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Abstract

We analyze a pooled annuity fund from a participant’s perspective by

comparing it to a mortality-linked fund, a type of variable payout life an-

nuity, that gives a return linked to the force of mortality but subject to a

cost. Fixing the instantaneous volatility of return on wealth, we find that

the expected return on the pooled annuity fund is higher except when

the costs are very low in the mortality-linked fund. Similar results are

obtained when maximizing the expected lifetime utility of consumption,

assuming a constant relative risk aversion utility function. In both set-

tings, our results indicate that a participant may be willing to accept the

mortality risk of the pooled annuity fund, even when only 100 individuals

are pooling their mortality in the pooled annuity fund.
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1 Introduction

In a conventional life annuity, the annuitant pays the life insurance company a
lump sum and in return receives regular payments until the time of death. The
amount of the regular payments offered in exchange for the lump sum depends on
expectations of future interest rates and mortality at the time that the annuity
is sold. The insurance company is fully exposed to longevity risk, that is the risk
of the annuitant living longer than anticipated. In some annuity contracts, such
as variable annuities with a baseline guarantee, the annuitant can have limited
control of the underlying investments. However, total investment freedom is not
possible since the insurer has guaranteed a payment until death and thus the
insurer must be able to choose an investment strategy in order to meet that
guarantee.

We study a pooled annuity fund that does not transfer longevity risk to the
insurer. This is very attractive because regulatory costs are not incurred for
longevity risk, as it is not borne by the insurer. In principle, the pooled annuity
fund allows the participants to have investment freedom; however, we assume
that all participants follow the same investment strategy.

The pooled annuity fund has a very different structure to that of a con-
ventional annuity. Participants in the fund agree to pool their mortality risk
together. In contrast, buyers of a conventional annuity transfer their mortal-
ity risk to an insurance company. Additionally, the participants invest their
wealth in a financial market according to their chosen investment strategy. As
participants die, their wealth is shared among the surviving participants as a
mortality credit (sometimes called a survivor credit). As an example, if there
are 50 people in a pool and one of them dies, leaving wealth $12 250, then each
of the 49 survivors receives a mortality credit of $12 250/49 = $250. Stamos
[2008] analyzes this particular pooled annuity fund.

The mortality credit is random in both magnitude and timing. Its magnitude
is random since it depends on the wealth of the dying participants, which they
had invested in the financial market. It is received at random times since the
times of deaths are unknown. As the pool size, i.e. the number of participants in
the pooled annuity fund, increases, deaths occur more often and the mortality
credit should become less volatile. In the limit, as the pool size becomes infinite,
deaths occur at a constant rate and the mortality credit is received continuously
by the survivors. Note that it will still be random in magnitude as it depends
on the magnitude of the wealth which is invested in the financial market.

Our aim is to determine how much an individual would pay to remove the
mortality risk in a pooled annuity fund, under various criteria. If the actual
amount charged by the insurer is higher, then individuals may benefit from
joining a pooled annuity fund. A related analysis is Stamos [2008], who considers
the welfare benefits of pooling mortality. He analyzes a pooled annuity fund and
assumes, as we do in the sequel, that individuals are independent copies of one
another. He calculates the gains in utility caused by participating in a pooled
annuity fund, with either a finite or an infinite number of participants, compared
to self-annuitization and a conventional annuity.

We distinguish the pooled annuity fund described above from other funds
which pool mortality risk, such as group self-annuitization products (the latter
are sometimes also called pooled annuity funds). In group self-annuitization
products, an initial group of participants pool their wealth together and in re-
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turn receive a regular annuity payment, calculated on a chosen mortality and
investment basis. Periodically, the annuity payment is adjusted for actual mor-
tality and investment experience. Thus there is some smoothing of mortality
and investment experience over time. The fundamental analysis of their the-
oretical operation is by Piggott et al. [2005], and its extension by Qiao and
Sherris [2012]. Valdez et al. [2006] consider the practical issues of demand and
adverse selection in these funds. Another variation on the operation of a group
self-annuitization product is by Richter and Weber [2011], who propose an ad-
justment to the insurer’s reserves to allow for actual experience, and the annuity
payment is re-calculated based on the adjusted reserves. While these products
are very interesting and worthy of further study, we want to be able to distin-
guish easily between financial risk and mortality risk. Thus even if we will keep
the spirit of these products, we will propose slight variations that will enable a
different perspective on longevity risk.

The natural point of comparison with the pooled annuity fund is a fund
in which individuals are exposed only to investment risk. We propose such a
fund, which we call a mortality-linked fund1. (A detailed description of the two
funds is given in Section 3.) Members of the mortality-linked fund transfer their
mortality risk to the seller of the fund. The seller pays a deterministic interest
rate on each member’s wealth, which is proportional to the latter’s force of
mortality. We call the interest rate the mortality-linked interest rate. In return
for accepting the mortality risk, the seller charges suitable costs to the members.

The costs are pivotal to our analyses as they are used as a link between the
two funds. They can be seen as how much an individual must pay to enjoy the
full transfer of the mortality risk. We determine how high the costs have to be
before an individual would favor the pooled annuity fund, in which they receive a
random, but free of costs, mortality credit, to the mortality-linked fund, in which
the deterministic mortality-linked interest rate is paid. The costs are driven by
the mortality risk, itself a function of the pool size and force of mortality of
the participants in the pooled annuity fund. The determination of the costs
is done over two distinct time horizons, in which we allow for the investment
and mortality risk in different ways. We make the simplifying assumption that
participants in the fund are identical, independent copies of each other: they
have the same mortality, wealth and risk preferences.

In the first analysis, we look at the impact of financial and mortality risk
through a single lens: their combined effect on the surviving participants’ in-
stantaneous return on wealth. Risk is measured as the volatility of the instan-
taneous return on wealth, which allows us to view financial risk and mortality
risk as interchangeable. For example, a member of the mortality-linked fund,
who is not exposed to any mortality risk, can achieve the same amount of risk
as someone in a pooled annuity fund, who may be heavily exposed to mortality
risk. This is done by increasing the former’s investment in a risky financial as-
set, so that they have the same volatility of the instantaneous return on wealth.
We find that, even at a pool size of around 100 participants, the costs charged
by the seller of the mortality-linked fund must be very low to be attractive to
individuals; see Section 4.

In the second analysis in Section 5, we look at the effect of the two funds on an

1Stamos [2008] says that such products can be thought of as ideal variable payout life
annuities. Vittas [2011] refers more specifically to them as standard unit-linked annuities.
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individual’s utility of lifetime consumption. We assume that individuals follow
the consumption and investment strategies that maximize their expected utility
of lifetime consumption, assuming a constant relative risk aversion (CRRA)
utility function. Then we find the costs at which the expected utilities are the
same in both funds. Our results indicate that, even with this radically different
time horizon and approach, the costs are similar to those calculated in the first
analysis.

We assume throughout that individuals have no bequest motive2. In both
of the proposed funds, individuals lose their invested wealth upon death. Thus
any wealth set aside to satisfy a bequest motive must be an ex ante decision;
we assume that any such decision has already been made.

In summary, in this paper we compare a pooled annuity fund, in which
participants pool their mortality, to another type of fund, which we call a
mortality-linked fund, in which members transfer their mortality risk to the
seller in exchange for paying some costs. We find that the participants in the
pooled annuity fund can achieve

• a higher expected instantaneous return on wealth, for the same volatility
of the instantaneous return on wealth, and

• a higher expected utility of lifetime consumption,

compared to members of the mortality-linked fund. Our findings that a pool
sizes of 100 or more have the potential to give large benefits to the participants
are consistent with the results of Stamos [2008].

