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Most of the schemes for “noiseless” amplification of coherent states, which have recently been attracting
theoretical and experimental interest, share a common trait: The amplification is not truly noiseless, or perfect,
for nonzero success probability. While this must hold true for all phase-independent amplification schemes, in
this work we point out that truly noiseless amplification is indeed possible, provided that the states which we
wish to amplify come from a finite set. Perfect amplification with unlimited average gain is then possible with
finite success probability, for example, using techniques for unambiguously distinguishing between quantum
states. Such realizations require only linear optics, no single-photon sources, and no photon counting. We also
investigate the optimal success probability of perfect amplification of a symmetric set of coherent states. There are
two regimes: low-amplitude amplification, where the target amplitude is below one, and general amplification.
For the low-amplitude regime, analytic results for the optimal amplification success probabilities can be obtained.
In this case a natural bound imposed by the ratio of success probabilities of optimal unambiguous discrimination
of the source and amplified states can always be reached. We also show that for general amplification this bound
cannot always be satisfied.

DOI: 10.1103/PhysRevA.86.042322 PACS number(s): 03.67.−a, 42.50.Dv, 42.50.Ex

I. INTRODUCTION

There has recently been widespread theoretical and ex-
perimental interest in schemes for “noiseless” amplification
of coherent states [1–6]. These schemes aim to implement
the operation |α〉 → |gα〉, for g > 1 and any α. This is not
possible to achieve perfectly with unit probability, but can be
done probabilistically with arbitrarily high fidelity. Noiseless
amplification could, for example, be used in quantum repeaters
or for entanglement purification through “breeding” larger
Schrödinger cat states from “kittens” by probabilistically
transforming N±(|α〉 ± |−α〉) into N ′

±(|gα〉 ± |−gα〉) with
high fidelity.

Common to all existing schemes is that the amplification is
not truly noiseless, or perfect, for nonzero success probability.
That is, the fidelity approaches unity only in the limit of
vanishing success probability. This must, in fact, hold for any
phase-independent amplification scheme [5]. The suggested
schemes achieve higher fidelity for smaller α or smaller gain,
but it is only if either |α〉 = |0〉 or g = 1 that the fidelity can
be 100% for nonzero success probability, in which case, of
course, no amplification actually takes place. For experimental
realizations, the overall success probability is usually not even
quoted, and only the fidelity in case of successful operation is
reported as a figure of merit. A complete and fair comparison
of the different schemes is therefore difficult. The success
probability, especially for schemes that involve single-photon
states as resources, is nevertheless usually very low.

In this paper we want to point out that, in contrast to
existing theoretical and experimental schemes, there is, in
fact, a way to achieve truly noiseless amplification, that is,
100% fidelity, also for finite nonzero success probability and
finite nonzero coherent state amplitudes. This is possible if
one relaxes the demand that the amplification should work
for any |α〉 and instead selects any finite number of coherent
states that one wants to amplify perfectly. The restriction to a
finite set of states need not be serious, since many quantum

information and communication protocols use a selected set of
states, including quantum cryptography [7–9], blind quantum
computing [10], and quantum digital signatures using coherent
states [11,12]. For example, the set of symmetric coherent
states |αeim2π/N 〉, where α is fixed and m = 1,2, . . . ,N , may
be amplified truly perfectly with nonzero success probability.

In fact, any set of linearly independent quantum states,
coherent or other, may be amplified or cloned perfectly
with a finite nonzero probability of success. This follows
from the fact that linearly independent states may be
unambiguously distinguished from each other with finite
success probability [13]. Perfectly identifying a quantum state
clearly allows us to fabricate an unlimited number of copies
or, equivalently, to prepare a state with the same phase and
arbitrarily high amplitude. Hence, it is not only possible to
perfectly amplify any linearly independent set of states, but the
average gain of truly noiseless probabilistic amplification can
be arbitrarily high, since the success probability times the gain
is unlimited. Moreover, unambiguous state discrimination of
coherent states may be realized using only linear optics and
non-photon-number-resolving photodetectors, without using
auxiliary nonclassical states [14,15]. The same resources
allow also realization of perfect amplification based on
unambiguous state discrimination (USD).

When discussing amplification, the so-called classical
linear amplifier is often used as a benchmark [4]. This is a
measure-and-prepare approach to amplification or cloning,
where the state is first estimated and, based on this, the
amplified state prepared. Depending on which states we wish
to amplify or clone, however, the optimal measure-and-prepare
classical amplifier protocol will be different. Existing ampli-
fication protocols for coherent states are phase independent
[1–6] or consider some other continuous distribution of
coherent states [16–20]. For a continuous input distribution,
the realized amplification fidelity can never be perfect. In
contrast to this, we consider a restricted setting where the
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inbound set of states is finite and linearly independent. This
will be related to a different measure-and-prepare protocol than
phase-independent amplification, in other words, to a different
classical amplifier.

If we do not require arbitrarily high gain, then the success
probability can be higher than for schemes based on USD.
For amplification of symmetric sets of coherent states, results
on transforms between sets of symmetric states [21] are key
to working out what processes are possible. Such transforms
might be termed “umbrella transforms,” if we visualize the
symmetric states as the ribs of an umbrella in a space
of suitable dimensionality. A probabilistic transform that
decreases pairwise overlaps—one example being noiseless
amplification—may then be thought of as “opening the
umbrella.” We are concerned with the theoretical limits of
limited-gain perfect amplification of a restricted set of possible
input states, in particular, the optimal success probabilities of
such transforms.

