; at the same time, the FBG filter more efficiently eliminates the outband MAI. 
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Fig. 2. (a) Filtering characteristics of two ENB-OBPFs, with rectangular and apodized profile 
(b) Apodized filter shape (c) Architecture to evaluate the OC detection performance. 
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Fig. 3. (a) ACP2/CCP2 at the decoder output #1 (b) PCR at the decoder output #1. 

2.2 Experimental validation 

Figure 4 shows the experimental setup that we used to evaluate the MAI and beat noise 
effects. The MLLD at 1550 nm is driven at 9.95328 GHz and the pulse stream is down-
converted to 622.08 MHz by a LN-IM, to reduce the bit rate and completely eliminate the 
inter symbol interference (ISI). The OBPF after LN-IM is use only to remove the amplified 
spontaneous emission (ASE) noise. A 3 dB coupler splits the bit stream in two signals, that 
are forwarded to the ports #1 and #3 of a 16x16 multiport E/D. Each PSK OCs is composed of 
16 chips with 200 Gchip/s rate. By using two switches (SW), it has been possible to transmit a 
single OC or two OCs simultaneously, to measure the autocorrelation and the cross-
correlation signals, respectively. In addition, the polarization controllers (PC) and the 
polarizers (Pol) were used to investigate the system performance in the worst case scenario, 
when the polarization states of two OCs are aligned. 

At the receiver side, the signal is sent to a multiport E/D, and the output #1 is connected to 
an ENB-OBPF with 0.1 nm bandwidth at the center wavelength of 1551 nm, in the case of 
evaluation of the performance with a filter, or connected directly to the monitoring system. 
The resolutions of the optical spectrum analyzer are used 1 nm/div and 0.1 nm/div. 
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Insets (i, ii) of Fig. 4 show the cases without any filter and with the ENB-OBPF, 
respectively; The measured autocorrelation and the cross-correlation waveforms are shown in 
insets (a, b), respectively and they have the same scales, and insets (c, d) show the 
autocorrelation waveform when both OCs are transmitted, and the corresponding spectrum. 
An inspection of these figures confirms that the use of an ENB-OBPF largely reduces the 
MAI and beat noise effect. To increase the receiver sensitivity, it is necessary to filter the 
outband MAI noise, without degradating the autocorrelation signal; for this reason, a tradeoff 
is required: the apodized filter shape and width has been selected to fit with the main lobe of 
the autocorrelation signal, where the large part of the power of the matched signal is 
comprised. 
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Fig. 4. Experimental setup and results. 

3. Analysis of the system performance of a 10 Gbps, OCDM-PON 

3.1 System configuration 

(a)
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Fig. 5. (a) OCDM-based PON using hybrid E/D system (b) System with paired multiport E/D. 

In our previous experiments, we have used both a multiport E/D and phase-shifted 
superstructured fiber Bragg grating (SSFBG) E/Ds, that can generate a single PSK OC. The 
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use of the multiport E/D is cost effective in the optical line terminal (OLT), where all the OCs 
must be generated and processed, whereas the SSFBG E/Ds are suitable for the optical 
network units (ONU) because they present polarization independent performance, low and 
code-length independent insertion losses, compactness as well as low cost for mass 
production. Recently, we have designed and fabricated new apodized SSFBG E/Ds to 
enhance the uplink performance of an OCDM system with a hybrid configuration [12, 13], 
that is shown in Fig. 5(a). However, this system does not satisfy the colorless (non-user 
specific) condition for ONUs, because each user terminal requires a different device. To 
overcome this limitation, we have proposed and demonstrated PON configurations with 
paired multiport E/Ds, located at the OLT and in the remote node (RN), respectively [14], as 
shown in Fig. 5(b). Table 1 summarizes some recent experimental results of a 10 Gbps, 
OCDM-based PON systems using a 16x16 multiport E/D. In a paired multiport E/D system, 
we were able to transmit simultaneously signals from 12 users, using FEC [15]. The use of 
FEC was mandatory since a paired multiport E/D system does not present the same 
performances as a hybrid E/D system, due to the MAI and coherent beat noises. To increase 
the number of ONUs, we introduce the ENB-OBPF. 

Table 1. Latest Experimental Results of a 10Gbps OCDM-Based PON Systems Using a 
Multiport E/D 

System configuration Data 
format 

FEC Achieved user 
number 

Reference 

Hybrid E/D 

DPSK O
FF 

8  [12] 

OO
K 

O
FF 

4  [13] 

Paired multi-port E/D 

OO
K 

O
FF 

4 [14] 

OO
K 

O
N 

12  [15] 

3.2 Theoretical analysis 
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Fig. 6. Architecture to evaluate the performance of a 8 ONU, 10Gbps, OCDM-based PON. 

To analyze the system performance, we have numerically investigated a 10Gbps, 8 ONUs, 
on-off keying (OOK) OCDM-based PON system with paired multiport E/Ds, using data rate 
detection. In this case, the 8 ports pn = 2n-1 (n = 1-8) of a 16x16 multiport E/D are used, as 
shown in Fig. 6. Without considering dispersion effects, about 95% of the autocorrelation 
signal power of each bit is contained in one bit slot, so ISI effect is negligible. The 
autocorrelation signal Eac (t) can be expressed as 

 ( ) ( ) ( ) ( ) ( ) exp( 2 )
ac ki ik

E t M f H f H f G f f dtπ
∞

−∞
= ∫ j  (1) 
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where M (f) is the transfer function of the optical source, Hki (f) and Hik’ (f) are the transfer 
functions of multiport E/D, and G (f) is the transfer function of the ENB-OBPF. A similar 
expression can be obtained for the optical field of the crosscorrelation signal 