2 Background

The need for prudent assumptions and allowances for costs result in the premium
charged for a conventional annuity being higher than its expected value calcu-
lated on a “fair” net pricing basis, i.e. a basis which reflects current expectations
of future interest rates and mortality, and ignores expenses and profit. This is
not at all surprising: given the long-term, guaranteed nature of the annuity
product with the consequent uncertainty about predicting far into the future,
the insurer will choose a cautious pricing basis. For example, the insurance
company may use a lower than expected discount rate to calculate the premium
charged to the policyholder, and assume a more prudent mortality basis than
that which is anticipated. Moreover, there are the transaction costs of buying
assets, and risk management costs such as reserves, reinsurance premiums and
hedging costs. Regulatory and administration costs must be included. And all
this without even mentioning the insurance company’s profit.

However, the question has been asked if annuities really do offer value for
money to the policyholder. Part of the motivation for asking this question is
the annuity puzzle observed in particular in the United States, the phenomenon
where fewer individuals buy annuities than predicted by economic theory. Can-
non and Tonks [2009] and Valdez et al. [2006] summarize the reasons for the

2Lockwood [2012] analyzes the impact of the bequest motive on the demand for both
actuarially fair and actuarially unfair annuities. He finds that the bequest motive can have a
large impact on the demand for the latter, even if it has little effect on the demand for the
former.
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annuity puzzle that have been proposed in the literature. One possible reason
is a high level of expenses and profits included in the annuity premiums.

Unfortunately, the information required to determine if the annuity offers
value for money is not available from companies, due to commercial sensitivity
and the difficulty in disentangling life annuity costs from the costs in the general
business mix of a life insurer. Nevertheless, several authors have attempted to
measure the cost of life annuities. Typically, they do this by calculating the
excess of the annuity premium charged to the individual over the expected
value calculated on a fair net pricing basis. Then the excess amount is divided
by the expected value calculated on the fair net pricing basis. The result is
called the load factor and is a measure of the amount of expenses, profit and
cost of the guarantee made to the annuitant. Clearly, the load factor is sensitive
to the choice of the fair net pricing basis. In the UK, Cannon and Tonks [2009]
report an average load factor of 10% from 1994 to 2007, with an increase to
12− 14% in 2007, even after taking into account increases in life expectancies.
In an earlier attempt looking at the US market in 1995, Mitchell et al. [1999]
suggest a load factor in the range 10− 15%.

For life insurance companies subject to Solvency II Directive, it is possible
that load factors will increase. It is expected that the Solvency II Directive
will result in insurers holding higher capital in reserve and facing additional
administration requirements. They may also have to hold more government
bonds and fewer corporate bonds, with a corresponding reduction in the discount
rate used to value annuities. The business advisory firm Deloitte suggests that
U.K. annuity rates may fall between 5% and 20%; see Deloitte [2012].

Unanticipated increases in lifespans may also increase load factors, since it
suggests uncertainty about the correct choice of mortality model. In van de Ven
and Weale [2009] it is suggested that, in the U.K. pensions buyout market, the
capital charge levied by insurance companies due to uncertainty about future
mortality rates is higher than the charge that even a highly risk averse individual
would accept (in which “highly risk averse” means having a coefficient of relative
risk aversion of 20).

Whether or not we believe that annuities offer value for money, the existence
of the annuity puzzle suggests a problem with the attractiveness of conventional
annuities. This is likely to be compounded further by the continuing uncertainty
about the correct choice of mortality model (i.e. longevity risk) and, for insurers
who are subject to the Solvency II Directive, increased regulatory costs. For
these reasons, it is imperative to suggest and analyze alternative products that
have the potential to meet at least some of the needs of retirees and which may
turn out to be attractive to them.

3 Description of the funds

Here we describe the two funds and look at some practical issues surrounding
them. The funds are

• a pooled annuity fund, in which participants pool their mortality risk, and

• a mortality-linked fund, subject to costs. Similar to a conventional annu-
ity, members of the mortality-linked fund transfer their mortality risk to
the seller of the fund and, in exchange, pay the costs.
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We make the assumption that individuals are independent copies of one another:
they are the same age, and have the same deterministic force of mortality and
risk preferences at all times. At time 0, they all have the same constant wealth
w0 > 0.

Once an individual has joined one of the funds, they are not permitted to exit
it for reasons other than death. We further assume that there is a fixed number
L0 of participants at time 0 in the pooled annuity fund. No new participants
can join after time zero, i.e. the pooled annuity fund is a closed fund. The
assumption could be relaxed, so that the pooled annuity fund is an open fund
and new entrants are permitted after time zero. However, we have kept the
closed fund assumption to avoid unnecessarily complicating our analysis.

The number of deaths which have occurred in the pooled annuity fund is
modeled by a counting process N . The number of individuals alive at time t is
denoted by

Lt = L0 −Nt.

We let Nt be a Poisson process at rate λt(Lt− − 1), in which λt is the deter-
ministic force of mortality at time t of an individual. As we model the wealth
of the surviving individuals, the rate of Nt is the force of mortality multiplied
by Lt− − 1. In other words, we exclude the individual whose wealth we are
modeling and who is alive at time t from the potential deaths over the short
time interval (t−, t).

In both the pooled annuity fund and the mortality-linked fund, the wealth
of each individual is invested in a frictionless financial market which consists of
two traded assets: a risky asset and a risk-free asset. The risk-free asset has
price Bt at time t with dynamics

dBt = rBtdt, B0 > 0 constant,

with constant risk-free rate of return r. The price process S of the risky asset
is driven by a 1-dimensional standard Brownian motion Z, so that at time t it
has dynamics

dSt = St (µdt+ σdZt) , S0 > 0 constant,

with constant µ > r and constant σ > 0.
The Brownian motion Z and the Poisson process N are defined on the

same complete probability space (Ω,F ,P) and are independent processes. With
N (P) := {A ∈ F : P(A) = 0}, the information available to individuals at time t
is represented by the filtration

Ft = σ{(Ns,Zs), s ∈ [0, t]} ∨ N (P), ∀t ≥ 0.

In other words, at each time t, it is known how many individuals have died in
the pooled annuity fund and the price of the risky asset at all times up to and
including time t.

3.1 Pooled annuity fund

In the pooled annuity fund, the wealth of the dead participants is shared equally
among the survivors as a mortality credit. If a participant dies in the time
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interval (t−, t), leaving wealth Wt−, then each survivor receives at time t an
additional amount of wealth

1

Lt− − 1
Wt−.

All participants have identical consumption and investment strategies. Then,
as long as Lt− > 1, the wealth W of a survivor evolves as

dWt

Wt−
= (r + πt(µ− r)− ct) dt+ σπtdZt +

1

Lt− − 1
dNt, (3.1)

in which ct is the rate of consumption by the individual and πt is the proportion
of wealth invested in the risky asset at time t. The remaining proportion of
wealth 1 − πt is invested in the risk-free asset. Note that, upon denoting the
random time of death of an arbitrary participant by τ , the change in wealth at
the time of death is dWτ = −Wτ−, with the “lost” wealth Wτ− shared among
the surviving participants.

When there is only one survivor left in the pool, i.e. Lt− = 1, the wealth
dynamics are

dWt

Wt−
= (r + πt(µ− r) − ct) dt+ σπtdZt, (3.2)

so that changes in the wealth are due solely to investment in the financial market.
When the last survivor dies, their wealth is transferred to their estate.

The principal advantage of the pooled annuity fund is that the cost to the
participants should be significantly lower than a conventional annuity. There
are no capital reserving requirements, no need for reinsurance and no hedging
costs because there are no guarantees. In particular, it is the participants who
bear the longevity risk.