The paper is organized as follows. In Sec. II, we briefly
review unambiguous discrimination of coherent states using
linear optics and discuss how to use this for truly noiseless
amplification. Definitions related to transformations between
sets of quantum states are given in Sec. III. In Sec. IV, we
investigate truly noiseless amplification of coherent states, for
finite gain, by viewing it as a transform between symmetric sets
of states. As already mentioned, the success probability can
then be higher than for procedures that use state discrimination.
It turns out that there are two regimes: small-amplitude am-
plification, where the amplitudes of both initial and amplified
states are below one, and a general regime where the amplitude
of the final states, or of both initial and final states, are above
one. As shown in Ref. [21], transforms between sets of states
may be “leaky” or “leakless,” depending on whether there is
an extra “leak” state correlated with the desired output in the
case of success. It turns out that in the small-amplitude regime,
the optimal umbrella transforms for noiseless amplification are
leakless, whereas in the general regime they may be leaky. We
finish with a discussion.

II. AMPLIFICATION OF COHERENT STATES
USING LINEAR OPTICS

Ivanovic [22], Dieks [23], and Peres [24] realized that
two nonorthogonal quantum states can be unambiguously
distinguished from each other with a certain probability. That
is, if the measurement succeeds, the result is always correct,
but there is a chance that the measurement fails, giving an
inconclusive result. The failure probability for the optimal
procedure is equal to the overlap between the two quantum
states. In the completely general case, optimal unambiguous
measurements are not easy to find analytically [25,26], but
such a measurement is at least possible as soon as at least one
of the quantum states is linearly independent of the others [13].

For two coherent states |α〉 and |−α〉, the optimal mea-
surement may be realized using only linear optics [14]. The
state to be identified, |±α〉, is directed onto a balanced beam
splitter, with a fixed state |α〉 incident on the other input
port. If the phase relationships between output and input ports
are arranged so that the beam splitter transforms |α〉1 ⊗ |β〉2

to |(α + β)/
√

2〉1 ⊗ |(α − β)/
√

2〉2, we see that if the state

to be identified was |α〉, then output port 1 will contain
|√2α〉 and port 2 will be empty, and if it was |−α〉, then
output port 1 will be empty and output mode 2 will contain
|−√

2α〉. By detecting photons in the output ports, we can
therefore unambiguously tell whether the state in input port
1 was |α〉 or |−α〉. Since any coherent state contains a
vacuum component, we may not see any photons at all, which
corresponds to the inconclusive outcome. The probability for
this is 〈0|√2α〉 = 〈−α|α〉 = exp(−|α|2), which is the optimal
(minimal) failure probability. Clearly, no photon counting is
required, only being able to tell the difference between the
vacuum and any nonzero number of photons.

For a balanced beam splitter with other phase relationships,
we can adjust the phase of the fixed state in input port 2
so that the procedure still works. Also, if the two states to
be distinguished are not |±α〉 but |α〉 and |β〉, then we can
precede the described measurement with displacement of the
unknown input mode, containing either state |α〉 or state |β〉,
by −(α + β)/2 using a beam splitter, and then distinguish
|±(α − β)/2〉 using the technique above.

This unambiguous measurement may be used for perfect
amplification as shown in Fig. 1, where the first box shows a
suggested way to prepare the states to be distinguished, and
the second box shows the unambiguous measurement itself.
The fact that we need to specify the phases of |±α〉 implies
that there exists a phase reference beam, which we, without
loss of generality, assume to be |β〉, where α and β have the
same phase, but different amplitude; a strong reference beam
would have |β| � |α|. The fixed state |α〉 in input mode 2 is
likely also split off this reference beam, as shown in Fig. 1.
Conditional on whether the state is identified as |α〉 or |−α〉,
we implement the corresponding phase shift on the reference
beam, giving the amplified state. The gain is then only limited
by how strong the reference beam is. Alternatively, we could
amplify relative to some other reference beam, not necessarily
with the same phase as |α〉 (but we still need the fixed state |α〉
with the correct phase in input mode 2 for the unambiguous
measurement).

FIG. 1. Truly perfect amplification of the states |±α〉 based on
unambiguous discrimination, where we assume that |β| � |α|. The
beam splitters denoted BS 1 and BS 2 split off a minor fraction of
the strong beam |β〉 of amplitude of norm |α|. The beam splitter BS
is balanced, and boxes labeled PM denote phase modulators. The
amplification procedure fails only if both detectors D1 and D2 fail to
detect a photon.
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A similar procedure is possible for distinguishing between
more than two coherent states using linear optics, but will then
not attain the optimal success probability [15]. In short, if there
are N possible different states, then we can split the unknown
state in N beams using a multiport and test each component
against one of the possible states (with amplitude suitably
scaled down) using a beam splitter similar to that described
above for two coherent states. If we manage to rule out all
but one of the possible states, then we have unambiguously
identified the input state as the remaining one. (Actually, we
would only need to split the state to be identified in N − 1
components, since if we manage to rule out all but one of the
possible states, then the state must have been the remaining
one.) The success probability of this procedure is nonzero,
but not optimal. It can be somewhat improved by splitting
the original state in M copies, with M → ∞, still using only
linear optics [15].

Any such procedure to unambiguously distinguish a finite
number of coherent states may be used to noiselessly amplify
them with a finite success probability and gain limited only
by the strength of a reference beam, similar to amplification
of two coherent states illustrated in Fig. 1. If we manage
to identify the state, we implement the corresponding phase
shift on the reference beam. Although this requires only linear
optics and detectors that do not resolve photon numbers, the
disadvantage is that such a procedure cannot be used to amplify
a superposition of the possible incident states. This obviously
limits the usefulness when the superposition is important,
such as when “breeding” larger cat states in order to enhance
entanglement.

It is nevertheless, in principle, possible to realize truly
noiseless amplification in such a way that superpositions
are preserved. This is because one can, in principle, realize
USD in two steps. First, one probabilistically transforms the
selected set of nonorthogonal states into orthogonal ones
without destroying possible superpositions of the states in the
set, and this is followed by a measurement to distinguish the
different orthogonal states. Truly noiseless amplification that
preserves superpositions can then be achieved by omitting the
final measurement, and only registering whether the first step
succeeded or failed [how this works is also clarified by Eq. (1)
in the following section].