 '( ) ( ) ( ) ( ) ( ) exp( 2 )
cc ki ik

E t M f H f H f G f f dtπ
∞

−∞
= ∫ j  (2) 

with k’≠k. The average power of the autocorrelation and crosscorrelation signals can be 
evaluated as 

 
( )

( )

2

0

2

0

b

b

T

d ac

T

i cc

P E t dt

P E t dt

=

=

∫

∫
 (3) 

where Tb is the bit duration time. Considering the scheme of Fig. 6, the decision signal Z can 
be calculated as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0
2 2

0
2

2 cos

2 cos ( )

b

b

N N
T

d i ac cc i ac cc i

i i

N T

cc i cc j cc i cc j

i

Z P P E t E t t t dt

E t E t t t dt n t

φ φ

φ φ

− −
= =

− − − −
=

= ℜ +ℜ + ℜ −  

 + ℜ − + 

∑ ∑∫

∑∫
 (4) 

where φac is the phase of the autocorrelation signal, Ecc-i exp(φcc-i) and Ecc-j exp(φcc-j) are the 

interfering signals, and ℜ is the photodetector responsibility and n is the Gaussian random 
signal, due to thermal and shot noises. In this expression, the first term is the matched signal, 
the second one is the MAI noise, the third and the fourth terms are the first and the second-
order beat noises, respectively. The phase of the beat noise term is a random process; in our 
numerical evaluations, we considered only the first beat noise, assuming a Gaussian statistics, 
because the second beat noise does not affect the detection [16]. To investigate the system 
performance in the worst-case scenario, with the largest values of the MAI and beat noises, 
we assume that all the users are transmitting simultaneously and synchronously a logic “1”, 
except for desired ONU, that transmits both “0” and “1”. We also assume that all the signals 
have the same polarization. The beat noise variance has the following expression: 

 ( ) ( )
2 22

2 2 2

0 0
2

cos
b

N T

beat cc i i i
ac

i

E t E t dt d
π

σ θ θ
π −

=

ℜ
= ∑∫ ∫  (5) 

where θi is a random variable with a uniform distribution between 0 and 2π. 2

0
σ  and 2

1
σ  are 

the total noise variance corresponding to logic bits “0” and “1”, respectively 

 

2 2 2

0

2 2 2 2

1

th MAI

beat sh MAI

σ σ σ

σ σ σ σ

= +

= + +
 (6) 

and 2

th
σ ,and 2

sh
σ  are the thermal and shot noise variances, respectively 

 

2

2

1

4

2 1

B R

th

L

m
i

sh R d

i d

k TB

R

P
eB P

P

σ

σ
=

=

 
= ℜ + 

 
∑

 (7) 

Here kB is Boltzmann constant, T is the temperature, BR is the receiver bandwidth, e is the 

electron charge, and RL is the load resistance. If the power level received at the PD is low, 2

th
σ  
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is dominant, and increasing the power, 2

beat
σ of “1” transmission becomes dominant. 

Therefore, the beat and shot noises which are generated by MAI can be neglected for the case 
data “0” transmission. The error probabilities for an incorrect recognition are 

 

( )

( )

2

0

2

1

1
1|0

2 2

1
1

0|1
2 2

N
i

d th

i d

N
i

d th

i d

P
P I

P
Pe erfc

P
P I

P
Pe erfc

σ

σ

=

=

  
ℜ −  

  =
 
 
  

  
ℜ + −  

  =
 
 
  

∑

∑
 (8) 

where Ith is the detection threshold, and the BER is given by 

 

( ) ( ) ( ) ( )

2 2

0 1

Pr 0 1|0 Pr 1 0|1

1
1

4 2 2

data data

N N
i i

d th d th

i id d

BER Pe Pe

P P
P I P I

P P
erfc erfc

σ σ
= =

= +

       
ℜ − ℜ + −       

       = +    
            

∑ ∑  (9) 

where Pr(0)data, and Pr(1)data are the probability of transmitting “0” or “1”. 

3.3 Comparison of BER performances 

Table 2. Parameters Used in the Numerical Simulations 

Symbol Value 

kB 1.38 × 10−23J/K 
T 300K 

BR 8.5 GHz 
RL 50 Ω 
e 1.6 × 10−19 

ℜ  0.85 A/W 

We have numerically evaluated the BER in an OCDM-based PON system for different 
numbers of simultaneous users, without any filter and using the parameters reported in 
Table 2. The results are shown in Fig. 7 shows that the influence of the beat noise is highly 

dependent on the number of ONUs and that error-free (BER = 10
−9

) transmission can be 
achieved with only 4 simultaneous ONUs, as it has been also demonstrated in our previous 
experiments. In fact for 5 ONUs, the BER shows an error floor. The influence of the ENB-
OBPF on the BER performance is illustrated in Fig. 8, where 8 ONUs have been considered: 
it is evident that in this case it is possible to achieve error-free transmission. We also observe 
that reducing the filter bandwidth filter to 0.1 nm enhances the BER performance, that can be 

further increased using an apodized profile. Figure 9 shows the power penalty (BER = 1x10
−9

) 
for all the cases examined. 
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Fig. 7. BER performance of a conventional OOK-OCDM system with paired multiport E/D 
(without filter). 
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Fig. 8. BER performance using an ENB-OBPF. 
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Fig. 9. Power penalty versus the number of ONUs. 
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4. Conclusions 

We have demonstrated that an optimum filtering of the OC generated by a multiport E/D 
allows us to largely reduce the MAI and beat noise effects in label processing and OCDM 
transmission, with a drastic improvement of the code detection performance. We have also 
shown that this new architecture allows us to increase from 4 to 8 the number of simultaneous 
ONUs transmitting in a 10 Gbps OCDM-based PON, based on paired multiport E/Ds. The 
proposed technique can also be used to enhance the performances of systems with larger bit 
rate. 
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