Despite the lower costs, there will still some expenses incurred. The fund
must be set-up, advertised and potential participants educated as to the risks
involved. Investment management fees must be paid. Deaths of participants
must be notified to and verified by an administrative body, and the wealth re-
leased upon death must be allocated among the survivors. Our analysis ignores
these expenses.

Another advantage of the pooled annuity fund is that, up to the time of
their own death, participants always gain from pooling mortality while retaining
investment freedom. They can consume as much as they want of their wealth.
The main disadvantage compared to a conventional life annuity is that the
pooled fund does not guarantee a minimum lifetime payment.

We assume that all pool participants are indistinguishable from each other.
Then distributing the wealth of the dead participants equally among the sur-
vivors is fair, as all participants have the same wealth and the same probability
of dying. In practice, we can only approximate such an ideal pool of partici-
pants; for example, by grouping participants into suitable age bands. To have
similar amounts of wealth in the fund, participants’ wealth could be pooled and
managed by a single investment manager so that their investment returns were
the same. The manager would market the pooled annuity fund as one following
a particular investment strategy. Individuals would choose to join the pooled
annuity fund that best met their required investment objectives. There would
likely be annual limits on how much can be consumed.
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While these are not strict requirements for the operation of the pooled an-
nuity fund in a realistic setting, the pooled annuity fund structure described
above is not appropriate for participants with diverse characteristics. For ex-
ample, a pool consisting only of 20-year-olds and 90-year-olds is likely to benefit
the young much more than the old, assuming that the wealth of the dead par-
ticipants is divided equally among all participants. The same holds true for
participants with different risk preferences3. With the described pooled annuity
fund structure, the only attempt that we know of to account for inhomogeneous
participants is Sabin [2010]. Even then, his sharing rule has strong constraints
on the inhomogeneity of the participants.

3.2 Mortality-linked fund

The second fund that we consider is a mortality-linked fund. The mortality-
linked fund is related in a natural way to the pooled annuity fund, as we demon-
strate in Subsection 3.3. Just as in the pooled annuity fund, members of the
mortality-linked fund invest in the financial market, cannot exit the fund before
their death and lose all their wealth upon death. However, there is no direct
exposure to the pooling of mortality.

Instead, the wealth of each fund member increases at a mortality-linked
interest rate that is proportional to their force of mortality. The force of mor-
tality is deterministic and it could be calculated from a life table produced by
an independent body, like a national statistical office. We make the simplifying
assumption that the force of mortality is the same as the one used to model the
pooled annuity fund; the implications of this assumption is discussed below.

The mortality-linked interest rate is in addition to the return due to invest-
ment in the financial market4. The underlying idea is that the seller, for example
a life insurance company, has sold the mortality-linked fund to many people.
The mortality-linked fund allows its members to invest in the financial market
and also benefit from indirectly pooling mortality via the seller. However, unlike
the pooled annuity fund participants, the members are not exposed directly to
the volatility of the actual number of deaths occurring. Instead, the members
receive the deterministic mortality-linked interest rate on their wealth. It is the
seller who bears the mortality volatility and, accordingly, must be compensated.

Specifically, the mortality-linked interest rate is equal to λt(1 − at), where
λt is the member’s force of mortality and at are the costs applying at time t.
The costs are compensation to the seller for bearing the mortality volatility. It
makes sense to express the costs as a percentage of the force of mortality since
the volatility from deaths are proportional to λt.

Upon joining the mortality-linked fund, the wealth W g of a surviving mem-
ber evolves as

dW g
t

W g
t−

= (r + πg
t (µ− r)− cgt + λt(1− at)) dt+ σπg

t dZt, (3.3)

3It would be interesting to analyze a pooled annuity fund which allows true consumption
and investment freedom, and the implications for the optimal consumption and investment
strategies of the participants, for participants who differed only in their risk preferences. The
analysis could allow for opportunistic behavior by some of the participants.

4When all of the wealth is invested in an asset which gives a deterministic return, the
mortality-linked fund is similar to the actuarial note product of Yaari [1965].
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in which cgt is the rate of consumption by the individual and πg
t is the proportion

of wealth invested in the risky asset at time t. The remaining proportion of
wealth 1− πg

t is invested in the risk-free asset. As in the pooled annuity fund,
all participants are assumed to follow the same consumption and investment
strategies, so that cgt and πg

t are identical for the surviving members at all times
t.

There is only one source of volatility for a mortality-linked fund member:
that from the financial market. In comparison, each participant in the pooled
annuity fund experiences an additional source of uncertainty from the timing
and number of deaths occurring in the pool.

Unlike the pooled annuity fund, there is a systematic mortality risk inherent
in the mortality-linked fund. It is ultimately borne by the seller. To calculate
the mortality-linked interest rate, the seller chooses a force of mortality that is
intended to reflect the future mortality experience of the members. An incorrect
choice of the force of mortality means that the seller is either charging too much
or too little for the mortality risk. The risk could be mitigated by occasionally
allowing the insurer the opportunity to update the force of mortality to reflect
the emerging mortality experience, or by increasing the costs charged to the
members. Having chosen a force of mortality, there is also a risk of adverse
selection against the seller. It may be reduced in similar ways. We do not
analyze the impact of systematic risk or adverse selection in this paper.

The seller decides the level of costs at. They may be increased above their
fair value by the seller’s requirement to satisfy regulations. It may also be
the case that some sellers, for example large insurance companies, may be able
to pool the mortality risk from the mortality-linked fund with other products
they sell. Thus the costs charged may differ between sellers, even if they have
identical beliefs about future mortality rates.

Excluding the costs at, the expenses of operating the mortality-linked fund
should be higher than for the pooled annuity fund. The seller of the mortality-
linked fund has guaranteed the mortality-linked interest rate, which implies a
capital reserving requirement. Correspondingly, there may also be reinsurance
and hedging costs. Other expenses should be the same as for the pooled annuity
fund: for example, setting up the fund, managing the assets and monitoring
deaths should incur a comparable amount of expenditure.

In practice, the seller of the mortality-linked fund would decide the invest-
ment strategy, as they have guaranteed to pay the mortality-linked interest rate
on each member’s wealth. Correspondingly, they would also place strict limits
on the amount of wealth that could be consumed by the members. Unlike the
pooled annuity fund, these restrictions are very likely to be required for the op-
eration of the mortality-linked fund. However, in our analysis we assume simply
that the members have no such constraints. We take the viewpoint that indi-
viduals can choose the mortality-linked fund that best meets their consumption
and investment objectives.

3.3 Relationship between the two funds

Finally, we explore the important relationship between the pooled annuity fund
and the mortality-linked fund. Consider a pooled annuity fund with an infinite
number of participants: deaths occur at a constant rate equal to the force of
mortality, without any variability. Under the assumption that there is no sys-
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tematic mortality risk, in the infinite pooled annuity fund there is no idiosyn-
cratic mortality risk, i.e. the mortality risk is fully diversified. Consequently,
the dynamics of a survivor’s wealth process W∞ are obtained from (3.1) with
1/(Lt− − 1)dNt replaced by λtdt, resulting in5

dW∞

t

W∞

t−

= (r + πt(µ− r)− ct + λt) dt+ σπtdZt.

Compare the above dynamics with the wealth dynamics (3.3) for the mortality-
linked fund. The only difference lies in the costs at charged by the seller, which
act to reduce the expected return on wealth for members of the mortality-linked
fund. Clearly, given the choice between the infinite pooled annuity fund and
the mortality-linked fund with costs at > 0, a rational individual would choose
the infinite pooled annuity fund.