If the states to be amplified are symmetric to start with,
then it follows from results in Ref. [21] that the success
probability can be made independent of the initial state, and
therefore the weights of the states in the superposition will be
preserved. If the set of states is not symmetric, then the success
probabilities for different states in the “source” set may not
be equal. Amplification that preserves the superposition but
reweights the individual states is then still possible. Also, if
we base the procedure on USD, then the amplified states in
the superposition will be orthogonal, corresponding to infinite
coherent state amplitude (the unambiguous measurement, if
completed, would give us perfect knowledge about which state
was prepared, if only one of the initial states was prepared).
Alternatively, if the amplitude of the amplified states is below
one, then amplification that preserves superpositions is also
possible, since then a leakless transform is possible, as we
show in Sec. IV A (the concept of leak is introduced in the next
section). We leave it open whether superposition-preserving

truly noiseless amplification of coherent states could be
realized using only linear optics.

Alternatively, we could remove the detectors and the strong
reference beam |β〉 in the second box in Fig. 1 and view
the state exiting from the beam splitter labeled “BS”, after
combining the incident state |±α〉 with the fixed state |α〉,
as an “amplification,” with gain

√
2, of the incident state.

This amplification occurs with unit probability, that is, it
is deterministic, and transforms a superposition N±(|α〉1 ±
|−α〉1) into N ′

±(|√2α〉1 ⊗ |0〉2 ± |0〉1 ⊗ |−√
2α〉2). The de-

terministically amplified state will then be a superposition
of different output modes. However, the overlap between
the incident states |±α〉1 ⊗ |α〉 is necessarily the same as
the overlap between the states |√2α〉1 ⊗ |0〉2 and |0〉1 ⊗
|−√

2α〉2. Thus, it is questionable if this process really could
be called amplification, without subsequently combining the
amplified states into the same spatial mode. That can only be
done probabilistically, since otherwise we would be able to
deterministically decrease the overlap of two quantum states,
which is impossible.

Amplification with, in principle, unlimited gain will neces-
sarily have the same optimal success probability as USD. We
now proceed to investigate the optimal success probabilities
and other properties of the amplification transforms for
specified finite levels of gain. For this, we first need to state
some definitions related to transforms between sets of quantum
states.

III. TRANSFORMS BETWEEN SETS OF STATES

In the previous section, we considered perfect amplification
with unlimited gain, based on USD techniques. We noted that
if USD is viewed as a heralded transformation from nonorthog-
onal to orthogonal states, followed by a measurement to
distinguish between these states, there is nothing forbidding
amplification which also preserves superpositions. In contrast
to this, we now consider perfect amplification of a finite set of
coherent states, with limited gain. Our approach is based on
viewing amplification as a transformation between finite sets
of states, and our goal to find the limits of success probability
for such transforms, that is, for truly perfect amplification.

We consider two sets of N pure states, called the source
and target sets, denoted (respectively)

A = {|ai〉}, B = {|bi〉},
and a heralded probabilistic transform T , which for input state
|ai〉 produces the state |bi〉 with probability pi , and a |Fail〉
state with probability 1 − pi . By Theorem 3 in Ref. [27] such
a transform exists if and only if there exists a unitary transform
U performing

U |ai〉 = √
pi |bi〉|ψi〉|0〉 +

√
1 − pi |Fail〉|φi〉|1〉, ∀ i (1)

for some sets of states L = {|ψi〉}N and R = {|φi〉}N . The
states |0〉 and |1〉 are orthogonal. To complete the realization
of T , after the application of U the third register is measured
in this basis, and, optionally, the second register may be traced
out.

When the transform succeeds, the state |bi〉 is generated
along with a state |ψi〉, possibly correlated with the input state.

042322-3



VEDRAN DUNJKO AND ERIKA ANDERSSON PHYSICAL REVIEW A 86, 042322 (2012)

This state leaks additional information about i; hence, the set
L is called the leak. When the transform fails, the constant
state |Fail〉 is produced along with the state |φi〉, which may be
correlated with the source state, and may be used to attempt
a reconstruction of the target state |bi〉. This set of states R

we call the redundancy. The leak (redundancy) states are not
correlated with the input state if and only if the states in the leak
(redundancy) are identical for all source states, up to global
phase. If the success probabilities do not depend on the input
state, the transform is called uniform. For uniform transforms
(of success probability p) the criterion (1) may be rewritten,
in terms of the Gram matrices of the sets A, B, L, and R,
respectively, as

GA = p GB ◦ GL + (1 − p) GR, (2)

where ◦ denotes the Hadamard (pointwise) matrix product.
The Gram matrix of a set of states {|ci〉} is defined as the
square matrix with elements 〈ci |cj 〉.

Finally, a finite set of states is symmetric if there exists a
fixed unitary which, when applied on the ith state, produces the
(i + 1mod N )th state. Symmetric states are interesting as they
often appear in quantum protocols (e.g., many quantum key
distribution schemes [7–9] and in blind quantum computing
[10] and quantum digital signature schemes with coherent
states [11,12]).

IV. AMPLIFICATION AS STATE TRANSFORMS

If the source set of coherent states we wish to amplify
perfectly is known, and the required gain g > 1 is preset,
then the amplification procedure becomes a particular type of
state transform which has been studied in Ref. [21]. Here, we
assume that the source set of coherent states is a symmetric set
of N states. The source and target states are then

A = {|ai〉 := |eiθkα〉}N−1
k=0 , B = {|bi〉 := |eiθkβ〉}N−1

k=0 , (3)

where θk = 2kπi/N and β = gα. An amplification transform
takes states from set A to corresponding (amplified) states in
set B and, without loss of generality, we define the amplitudes
α and β to be real positive numbers. The question is with what
success probability such amplification is possible.

Since the set A is a set of linearly independent states, using
state discrimination one can always perform a measure-and-
prepare procedure and, in fact, reach any desired, unlimited
gain. Thus, the lower bound on the success of an amplification
procedure is given by dA, denoting the success probability of
USD of the states in A. If we also take into the account the
probability of unambiguous discrimination of states in B, an
upper bound of the success probability of amplification can
be derived. If dA and dB are the respective probabilities of
optimal unambiguous discrimination of states in the sets A

and B, then the corresponding amplification transform cannot
succeed with a probability higher than

pup = dA

dB

(4)

as a higher success probability would violate the optimality
of dA. Similar methods have been used to bound the success
probability of decreasing the overlap of two quantum states,

which includes state-dependent cloning or two states [28].
Similarly, one could derive other bounds by observing the
optimal probabilities of minimum error measurements [29] on
the sets A and B, or, in fact, any measurement optimizing
any other figure of merit (e.g., maximal mutual information,
maximum likelihood, etc.).

As we will show, the bound pup can, in fact, be reached
for source and target amplitudes below one, whereas for target
state amplitudes above one it cannot always be saturated. The
techniques we use have been developed in Refs. [21,27,30]. By
the results given in Refs. [27,30], an amplification transform
succeeding with probability p exists if the equality given in
Eq. (2) is satisfied for some Gram matrices of states [31] GL

and GR and where GA and GB are the Gram matrices of the
source and amplified coherent states, respectively. Since A

and B are symmetric sets of states, the matrices GA and GB

are circulant [32], and hence diagonalize in the unitary discrete
Fourier transform basis, which is given by the columns or rows
of the unitary discrete Fourier matrix of appropriate size N ,

uDFT = 1/
√

N

[
exp

−2 (p − 1) (q − 1) iπ

N

]
p,q

. (5)

Moreover, by Lemma 4 in Ref. [21], if there exists any
amplification procedure for symmetric states succeeding with
some success probability, then there exists an amplification
procedure succeeding with the same success probability, where
the leak and redundancy are symmetric sets of states.

Thus, in order to find the optimal success probability, we
may assume that all the matrices appearing in the existence
criterion (2) are circulant, and they all diagonalize in the
unitary discrete Fourier transform basis. Criterion (2) may
then be written in terms of vectors containing the eigenvalues
of the Gram matrices as

λA = pλB ∗ λL + (1 − p)λR. (6)

In this expression the vector λX contains the diagonal elements
of the matrix u

†
DFTGXuDFT, which is diagonal when X is a

symmetric set of states, and ∗ denotes the circular convolution
of vectors, defined componentwise as

(λB ∗ λL)i = 1

N

N−1∑
j=0

(λB)j (λL)[(N−j+i) mod N]. (7)

For more details on the construction above, see Ref. [21].
All the results we give rely on the properties of the spectrum

of Gram matrices of coherent states which we give collectively
in the Appendix for convenience. As this spectrum has roughly
two regimes of behavior, depending on the amplitudes α

and β being below or above one, we separately address
two distinct cases: small-amplitude amplification (where 0 <

α � β � 1) and general amplification (all other amplitude
combinations). We begin by considering the scenario where
both input and output amplitudes are small, that is, less than
one. From a practical standpoint, low-amplitude amplification
is of high importance since weak coherent states are often
used in quantum information protocols. For sufficiently high
amplitudes (also depending on N , that is, how many states
there are), the symmetric sets of coherent states are effectively
classical, that is, mutually almost orthogonal, and can be
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reliably distinguished. From a theoretical viewpoint, adhering
to low amplitudes allows us to derive useful properties which
do not hold for higher amplitudes.

A. Small-amplitude amplification

If the amplitudes α and β of sets of symmetric coherent
states A and B, respectively, satisfy |α| < |β| < 1, the follow-
ing two properties hold for the spectra of their corresponding
Gram matrices GA and GB .

Property 1. The eigenvalues of GA appear in strictly
decreasing order, where the order is induced by the order of the
diagonal elements of the diagonalized matrix obtained by the
conjugation of GA with the uDFT matrix (cf. Lemma 2 below).
This does not hold for higher amplitudes.

Property 2. The quotient of the last eigenvalues of GA and
GB is smaller than the quotient of any other two corresponding
eigenvalues (cf. Lemma 3 below and the derivation preceding
it). Again, this holds only in the small-amplitude regime.

For proofs, please see the Appendix.
Property 2 above implies that the upper bound on the

optimal success probability pup in the low-amplitude regime,
addressed in the beginning of this section, is reached in the
leakless scenario, as we now show. First, we note the link
between the optimal success probability dS of uniformly and
unambiguously discriminating a set of pure states S and the
spectrum of the Gram matrix GS of S: The optimal success
probability dS is equal to the smallest eigenvalue of GS (this is
easily derived from the results in Refs. [27,30,39], as was done
in Ref. [21]). Also, the sufficient criterion (6) for the existence
of a probabilistic leakless transform taking the states from A

to B where both sets of states are symmetric, succeeding with
the probability p, can be written as

λA − pλB � 0, (8)

where λA and λB are the vectors of eigenvalues of matrices
GA and GB , as discussed in the previous section. To see this,
note that if the transform is leakless, then λB ∗ λL = λB . The
maximal possible p is then equal to minj (λj

A/λ
j

B), where λ
j

A

and λ
j

B are the j th components of the vectors λA and λB ,
respectively. Now, by the second property, this minimum is
attained for the last eigenvalues (i.e., j = N − 1), which is
exactly the upper bound pup. Thus, there exists a leakless
transform saturating the upper bound of the success probability
of amplification pup.