In real life we cannot construct an infinite pooled annuity fund as there are
only a finite number of people alive in the world. Even assuming that systematic
risk does not exist, this means that mortality risk can not be completely elimi-
nated. From this viewpoint, the costs at can be interpreted as the price that an
individual must pay to access the equivalent of an infinite pooled annuity fund.
The costs will depend on the alternative offered to the mortality-linked fund,
namely the exact specifications of the pooled annuity fund. In our simple set-
ting, the pooled annuity fund is specified by the number of participants (i.e. the
pool size) and their characteristics: their force of mortality, consumption and
investment strategies. For this reason, we set the costs of the mortality-linked
fund to be a function of these variables of the pooled annuity fund.

4 Instantaneous approach

In this section we only care about the short-term dynamics, so we do not consider
consumption and concentrate only on the instantaneous view.

We calculate the level of costs such that, for equal volatilities of return on the
wealth, an individual has the same expected return on wealth from the pooled
annuity fund as from the mortality-linked fund. We call the level of costs at
which this occurs the instantaneous breakeven costs. If the actual costs charged
by the mortality-linked fund are higher than the instantaneous breakeven costs,
then the individual can obtain a higher expected return from the pooled annuity
fund for the same amount of volatility of return. We find that the breakeven
costs are approximately inversely proportional to the pooled annuity fund size.

We begin by calculating the expected value and volatility of the instan-
taneous return on wealth for a surviving individual in both funds. Then we
determine the instantaneous breakeven costs, illustrated with some numerical
results.

4.1 Pooled annuity fund

With zero consumption, the wealth dynamics (3.1) become

dWt

Wt−
= (r + πt(µ− r)) dt+ σπtdZt +

1

Lt− − 1
dNt. (4.1)

5A more detailed explanation of the derivation of the wealth dynamics for an infinite pool
can be found in Stamos [2008].
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As Nt is a Poisson process at rate λt(Lt− − 1), the instantaneous expected
return is calculated from (4.1) as

E

(

dWt

Wt−

∣

∣

∣

∣

Ft−

)

= (r + πt(µ− r) + λt) dt. (4.2)

Thus the instantaneous expected return from pooling mortality in the pooled
annuity fund equals the force of mortality λt and is independent of the pool size
Lt−. This also means that the expected return on wealth due to deaths increases
as participants age, rather than being constant. The reason is that the force of
mortality increases as the participants age, meaning that deaths occur more fre-
quently in the fund. This may result in increasingly high levels of wealth as the
participants age, although these may offset higher long-term care and healthcare
costs incurred at higher ages. The remaining part of the instantaneous expected
return is derived from investment in the financial market.

As deaths occur randomly in the pooled annuity fund, the variability of
their occurrence feeds into the volatility on the return on wealth. Intuitively,
the predictable volatility process v of the return on wealth should equal the
conditional variance, i.e.

v2t dt = Var

(

dWt

Wt−

∣

∣

∣

∣

Ft−

)

.

Mathematically, we define v through

v2t dt =
d〈W,W 〉t

(Wt−)
2 , (4.3)

in which 〈·, ·〉t denotes the usual predictable bracket process (for example, see
[Protter, 2005, page 125]). From (4.3) it is straightforward to show that, for
Lt− > 1, the instantaneous volatility of wealth satisfies

v2t dt =

(

(σπt)
2
+

λt

Lt− − 1

)

dt. (4.4)

Now we can easily see the two sources of volatility of the return on wealth: one
from the financial market, (σπt)

2
, and the other arising from deaths occurring

in the pool, λt/(Lt− − 1). Thus, the greater the number of participants in
the pooled annuity fund, the lower the volatility of the return on wealth. For
an infinite pooled annuity fund, mortality risk is fully diversified and there is
volatility only from the financial market.

4.2 Mortality-linked fund

With zero consumption, the wealth dynamics (3.3) become

dW g
t

W g
t−

= (r + πg
t (µ− r) + λt(1− at)) dt+ σπg

t dZt. (4.5)

The instantaneous expected return on wealth for a survivor in the mortality-
linked fund is calculated from (4.5) as

E

(

dW g
t

W g
t−

∣

∣

∣

∣

Ft−

)

= (r + πg
t (µ− r) + λt(1 − at)) dt. (4.6)
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Defining the instantaneous volatility process vg similarly to (4.3), we find

(vgt )
2
dt = (σπg

t )
2
dt. (4.7)

As the mortality credit λt(1−at) is deterministic, the only source of volatility of
return on wealth comes from the financial market. This means that for identical
proportions of wealth invested in the risky asset, i.e. πg

t = πt, the volatility in
the pooled annuity fund vt is higher than that of the mortality-linked fund vgt ;
compare (4.4) and (4.7). However, the expected return on wealth in the pooled
annuity fund is higher by the amount λtat; compare (4.2) and (4.6).

4.3 Instantaneous breakeven costs

In practice, the costs applied in the mortality-linked fund would be determined
by the seller. However, we allow them to vary with the number of participants
in the pooled annuity fund. This is how we link the two funds in our analysis.
It allows us to calculate the amount that an individual would pay to remove the
mortality risk of a pooled annuity fund of a given pool size.

Definition 4.1. The instantaneous breakeven costs applying at time t are the
costs such that, for equal instantaneous volatilities of return on the wealth, a
surviving individual has the same instantaneous expected return on wealth from
the pooled annuity fund as from the mortality-linked fund at time t.

If the actual costs charged by the mortality-linked fund are higher than the
instantaneous breakeven costs, then the individual can obtain a higher expected
return from the pooled annuity fund for the same amount of volatility of return
on wealth.

We expect the instantaneous breakeven costs to depend on the number of
participants in the pooled annuity fund, the proportion invested in the risky
asset and the force of mortality, as these three factors drive the expected return
and volatility of the return on wealth. The exact relationship is made clear by
the next proposition.

Proposition 4.2 (Instantaneous breakeven costs). Suppose that a pooled annu-
ity fund participant invests the proportion πt of their wealth in the risky asset,
with the volatility of the return on wealth denoted by vt.

Let the proportion of wealth πg
t invested in the risky asset by a member of

the mortality-linked fund be such that the volatilities of the return on wealth are
equal, i.e. vt = vgt .

Then πg
t = πg(Lt−, πt, λt) with

πg(ℓ, π, λ) =

{

π for ℓ = 1
(

π2 + 1
σ2

λ
ℓ−1

)1/2

for ℓ = 2, 3, . . .
(4.8)

and the instantaneous breakeven costs are a⋆t = a⋆(Lt−, πt, λt) for

a⋆(ℓ, π, λ) =







1 for ℓ = 1

(µ−r)π
λ

[

(

1 + 1
(πσ)2

λ
ℓ−1

)1/2

− 1

]

for ℓ = 2, 3, . . .,
(4.9)

for all π ≥ 0 and λ > 0.
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Proof. See Appendix A.1.

Notice that as the pool size ℓ tends to infinity, the breakeven costs tend to
zero, i.e. limℓ→∞ a⋆(ℓ, π, λ) = 0. As the pool size becomes larger, the volatility
due to deaths declines and the finite pooled annuity fund becomes closer to
the infinite pooled annuity fund discussed in Subsection 3.2. Correspondingly,
the seller of the mortality-linked fund has to charge less in order to attract
individuals to join the mortality-linked fund.

Next we develop a first-order approximation to the breakeven costs (4.9), to
help us understand the main factors affecting the costs for finite pool sizes.

Proposition 4.3 (First-order approximation). If ℓ− 1 > λ
(

1
πσ

)2
then

a⋆(ℓ, π, λ) ≈
1

2

(µ− r)

σ2

1

π

1

ℓ− 1
.

Proof. Apply a Taylor series expansion to (4.9) and ignore terms of order higher
than one.

Since the volatility of the return on wealth due to deaths in the pool is
inversely proportional to the size of the pool, it is not surprising that the first-
order approximation suggests that the breakeven costs are too. We can also
explain why the breakeven costs should be roughly inversely proportional to the
proportion invested in the risky asset. The more risk-averse an investor, the less
that is invested in the risky asset and the higher the breakeven costs. Thus the
costs must be relatively high in the mortality-linked fund before a risk-averse
investor chooses the pooled annuity fund.

4.4 Numerical illustration

In the numerical illustrations, we calculate the instantaneous breakeven costs
under various scenarios. The results indicate that individuals will not pay much
to transfer their mortality risk to the seller of the mortality-linked fund, com-
pared to the alternative of the pooled annuity fund.

We make the following financial assumptions: r = 0.02, µ = 0.06 and σ =
0.18. We consider different pool sizes, from ℓ = 10 to ℓ = 10 000, different
investment strategies, from π = 10% to π = 75%, and various forces of mortality,
from λ = 0.005, to λ = 0.04.

Table 1 shows πg(ℓ, π, λ)−π, i.e. the excess proportion of wealth invested in
the risky asset for the mortality-linked fund over a pooled annuity fund with pool
size ℓ and participants with force of mortality λ and investing the proportion π
of their wealth in the risky asset, required to obtain the same volatility of return
on wealth. The values are overall rather low, which indicates that the volatility
in the pooled annuity fund due to mortality risk is quite low. For example,
compared to a pooled annuity fund with 100 participants, an individual in the
mortality-linked fund has to invest at most an additional 4.99% of their wealth
in the risky asset to obtain the same volatility of return on wealth. For a pooled
annuity fund with 1 000 participants, this declines to 0.60% of their wealth.
The results show that the excess percentage increases as the force of mortality
λ increases and the pooled annuity fund size ℓ decreases.

Table 2 gives the instantaneous breakeven costs a⋆(ℓ, π, λ) of Proposition 4.2.
The breakeven costs appear approximately inversely proportional to the size ℓ
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of the pooled annuity fund. They increase as the proportion of wealth invested
in the risky asset increases. These observations demonstrate that the rule of
thumb of Proposition 4.3 gives a reasonable indication of how the instantaneous
breakeven costs behave.

Table 2 also shows in italics the breakeven costs expressed as a monetary
cost rate per 100 units of wealth, calculated as 100(1− e−λa⋆(ℓ,π,λ)). Again, the
values are surprising low. For example, compared to a pooled annuity fund of
100 participants who have a force of mortality of 0.04 and who invest 10% of
their wealth in the risky asset, the costs charged by the seller of the mortality-
linked fund would have to be less than 0.1994% of a member’s wealth before an
individual can obtain a higher expected return from joining the mortality-linked
fund, for the same volatility of return on wealth as in the pooled annuity fund.
Even though the mortality-linked fund member invests an additional 4.99% in
the risky asset compared to the pooled annuity fund (see Table 1), the additional
expected return is (πg − π)(µ− r) = 0.2% in this case, which explains why the
monetary cost rate is very low. With a pool size of 1 000, the costs must be
even lower: less than 0.024% per annum of the member’s wealth.

5 Lifetime approach

Here we analyze the pooled annuity fund in a much longer-term setting than
in the previous section. We suppose that individuals consume their wealth over
their lifetime and that they gain utility from the consumption.

First we calculate, for both funds, the consumption and investment strategies
that maximize the expected utility of lifetime consumption. In our analysis, we
use a CRRA utility function. Clearly, in the mortality-linked fund the optimal
strategies depend on the costs charged. As in the previous approach, to link the
two funds we let the costs at each time t be a function of the characteristics of
the pooled annuity fund at time t.

Definition 5.1. Suppose the individuals in the pooled annuity fund and the
mortality-linked fund follow their optimal consumption and investment strate-
gies. Then the lifetime breakeven costs at time t are the costs at which a member
of the mortality-linked fund has the same expected utility of lifetime consump-
tion, starting from time t, as a participant in the pooled annuity fund.

It turns out, that for the chosen CRRA utility function, the lifetime breakeven
costs depend only on the number of survivors in the pooled annuity fund. We
find how

(a) the lifetime breakeven costs compare to the instantaneous breakeven costs
of Section 4, and

(b) the amount of withdrawal varies for a pooled annuity fund participant
compared to a mortality-linked fund member, when they both follow their
optimal consumption and investment strategies and the lifetime breakeven
costs are charged.

We find that, for a given pool size, the lifetime breakeven costs are compa-
rable in value to the instantaneous breakeven costs. Furthermore, when the
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lifetime breakeven costs are charged, the individuals in both funds follow identi-
cal consumption and investment strategies. Our numerical results indicate that
participants in the pooled annuity fund have the potential to withdraw a greater
amount of money than the members of the mortality-linked fund, albeit with
greater volatility in the withdrawn amount.

5.1 Value function

Individuals are assumed to have the same preferences as expressed by

U(τ) =

∫ τ

0

e−δsu(Cs)ds,

in which δ denotes the time preference rate, τ denotes the stochastic time of
death and Ct = ctWt is the amount of consumption at time t. The utility
function u(C) is assumed to be of the standard CRRA type given below:

u(C) =
C1−γ

1− γ
, γ 6= 1, γ > 0,

where γ is the level of relative risk aversion.
As we want to use the costs to compare the two funds, we allow them to

depend on the number of survivors in the pooled annuity fund. Consequently,
the value function of a individual at time t in either fund is of the form

V (w, ℓ, t) = sup
(πs,cs)∞s=t

E

(
∫ τ

t

e−δ(s−t) u(Cs)ds

∣

∣

∣

∣

Wt = w,Lt = ℓ, τ > t

)

.

By integrating over the random time of death, we obtain

V (w, ℓ, t) = sup
(πs,cs)∞s=t

E

[
∫

∞

t

e−
∫

s

t
(λu+δ)du u(Cs)ds

∣

∣

∣

∣

Wt = w,Lt = ℓ

]

.

The difference in the value function for the two funds lies in the dynamics of the
wealth process. We use V (·, ·, ·) to denote the value function for a participant
in the pooled annuity fund, and V g(·, ·, ·) to denote the value function for a
member of the mortality-linked fund.

5.2 Derivation of the lifetime breakeven costs

To calculate the lifetime breakeven costs, we must first find the optimal con-
sumption and investment strategies for individuals in the pooled annuity fund
and the mortality-linked fund.

5.2.1 Optimal strategies for the pooled annuity fund

The wealth process of a surviving participant in the pooled annuity fund evolves
with consumption as in (3.1). Since (3.1) is identical to that in Stamos [2008],
we can use the solution in the latter; we summarize his results next. The optimal
investment strategy is the constant proportion

π⋆ =
µ− r

γσ2
. (5.1)
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The value function has the form

V (w, ℓ, t) = f(ℓ, t)
w1−γ

1− γ
. (5.2)

The optimal consumption rate c⋆ is then obtained by setting

c⋆(ℓ, t) = f(ℓ, t)−
1
γ . (5.3)

For ℓ > 1, the function f(ℓ, t) satisfies

ft(ℓ, t)

f(ℓ, t)
+ γf(ℓ, t)−

1
γ + (A− λtℓ) + λt(ℓ− 1)

(

ℓ

ℓ− 1

)1−γ
f(ℓ− 1, t)

f(ℓ, t)
= 0, (5.4)

with ft(ℓ, t) denoting the partial derivative of f(ℓ, t) with respect to t, and the
constant A defined by

A = (1− γ)

(

r +
1

2γ

(

µ− r

σ

)2
)

− δ.

For ℓ = 1, the function f(1, t) satisfies

ft(1, t)

f(1, t)
+ γf(1, t)−

1
γ + (A− λt) = 0. (5.5)

The boundary conditions are limt→∞ f(ℓ, t) = 0 and f(0, t) = 0. As there is no
analytical solution to (5.4), it must be solved numerically.