Moreover, it can be shown by using Property 1 that
this bound is saturated only by a leakless transform in the
small-amplitude regime. From criterion (6), if there exists an
amplification transform with a nontrivial leak, succeeding with
some probability p, then the relation

λA − pλB ∗ λL � 0 (9)

holds, where λL is the vector of eigenvalues of the Gram
matrix of the leak. Note that here we are assuming that the
Gram matrix of the leak diagonalizes in the unitary discrete
Fourier transform basis, which is justified without the loss of
generality due to Lemma 4 in Ref. [21]. If the leak is not trivial
(not a fixed state) then λL is a vector of non-negative numbers
adding up to N , at least two of which are not zero. Then
note that the vector λC = λB ∗ λL contains the (normalized)

weighted sums of the components of λB , the weights being the
elements of λL [see the definition of the discrete convolution of
vectors in expression (7)]. Since the smallest component λmin

B is
the unique last component of λB (for |β| < 1 by Property 1),
and at least two of the elements of λL are nonzero, the last
component of λC is strictly greater than λmin

B . However, then it
holds that

p � λN−1
A

λN−1
C

<
λN−1

A

λmin
B

= λmin
A

λmin
B

. (10)

Hence, the success probability of any leaky (nonleakless)
amplification transform for low amplitudes is strictly less than
optimal.

Thus, we have shown that small-amplitude amplification
can be done optimally, that is, saturating the obvious upper
bound of the success probability pup, and that this optimal
transform is always leakless. The amplification procedure
properties change significantly when one is interested in
amplification involving states with amplitudes above unity,
as we see next.

B. General amplification

For “any amplitude” amplification, that is, when β > 1,
we no longer have the convenient properties given in the
previous section. In particular, optimal transforms can be
leaky, in which case the upper bound pup derived through the
probabilities of unambiguous discrimination [see expression
(4)] sometimes no longer can be reached. More formally, we
have the following lemma.

Lemma 1. Let λmin
B be the smallest eigenvalue of the Gram

matrix of the target, amplitude-amplified, symmetric set of
coherent states. Then if λmin

B is a unique smallest eigenvalue
then an optimal amplification transform with a nontrivial leak
does not saturate the upper bound pup.

Proof. Let cj denote the j th component of the vector λC =
λB ∗ λL, where λB and λL are vectors of eigenvalues of the
Gram matrices of the target states and the leak states. Let
cmin = minj cj . Then, if λmin

B is unique, and since λB ∗ λL

contains the (normalized) weighted sums of the components
of λB , the weights being the elements of λL, and at least two
weights are not zero, it holds that λmin

B < cmin.
Let p be the success probability of an optimal amplitude

amplification transform with the leak characterized by λL.
Then it holds that

λA − pλC � 0. (11)

Also, due to optimality, for some component j it holds that

λ
j

A − pcj = 0. (12)

Assume first that λ
j

A = λmin
A . Then

p = λmin
A

cj

, (13)

and because λmin
B < cmin it holds that

p = λmin
A

cj

<
λmin

A

λmin
B

= pup, (14)

so the upper bound is not saturated.
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Assume now that λ
j

A = λA
min = λl

A for some position l = j.

Since

λA − pλC � 0 (15)

it holds that

p � min
i

λi
A

ci

, (16)

so since

p = λ
j

A

cj

(17)

it holds that

p = λ
j

A

cj

� λl
A

cl

= λmin
A

cl

� λmin
A

cmin
<

λmin
A

λmin
B

= pup. (18)

Therefore, the upper bound is not attained and the lemma
holds. �

With Lemma 1 in place, we now show through an example
that in the case of general amplification, the leakless case may
not be optimal, and the upper bound pup can sometimes no
longer be obtained. Consider amplification of a symmetric set
of four coherent states from amplitude α = 2 to amplitude
β = 2.3. The eigenvalues of the corresponding Gram matrices
are then given by

λA = [0.976 39 2,0.971 94 2,1.024 28,1.027 39]T , (19)

λB = [1.005 53,0.991 52 7,0.994 52,1.008 42]T , (20)

and the upper bound is given with pup = 0.980 24 8. Note that
the smallest eigenvalue of the Gram matrix of the target states
is unique, so Lemma 1 can be applied, and the upper bound
cannot be reached in the leaky setting.

What remains to be seen is what the success probability of
a leakless transform is. The leak of a leakless transform are
kets with only global phases possibly differing. Lemma 4 in
Ref. [21] can still be applied in this case; hence, we may assume
that this leak is symmetric. This implies that the argument of
the global phase of the kth ket is “symmetric” as well and will
be of the form θk = πkj/2 for j = 0, . . . ,3. By the properties
of the discrete Fourier transform of powers of roots of unity, the
vector of eigenvalues of such a leak will be a vector with all
components zero, except at the position (4 − j mod 4) + 1,
where its entry is 4.

A convolution of a vector comprising zeros, except at
one position where the entry is one (or a constant c), with
any other vector induces a circular permutation of the other
vector (multiplied by the constant c). Hence, we can directly
check the optimal leakless success probability of the leakless
amplification procedure, by going through all the circular
permutations of λB . We find that the optimal leakless transform
succeeds with probability pleakless = 0.977 29 8 < pup. So, the
upper bound cannot be reached for the leakless scenario either,
which means that, surprisingly, it cannot be reached at all.
We note that although the values used in this analysis are
numerical, the discrepancies the conclusion relies on (i.e.,
the uniqueness of the smallest eigenvalue and comparison
of magnitude of the quotients) are well within numerical
precision; hence, the conclusion is unlikely to be a numerical
artifact.

Now, is there a leaky transform that does not saturate
the bound, but does better than the best leakless transform?
Using the optimization technique developed in Ref. [21] we
find that the success probability of an optimal transform for
this example is popt = 0.978 60 4, which is slightly larger
than the optimal leakless transform pleakless = 0.977 29 8, and,
necessarily, strictly below the upper bound p = 0.980 24 8.

To summarize, we have proven the following.
(1) The success probability of amplifying a symmetric

set A of N coherent states of amplitude α to the states in
a symmetric set B of coherent states of a larger amplitude
β, for small amplitudes |α| < |β| < 1, can reach the upper
bound imposed by the ratio of success probabilities of optimal
unambiguous discrimination of sets A and B, respectively.

(2) For small amplitudes |α| < |β| < 1 the optimal trans-
form is always leakless.

(3) The optimal success probability of amplification of
small amplitudes is explicitly given by

popt =
∑∞

r=0
α2[N(r+1)−1]

[N(r+1)−1]!∑∞
r=0

β2[N(r+1)−1]

[N(r+1)−1]!