5.2.2 Optimal strategies for the mortality-linked fund

The wealth process of a surviving member of the mortality-linked fund, allowing
for costs at, evolves with consumption as in (3.3). From the calculations shown
in Appendix A.2, we find that the form of the value function is

V g(w, ℓ, t) = h(ℓ, t)
w1−γ

1− γ
, (5.6)

and the optimal consumption rate cg⋆ satisfies

cg⋆(ℓ, t) = h(ℓ, t)−1/γ .

The optimal investment strategy is

πg⋆ =
µ− r

γσ2
. (5.7)

In other words, a utility-maximizing individual invests the same constant pro-
portion of their wealth in the risky asset, regardless of whether they join the
pooled annuity fund or the mortality-linked fund; compare (5.1) and (5.7).

For ℓ > 1, the function h(ℓ, t) satisfies

ht(ℓ, t)

h(ℓ, t)
+ γh(ℓ, t)−

1
γ +A−λtℓ+λt(1− γ)(1− a(ℓ, t))+

h(ℓ− 1, t)

h(ℓ, t)
λt(ℓ− 1) = 0.

(5.8)
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For ℓ = 1, i.e. when there is only one survivor left in the pooled annuity fund,
we set the costs a(1, t) = 1. The assumption is that, for individuals following
the same consumption and investment strategies, the costs are such that the
wealth dynamics (3.3) in the mortality-linked fund are identical to those (3.2)
of the pooled annuity fund. Then the function h(1, t) satisfies (5.5).

The boundary conditions are limt→∞ h(ℓ, t) = 0 and h(0, t) = 0. As for the
pooled annuity fund, we must solve (5.8) numerically.

5.2.3 Lifetime breakeven costs

Having calculated the optimal consumption and investment strategies for both
funds, we can now find the lifetime breakeven costs. We assume that indi-
viduals in the pooled annuity fund and the mortality-linked fund follow their
optimal strategies, and calculate the corresponding expected utility of lifetime
consumption. The lifetime breakeven costs at each time t are the costs at which
the expected utilities are equal at that time t.

Proposition 5.2. For each integer ℓ ≥ 2, the lifetime breakeven costs are

a⋆(ℓ, t) = 1−
ℓ− 1

1− γ

f(ℓ− 1, t)

f(ℓ, t)

[

(

ℓ

ℓ− 1

)1−γ

− 1

]

, (5.9)

for f(·, ·) satisfying (5.4). For ℓ = 1, the lifetime breakeven costs are a⋆(1, t) =
1.

Furthermore, when the lifetime breakeven costs apply, the optimal consump-
tion rates for individuals in each fund are identical.

Proof. For ℓ = 1, we assume that the costs, and hence the lifetime breakeven
costs, are a⋆(1, t) = a(1, t) = 1 for all t ≥ 0.

Fix an integer ℓ ≥ 2. The lifetime breakeven costs are the costs a⋆(ℓ, t) at
which V (w, ℓ, t) = V g(w, ℓ, t). From (5.2) and (5.6), we see immediately that
equating the value functions is equivalent to equating h(ℓ, t) = f(ℓ, t), so that
the rates of consumption are identical. Setting h(ℓ, t) = f(ℓ, t) in (5.8) and then
equating with (5.4), results in (5.9).

As there is no analytical solution for f(ℓ, t) we must solve for a⋆(ℓ, t) numer-
ically.

5.3 Numerical results

For the numerical results, we use the same assumptions in [Stamos, 2008, Section
4.1]. This means that, as before, for the financial market we set r = 0.02,
µ = 0.06 and σ = 0.18. The risk preferences of each individual is specified by
the parameters δ = 0.04 and γ = 5. The optimal investment in the risky asset
for individuals in either fund is then

π⋆ = πg⋆ =
µ− r

γσ2
≈ 25%. (5.10)

We suppose that individuals are age 60 at time 0 and their force of mortality at
time t is given by the Gompertz law of mortality

λt =
1

b
e(60+t−m)/b, with m = 86.85 and b = 9.98, ∀t ≥ 0. (5.11)
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For example, in our notation, the force of mortality of an 80-year-old individual
is λ20. The parameter m is the modal age at death and b is the dispersion
coefficient. The above law was fitted by Stamos [2008] to US female population
mortality data.

5.3.1 Comparison of the breakeven costs

A natural question is how the lifetime breakeven costs compare to the instan-
taneous breakeven costs for different pool sizes. Figure 1 shows the lifetime
breakeven costs and Figure 2 shows the instantaneous breakeven costs. For all
calculated pool sizes, the two types of breakeven costs are of the same order of
magnitude. They vary most across ages for a pool size of 10. However, for pool
sizes of 100 or more, the costs are similar in value and quite stable, no matter
which approach is used.

5.3.2 Withdrawal amount rate

Here we consider how the amount consumed varies for a pooled annuity fund
participant compared to a mortality-linked fund member. We assume that
mortality-linked fund charges the lifetime breakeven costs and each individ-
ual follows their optimal consumption and investment strategies, as calculated
in Subsection 5.2.

When the lifetime breakeven costs are charged, we saw in Subsection 5.2
that the optimal investment and the consumption strategies are identical for
individuals in both funds. This means that

• the mortality-linked fund member has a lower expected return on wealth
since they pay the breakeven costs. The mortality-linked fund member
has an expected (and deterministic) mortality credit at the rate λt(1−a⋆t )
whereas the pooled annuity fund participant’s expected mortality credit
is at the rate λt. But,

• the pooled annuity fund participant has a higher volatility of return on
wealth since they are exposed to volatility in the mortality credit. For
both funds, the volatility due to the investment market is the same.

To illustrate how this impacts on the amount consumed, we simulate the with-
drawal amount rates (1 − e−ct)Wt and (1 − e−cgt )W g

t for participants in the
pooled annuity fund and members of the mortality-linked fund, respectively,
over a 50-year period. All individuals follow their optimal consumption and in-
vestment strategies. Note that, since c(ℓ, t) = cg(ℓ, t), this is really illustrating
the differences in the wealth evolution of individuals in the two funds.

The mortality-linked fund is compared to a pooled annuity fund with dif-
ferent initial pool sizes (L0 = 100, L0 = 500 and L0 = 1 000). All individuals
in both funds are age 60 and have initial wealth w0 = 1 unit at time 0. Time
was discretized into one month steps, ∆t = 1/12, and the pool size was kept
as integer steps over the discretization grid. In total, 100 000 samples of the
withdrawal amount rates were produced.

Figure 3 indicates that individuals may benefit from joining the pooled an-
nuity fund. It shows that the expected withdrawal amount is lower for the
mortality-linked fund than for the pooled annuity fund for a given initial pool
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size, except for an initial pool size of L0 = 100 at ages above 105 years (at time
45 years). For the chosen parameters, the withdrawal amount is almost identical
for ages up to 85 (at time 25 years), and they do not diverge significantly until
age 95 (at time 35 years). Under the chosen mortality law, we expect about
half of the initial pool to have survived to age 85, around 10% to survive to
age 95, and less than 5% to survive to age 100. Therefore, for an initial pool
size L0 = 100, there are only about 10 survivors at age 95 on average and fewer
than 5 are expected to survive to age 100.

Given that the individuals in both funds follow identical optimal consump-
tion and investment strategies, it is not surprising that the expected withdrawal
amount is higher for the participants of the pooled annuity fund: they do not
have to pay any costs. Notice that the expected amount peaks at higher ages as
the initial pool size increases. This can be attributed to having enough partici-
pants still alive at higher ages in the pooled annuity fund so that the mortality
credit is received with a high probability, whereas in the mortality-linked fund
the mortality-linked interest rate includes the lifetime breakeven costs.