. (21)

[Please see the Eq. (A6) in the Appendix, and the subsequent
paragraph].

(4) If |β| > 1, the numerical testing we have performed
indicates that the upper bound imposed by the ratio of the
success probabilities for unambiguous discrimination of the
states in sets A and B cannot always be reached, and optimal
transforms may be leaky.

V. CONCLUSIONS

In this work, we have shown that truly noiseless amplifi-
cation of coherent states is possible if one only requires the
amplification to work perfectly for a finite number of of states.
Similarly, perfect cloning of any other linearly independent
states is also possible, and amplification is clearly closely
related to cloning. Depending on whether the amplitude
of the amplified “target” states are below or above one,
the optimal success probability may be simply obtained or
require optimization techniques like the ones we developed in
Ref. [21]. The average gain is, in principle, unlimited, since it is
possible to base the amplification on USD. In case of success,
this allows us to prepare an amplified state with arbitrary high
amplitude. If we require a finite level of gain, the optimal
success probability is higher than for unlimited gain. We have
also explained how to implement truly noiseless amplification
based on USD using only linear optics.

If we visualize the N coherent states to be amplified as the
ribs in an umbrella in an N -dimensional space, then noiseless
amplification of these states, which decreases their pairwise
overlaps, may be thought of as opening the umbrella. Some-
times the optimal amplification procedures may result in extra
leak and redundancy states, apart from the desired amplified
states. The leak and the redundancy may be correlated with
and therefore carry information about the input state. Since the
optimal umbrella transform for truly noiseless amplification is
always leakless when the amplitude of the amplified (target)
states is below one, as we have shown, this regime may be
convenient if cryptographic aspects come into consideration.
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For example, in a two-party protocol, where Alice sends some
quantum states to Bob, who is supposed to further transform
them, Alice can monitor the success probability declared by
Bob. If it is optimal, she knows that there can be no additional
leak (assuming that Alice uses some other way of checking
that when Bob does declare that the process has succeeded,
he has indeed obtained the quantum state he is supposed
to). A related situation arises in blind quantum computing,
where Alice wants to run a quantum computation on Bob’s
quantum computer without Bob learning about her data or
her algorithm [10]. In the original scheme, Alice is required
to prepare single-qubit states. If Alice only can prepare, say,
weak coherent states, then one possibility may be for Alice
to require Bob to turn these into single-qubit states in such a
way that Alice can monitor any additional information Bob
may gain. Such transforms from symmetric coherent states to
symmetric qubit states were considered in Ref. [21]. If the
amplitude of the target states is above one, then the optimal
umbrella amplification transform may be leaky.

A few years ago, quantum cloning attracted widespread
attention (see, e.g., Refs. [33–35]). Amplification and cloning
are closely connected, especially for coherent states, since, for
example, the state |α〉 ⊗ |α〉 may be transformed into |√2α〉
using a beam splitter, and vice versa. More generally, if g =√

N , then the state |gα〉 is equivalent to N copies of |α〉, in the
sense that |√Nα〉 can be transformed into N copies of |α〉 (and
vice versa) by a linear optical network (a balanced multiport).
It is well known that perfect universal quantum cloning, that
is, of arbitrary states, is not possible [33,35], but cloning with
imperfect fidelity is.

The fidelity of deterministic cloning can be improved if
prior knowledge about the input states is available. Optimal
cloning fidelity in the presence of prior knowledge for the case
of cloning of CV systems, and in particular coherent states,
has recently been addressed. Improvements have been shown,
for instance, in settings where the input coherent states are
picked from finite symmetric Gaussian distributions [17,18],
have a fixed phase and a wide spread of possible mean photon
numbers [17,18,20], or have a fixed mean photon number (but
an arbitrary phase) [16,19]. In Ref. [16] it was shown that for
the case of the latter type of prior knowledge—the so-called
phase covariant cloning [19]—fidelity of the output clones
can be further improved if the cloning process is allowed to
be probabilistic and heralded. However, perfect fidelity is only
reached in the limits of zero success probability, and/or zero
amplitude.

On the other hand, probabilistic perfect cloning of linearly
independent states is possible [36]. This mirrors the fact
that probabilistic perfect amplification of linearly independent
states is possible with finite success probability, as we have
discussed.

To elaborate on the connection to cloning, the exist-
ing schemes for “noiseless” probabilistic amplification of
coherent states are (almost) perfect cloners for coherent
states, but do not clone superpositions of coherent states as
well. For example, choosing g = √

2, if |α〉 → |√2α〉 for
any α, then the “cat” state N±(|α〉 ± |−α〉) would change
into N ′

±(|√2α〉 ± |−√
2α〉), which may be transformed into

N ′
±(|α〉 ⊗ |α〉 ± |−α〉 ⊗ |−α〉) using a balanced beam splitter.

This state is not equal to N±(|α〉 ± |−α〉) ⊗ N±(|α〉 ± |−α〉),
that is, to two copies of the original cat state. This is similar to
the simple proof that universal cloning is impossible [33].