The mean and various percentiles of the withdrawal amount rates for an
initial group size of 100 is shown in Figure 4. For an initial group size of 1 000,
see Figure 5. For Figure 5, the greater volatility in the pooled annuity fund is
clear but it is skewed favourably for the surviving individual.

6 Discussion

We have studied the stability of income streams from a pooled annuity fund. It is
obvious that the size of the pool is critical so that statistical regularity produces
a stable series of payments. There is a substantial list of literature examining
pooled returns, for instance, surpluses in life insurance and performance of life
settlement funds6, but only a few authors have studied annuities.

Our main result is about the equivalence between a pooled annuity fund and
a mortality-linked fund, the latter charging some costs to exchange an uncertain
mortality return for a certain, regular return. In order to compare the two, we
fix the volatility of return on wealth and then find the level of costs such that
the two funds have exactly equal expected returns. The level of costs decreases
as the size of the pool increases. An identical conclusion is obtained using a
lifetime approach.

These results are promising as they indicate that a mechanism different
to the mortality-linked fund, a mechanism which does not have to adapt to
uncertainty about mortality and that is equivalent in terms of volatility of wealth
and expected return, may be attractive to an individual, regardless of the time
horizon of the individual. This suggests that the study of pooled annuity funds
is very relevant.

We have considered only homogeneous pools of individuals. However, in real-
life, individuals are highly dissimilar, having different wealth, risk preferences
and mortality rates. Heterogeneous pools have been studied in the context of
group self-annuitization products by Piggott et al. [2005] and Qiao and Sherris

6Bohnert and Gatzert [2011] examine surplus appropriation schemes in participating life
insurance contracts and the impact on the insurers shortfall risk and the net present value
from an insured’s perspective. Braun et al. [2012] indicate that caution is advised in order
not to overestimate the performance of life settlement funds.
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[2012]. Heterogeneous pooled annuity funds have been explored by Sabin [2010]
but, unfortunately, the spreading rule that he proposes does not work for any
heterogeneous pool. We aim to explore how this difficulty could be overcome
for a pooled annuity fund in a later work.
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A Technical results

A.1 Proof of Proposition 4.2

Proof of Proposition 4.2. First consider the case that Lt− = 1. The relevant
wealth dynamics are (3.2) for the pooled annuity fund and (3.3) for the mortality-
linked fund, with the consumption set to zero, i.e. ct = cgt = 0. To equate the
volatilities of return on wealth, set πt = πg

t . Then equating the expected returns
on wealth gives that the instantaneous breakeven costs are a⋆t = 1.

Next consider the case that Lt− > 1. The instantaneous volatility of re-
turn on wealth of the pooled annuity fund participant vt satisfies (4.4). For a
mortality-linked fund member who invests a proportion πg

t of their wealth in
the risky asset, the instantaneous volatility of return on wealth vgt satisfies (4.7).
To have the same volatility of return on wealth, i.e. vgt = vt, the proportion πg

t

must satisfy

(σπg
t )

2
= (σπt)

2
+

λt

Lt− − 1
.

Rearranging we find πg
t = πg(Lt−, πt, λt) with

πg(ℓ, π, λ) =

(

π2 +
1

σ2

λ

ℓ− 1

)1/2

, (A.1)

for all π ≥ 0, λ > 0 and integer ℓ ≥ 2, and we have now shown that (4.8) holds.
To have the same volatility of return on wealth, the mortality-linked fund

member must invest a greater fraction of wealth in the risky asset than the
pooled annuity fund participant. This is to compensate for the mortality-linked
fund member not being exposed to any mortality risk. From (4.8), we see that
the mortality-linked fund member will increase their holdings in the risky asset
πg as

• λ increases (i.e. deaths occur more frequently in the pooled annuity fund),

• σ decreases (i.e. the volatility of the risky asset decreases), and

• ℓ decreases (i.e. the wealth released by each death is spread among fewer
survivors in the pooled annuity fund).
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Having equated the instantaneous volatility at time t, we determine the in-
stantaneous breakeven costs a⋆t by equating the instantaneous expected returns
in (4.2) and (4.6), i.e.

r + πg
t (µ− r) + λt(1− a⋆t ) = r + πt(µ− r) + λt.

Solving we find

a⋆t =
µ− r

λt
(πg

t − πt) . (A.2)

From (A.2), we see that the instantaneous breakeven costs increase as

• µ− r increases (i.e. the expected return from the risky asset increases),

• λ decreases (i.e. the expected return from deaths decreases), and

• πg
t − πt increases (i.e. a greater fraction of wealth is invested in the risky

asset by the mortality-linked fund member).

Substituting (A.1) into (A.2) we find that (4.9) holds. The assumptions that
µ > r and π ≥ 0 ensure that a⋆t ≥ 0.

A.2 Optimal strategies for the mortality-linked fund

For notational ease, we drop the “g” superscript except to denote the optimal
strategies, and define

θ =
µ− r

σ
.

For the mortality-linked fund, we wish to find the optimal investment strategy
πg⋆ and optimal consumption strategy cg⋆ that solves:

V (w, ℓ, t) = sup
(πs,cs)∞s=t

E

[
∫

∞

t

e−
∫

s

t
(λu+δ)du u(csπs)ds

∣

∣

∣

∣

Wt = w,Lt = ℓ

]

,

for the wealth dynamics given by

dWt

Wt−
= (r + πt(µ− r) + λt(1 − at)− ct) dt+ σπtdZt. (A.3)

To apply dynamic programming theory, we assume that the consumption pro-
cess and costs are of the form c(Lt−, t−) and a(Lt−, t−), respectively. We begin
by deriving the relevant Hamilton-Jacobi-Bellman equation, following the tech-
nique in [Björk, 2009, Chapter 19].

Assume that from time t to time t + h, the participant follows arbitrary
consumption and investment strategies (cs, πs). After time t+h, the participant
follows the optimal consumption and investment strategies. Then denoting by
E
w,ℓ,t the expectation conditional on Wt = w and Lt = ℓ,

V (w, ℓ, t) ≥E
w,ℓ,t

[

∫ t+h

t

e−
∫

s

t
(λu+δ)du u(csWs)ds

]

+ E
w,ℓ,t

[

e−
∫

t+h

t
(λu+δ)du V (Wt+h, Lt+h, t+ h)

]

.

(A.4)
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Define the operator

Lc,π
t h(w, ℓ, t) = ht(w, ℓ, t) + whw(w, ℓ, t) [r + πθσ + λt(1− a(ℓ, t))− c(ℓ, t)]

+
1

2
w2hww(w, ℓ, t)σ

2π2 + [h(w, ℓ − 1, t)− h(w, ℓ, t)] λt(ℓ − 1).

(A.5)

Assuming sufficient differentiability so that we can apply Ito’s lemma to the

product e−
∫

t+h

t
(λu+δ)duV (Wt+h, Lt+h, t + h), we use the wealth dynamics in

(A.3) to find

e−
∫

t+h

t
(λu+δ)du V (Wt+h, Lt+h, t+ h)

=V (Wt, Lt, t) +

∫ t+h

t

Lc,π
s e−

∫
s

t
(λu+δ)duV (Ws−, Ls−, s−)ds

+

∫ t+h

t

e−
∫

s

t
(λu+δ)duWsVw(Ws−, Ls−, s−)σπsdZs

+

∫ t+h

t

e−
∫

s

t
(λu+δ)du (V (s)− V (s−))λs(Ls− − 1)dMs,

(A.6)

in which Mt = Nt−
∫ t

0 λs(Ls−− 1)ds is the Poisson martingale associated with
the Poisson process N . Substituting (A.6) into (A.4), the expectation of the
stochastic integrals vanish, leaving

V (w, ℓ, t) ≥ E
w,ℓ,t

[

∫ t+h

t

e−
∫

s

t
(λu+δ)du u(csWs)ds

]

+ E
w,ℓ,t

[

V (Wt, Lt, t) +

∫ t+h

t

Lc,π
s e−

∫
s

t
(λu+δ)duV (Ws−, Ls−, s−)ds

]

.