Nevertheless, this feature is not a disadvantage when perfect
amplification schemes are used, for example, to enhance
entanglement. That the operation |α〉 → |gα〉 only has unit
fidelity in the limit of vanishing success probability, on the
other hand, is a disadvantage. If we select a finite linearly
independent set of states |αi〉 for which the amplification
should work perfectly, then the fidelity of the probabilistic
process N

∑
i ci |αi〉 → N ′ ∑

i ci |gαi〉 can be truly perfect,
as we have pointed out. The price we have to pay is that
the scheme must be dependent on phase and amplitude.
Nevertheless, since such schemes can be realized with only
linear optics, as discussed in Sec. II, we expect them to be of
great interest for quantum information applications.
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APPENDIX: PROPERTIES OF THE SPECTRUM
OF THE GRAM MATRIX OF SYMMETRIC SETS

OF COHERENT STATES

The vector of eigenvalues of the Gram matrix of a
symmetric set of coherent states λGA

can be obtained by the
discrete Fourier transform of the first row of GA (for details,
see Ref. [21]). Hence, the j th eigenvalue can be given as

λj =
N−1∑
l=0

exp (−2j lπi/N ) 〈α|α exp (2lπi/N)〉. (A1)

Using the expansion of the coherent states in the Fock number
basis, the expression above can be written as

λj =
N−1∑
l=0

exp

(
−2j lπi

N

) ∞∑
r=0

e−α2 α2r

r!
exp

(
2lrπi

N

)
. (A2)

This can further be rearranged as follows:

λj = e−α2
N−1∑
l=0

∞∑
r=0

exp (−2j lπi/N)
α2r

r!
exp (2lrπi/N)

= e−α2
∞∑

r=0

α2r

r!

N−1∑
l=0

exp (−2j lπi/N) exp(2lrπi/n)

= e−α2
∞∑

r=0

α2r

r!

N−1∑
l=0

exp[2l(r − j )πi/N], (A3)

where to get to step (A3) we used the fact that the infinite sum
is absolutely convergent, thereby allowing the commuting of
sums.

By the properties of sums of roots of unity, the expression∑N−1
l=0 exp[2l(r − j )πi/n] is equal to n if r − j is divisible by

N and zero otherwise. Hence, we obtain

λj = e−α2
N

∞∑
r=0

α2(Nr+j )

(Nr + j )!
. (A4)
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The elements in the sum above appear as the summands
in the Taylor expansion of e2α . For any j this sum collects
every N th summand from the Taylor series expansion starting
from the j th summand. We note that the eigenvalues above
can be expressed in a closed form in terms of generalized
hypergeometric functions. Using the presented form of the
eigenvalues λj we can show that for amplitudes below unity,
the order of eigenvalues is monotonously decreasing.

Lemma 2. Let A be the symmetric set of N coherent states as
defined in expression (3). Let λA be the vector of eigenvalues
of the Gram matrix GA generated by taking the discrete Fourier
transform of the first row of GA. If λj is the j th component of
λA, then for the real amplitude α � 1 the eigenvalues in 	 are
decreasingly ordered:

λj � λj+1.

Proof. We will show that λj − λj+1 � 0. By using expres-
sion (A4) derived above, we obtain

λj − λj+1

= e−α2
N

∞∑
r=0

α2(Nr+j )

(Nr + j )!
− e−α2

N

∞∑
r=0

α2(Nr+j+1)

(Nr + j + 1)!

= e−α2
Nα2j

∞∑
r=0

α2Nr

(Nr + j )!

(
1 − α2 1

Nr + j + 1

)
,

(A5)

where the last step is possible due to absolute convergence
of the sums above. Note that the expression above is positive
if (1 − α2 1

Nr+j+1 ) is positive. It holds that Nr + j + 1 � 1,
so for α � 1 the expression above is positive and we have
our claim. Note also that in the case where α is strictly less
than unity and positive, λj is strictly greater than λj+i . So, for
amplitudes below 1, the probability of success of unambiguous
discrimination of symmetric sets of coherent states is given by
the last eigenvalue in the vector λA. This eigenvalue is given by

λmin = e−α2
N

∞∑
r=0

α2(N(r+1)−1)

[N (r + 1) − 1]!
. (A6)

In the case where Property 2 holds, from the equation above
we can give the explicit optimal success probability of
amplification of a set of symmetric coherent states. This is
simply the quotient of the respective values of λmin for the
two amplitudes in the low-amplitude regime.

In the remainder of the Appendix we prove Property 2 from
the main body of text. Let λj (α) be the j th eigenvalue of the
Gram matrix of the symmetric set of N coherent states of (real)
amplitude α. Property 2 states that

λj (α)

λj (β)
� λN−1(α)

λN−1(β)
(A7)

for all j = 0, . . . ,N − 1 and 0 < α < β < 1. Since all the
eigenvalues are positive and nonzero, the inequality above can
be rewritten as

λj (α)

λN−1(α)
� λj (β)

λN−1(β)
, (A8)

which holds if and only if λj (x)/λN−1(x) is a decreas-
ing function on (0,1). Note that the functions λj (x) are

non-negative for all j on the interval of interest. If it is the case
that λj (x)/λj+1(x) is a decreasing function on the interval (0,1)
for all j = 0, . . . ,N − 2, then the function λj (x)/λN−1(x) is
decreasing as well, which would imply Property 2. To see this,
note that the equality

λj (x)

λj+1(x)

λj+1(x)

λj+2(x)
· · · λN−2(x)

λN−1(x)
= λj (x)

λN−1(x)
(A9)

holds for every j , and since the left-hand side of the expression
above is a product of positive decreasing functions, the right-
hand side must also be a decreasing function. Hence, it will
suffice to show that λj (x)/λj+1(x) is a decreasing function on
the interval of interest, which we state as the following lemma.

Lemma 3. The quotient of eigenvalues

λj (x)

λj+1(x)
(A10)

is a decreasing function on (0,1) for all j = 0, . . . ,N − 2.
Proof. By recalling the analytic expression for the eigen-

values, given in Eq. (A4), we have

λj (x)

λj+1(x)
=

e−x2
N

∑∞
r=0

x2(Nr+j )

(Nr+j )!

e−x2
N

∑∞
r=0

x2(Nr+j+1)

(Nr+j+1)!

=
∑∞

r=0
x2(Nr+j )

(Nr+j )!∑∞
r=0

x2(Nr+j+1)

(Nr+j+1)!

. (A11)

Let us introduce the notation

lj (x) =
∞∑

r=0

x2(Nr+j )

(Nr + j )!
.

To prove Lemma 3 we then need to show that lj (x)/lj+1(x)
is a decreasing function on (0,1) for all j = 0, . . . ,N − 2.
Note that the functions lj (x) are positive, strictly increasing,
and infinitely differentiable functions. Also, using the same
technique we applied to prove the analogous property for
the eigenvalues themselves, it holds that lj (x) � lj+1(x) for
all j = 0, . . . ,N − 2, and for x ∈ (0,1) . Then, the quotient
lj (x)/lj+1(x) is decreasing in x if and only if the derivative of
the quotient over x is nonpositive on the interval of interest:

l′j (x)lj+1(x) − lj (x)l′j+1(x)

[lj+1(x)]2
� 0.

Since the denominator of the fraction above is always positive,
this inequality holds if and only if the inequality

l′j (x)lj+1(x) − lj (x)l′j+1(x) � 0

holds.
It is easy to verify the following property of the derivatives

of the functions lj (x):

l′j (x) = d

dx
lj (x) = 2xlj−1 mod N (x). (A12)

Hence, we have

l′j (x)lj+1(x) − lj (x)l′j+1(x)

= 2x[lj−1 mod N (x)lj+1(x) − lj (x)lj (x)], (A13)

which is nonpositive on the interval of interest if and only if

lj−1 mod N (x)lj+1(x) − lj (x)lj (x) � 0. (A14)
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Note that if j = 0 the expression above resolves to

lN−1(x)l1(x) − l0(x)l0(x) � 0. (A15)

Since lN−1(x) � l0(x) and l1(x) � l0(x) on the interval (0,1),
and since all the values these functions attain are positive, we
have that for j = 0 the condition given in expression (A14)
holds. By using the definitions of the functions lj (x), for j =
1, . . . ,N − 2, we obtain

lj−1(x)lj+1(x) − lj (x)lj (x)

=
∞∑

r=0

x2(Nr+j−1)

(Nr + j − 1)!

∞∑
r=0

x2(Nr+j+1)

(Nr + j + 1)!

−
∞∑

r=0

x2(Nr+j )

(Nr + j )!

∞∑
r=0

x2(Nr+j )

(Nr + j )!
(A16)

= x4j

∞∑
r=0

(x2N )r
1

(Nr + j − 1)!

∞∑
r=0

(x2N )r
1

(Nr + j + 1)!

−x4j

∞∑
r=0

(x2N )r
1

(Nr + j )!

∞∑
r=0

(x2N )r
1

(Nr + j )!
.

(A17)

The sign of the expression above is then equal to the sign of
the expression

∞∑
r=0

(x2N )r
1

(Nr + j − 1)!

∞∑
r=0

(x2N )r
1

(Nr + j + 1)!

−
∞∑

r=0

(x2N )r
1

(Nr + j )!

∞∑
r=0

(x2N )r
1

(Nr + j )!
. (A18)

Note that to prove that lj−1(x)lj+1(x) − lj (x)lj (x) � 0
for j > 0 (and consequently Property 2), it suffices that
the expression (A18) is negative for all x ∈ (0,1) , and for
j = 1, . . . N − 2. Also, since any positive power is a bijection
on the interval x ∈ (0,1), and we require negativity on the
entire interval, expression (A18) is negative if and only if the
expression

∞∑
r=0

(xN )r
1

(Nr + j − 1)!

∞∑
r=0

(xN )r
1

(Nr + j + 1)!

−
∞∑

r=0

(xN )r
1

(Nr + j )!

∞∑
r=0

(xN )r
1

(Nr + j )!
(A19)

is negative on the same interval.

Consider now the family of functions

fj (x) =
∞∑

r=0

x(Nr+j )

(Nr + j )!
.

Using the same construction as for the functions lj (x), it is
easy to see that fj (x)/fj+1(x) is a decreasing function on
(0,1) for j = 1, . . . ,N − 2 if and only if the expression (A19)
is negative on the same interval. For these functions fj it is
also easy to see that they are positive, strictly increasing, and
infinitely differentiable and that fj (x) � fj+1(x) holds on the
interval of interest for j = 0, . . . ,N − 2. It also holds that

d

dx
fj (x) = fj−1 mod N (x). (A20)

Recall the property of log-concavity: A function is log-
concave (on an interval) if the logarithm of that function is
concave on the same interval. For functions which are twice
differentiable, log-concavity holds if and only if the quotient
of the derivative of the function and the function itself is
decreasing (on the same interval). Hence, the requirement that
fj (x)/fj+1(x) is decreasing on the interval of interest is equiv-
alent to the requirement that fj+1(x) is a log-concave function.

Here we invoke the following result given in Lemma 1
of the manuscript [37], also a consequence of the Lemma
3 in the Appendix of Ref. [38] (a published version of the
aforementioned manuscript).

Lemma 4. Let g(x) be a strictly monotonic, twice differ-
entiable function on the interval (a,b). Let also g(a) = 0 or
g(b) = 0. Then if the derivative g′(x) is log-concave on the
same interval, g(x) is log-concave on the interval.

Since for all j > 0 the function fj (0) is zero, and all the
functions fj are strictly increasing, it holds that fj+1(x) is
log-concave if fj (x) is log-concave. Inductively, if f1(x) is
log-concave, so is fj (x) for all j = 2, . . . ,N − 1. To finish
the proof of Lemma 3 and thus of Property 2, we finally
need to show that f1(x) is log-concave on (0,1). Recall that
f1(x) is log-concave on the interval of interest if the quotient
f0(x)/f1(x) is decreasing on the interval. This holds if the
inequality

f ′
0(x)f1(x) − f ′

1(x)f0(x) = fN−1(x)f1(x) − f0(x)f0(x) � 0

holds. However, since we have that fj (x) � fj+1(x) holds
on the interval of interest for j = 0, . . . N − 2 and since all
the functions above attain positive values, this inequality is
satisfied. Hence, Lemma 3 and Property 2 are proven.

We note that the functions lj (x) and fj (x) are subseries of
the Taylor expansion of the functions ex2

and ex about the point
x = 0, respectively, and as such are absolutely convergent,
which allows the unrestricted reshuffling of sums.
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