Hence

0 ≥ E
w,ℓ,t

[

∫ t+h

t

e−
∫

s

t
(λu+δ)du u(csWs)ds

]

+ E
w,ℓ,t

[

∫ t+h

t

Lc,π
s e−

∫
s

t
(λu+δ)duV (Ws−, Ls−, s−)ds

]

.

(A.7)

Divide by h > 0, let h go to zero and assume enough regularity so that we can
take the limit within the expectation to obtain

0 ≥ u(ctw)− (δ + λt)V (w, ℓ, t)

+ Vt(w, ℓ, t) + wVw(w, ℓ, t) (r + πθσ + λt(1 − a(ℓ, t))− c(ℓ, t))

+
1

2
w2Vww(w, ℓ, t)σ

2π2 + [V (w, ℓ − 1, t)− V (w, ℓ, t)] λt(ℓ − 1).

If we choose the optimal consumption and investment strategies, then we obtain
equality:

(δ + λt)V (w, ℓ, t)

= sup
(c,π)

{

u(cw) + Vt(w, ℓ, t) + wVw(w, ℓ, t) (r + πθσ + λt(1− a(ℓ, t))− c)

+
1

2
w2Vww(w, ℓ, t)σ

2π2 + [V (w, ℓ − 1, t)− V (w, ℓ, t)]λt(ℓ− 1)

}

.

(A.8)
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Guessing the form of the value function,

V (w, ℓ, t) = h(ℓ, t)
w1−γ

1− γ
, (A.9)

with boundary conditions limt→∞ h(ℓ, t) = 0 and h(0, t) = 0, the optimal in-
vestment strategy is

πg⋆ =
θ

γσ

and the optimal consumption rate is given by

cg⋆(ℓ, t) = h(ℓ, t)−
1
γ . (A.10)

Dropping the supremum in (A.8) and setting π := πg⋆, c := cg⋆(ℓ, t) and using
the value function (A.9) results in

ht(ℓ, t)

h(ℓ, t)
+ γh(ℓ, t)−

1
γ +A−λtℓ+λt(1− γ)(1− a(ℓ, t))+

h(ℓ− 1, t)

h(ℓ, t)
λt(ℓ− 1) = 0,

which is precisely (5.8).
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B Figures and tables

Table 1: πg(ℓ, π, λ) − π, i.e. the excess percentage of wealth invested in the
risky asset for the mortality-linked fund over the pooled annuity fund, required
to obtain the same instantaneous volatility of return on wealth. Different forces
of mortality (λ), proportion of wealth invested in the risky asset (π) and pool
sizes (ℓ) are shown.

ℓ = 10 ℓ = 100 ℓ = 1 000 ℓ = 10 000

λ = 0.005

π = 10 % 6.48 % 0.75 % 0.08 % 0.01 %
π = 25 % 3.22 % 0.31 % 0.03 % 0.00 %
π = 50 % 1.69 % 0.16 % 0.02 % 0.00 %
π = 75 % 1.13 % 0.10 % 0.01 % 0.00 %

λ = 0.01

π = 10 % 11.05 % 1.45 % 0.15 % 0.00 %
π = 25 % 6.11 % 0.62 % 0.06 % 0.01 %
π = 50 % 3.32 % 0.31 % 0.03 % 0.00 %
π = 75 % 2.25 % 0.21 % 0.02 % 0.00 %

λ = 0.02

π = 10 % 18.03 % 2.74 % 0.30 % 0.03 %
π = 25 % 11.21 % 1.22 % 0.12 % 0.01 %
π = 50 % 6.44 % 0.62 % 0.06 % 0.01 %
π = 75 % 4.44 % 0.41 % 0.04 % 0.00 %

λ = 0.04

π = 10 % 28.36 % 4.99 % 0.60 % 0.06 %
π = 25 % 19.68 % 2.38 % 0.25 % 0.02 %
π = 50 % 12.22 % 1.23 % 0.12 % 0.01 %
π = 75 % 8.65 % 0.83 % 0.08 % 0.01 %
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Table 2: Instantaneous breakeven costs a⋆(ℓ, π, λ) expressed as a percentage.
Underneath each number, in italics, is 100(1− e−λa⋆(ℓ,π,λ)), the instantaneous
breakeven costs expressed as a monetary cost rate per 100 units of wealth.
Different forces of mortality (λ), proportion of wealth invested in the risky asset
(π) and pool sizes (ℓ) are shown.

ℓ = 10 ℓ = 100 ℓ = 1 000 ℓ = 10 000

λ = 0.005

π = 10 % 51.81 % 6.01 % 0.62 % 0.06 %
0.2587 0.0300 0.0031 0.0003

π = 25 % 25.77 % 2.48 % 0.25 % 0.02 %
0.1288 0.0124 0.0012 0.0001

π = 50 % 13.49 % 1.25 % 0.12 % 0.01 %
0.0674 0.0062 0.0006 0.0001

π = 75 % 9.08 % 0.83 % 0.08 % 0.01 %
0.0454 0.0042 0.0004 0.00004

λ = 0.01

π = 10 % 44.18 % 5.81 % 0.61 % 0.06 %
0.4409 0.0581 0.0061 0.0006

π = 25 % 24.45 % 2.46 % 0.25 % 0.02 %
0.2442 0.0246 0.0025 0.0002

π = 50 % 13.28 % 1.24 % 0.12 % 0.01 %
0.1327 0.0124 0.0012 0.0001

π = 75 % 9.01 % 0.83 % 0.08 % 0.01 %
0.0901 0.0083 0.0008 0.0001

λ = 0.02

π = 10 % 36.07 % 5.48 % 0.61 % 0.06 %
0.7187 0.1096 0.0122 0.0012

π = 25 % 22.41 % 2.43 % 0.25 % 0.02 %
0.4472 0.0487 0.0049 0.0005

π = 50 % 12.89 % 1.24 % 0.12 % 0.01 %
0.2574 0.0248 0.0025 0.0002

π = 75 % 8.88 % 0.83 % 0.08 % 0.01 %
0.1775 0.0166 0.0016 0.0002

λ = 0.04

π = 10 % 28.36 4.99 % 0.60 % 0.06 %
1.1281 0.1994 0.0240 0.0025

π = 25 % 19.68 % 2.38 % 0.25 % 0.02 %
0.7843 0.0952 0.0098 0.0010

π = 50 % 12.22 % 1.23 % 0.12 % 0.01 %
0.4877 0.0493 0.0049 0.0005

π = 75 % 8.65 % 0.83 % 0.08 % 0.01 %
0.3453 0.0033 0.0033 0.0003
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Figure 1: Lifetime breakeven costs, calculated from Proposition 5.2, for various
pool sizes. The proportion invested in the risky asset is given by (5.10) and the
force of mortality at each age is calculated using (5.11).
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Figure 2: Instantaneous breakeven costs, calculated from (4.9), for various pool
sizes. The proportion invested in the risky asset is given by (5.10) and the force
of mortality at each age is calculated using (5.11).
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Figure 3: Mean withdrawal amount rate when the lifetime breakeven costs are
charged. The rates are calculated for the pooled annuity fund (“Pool”) and
mortality-linked fund (“M-L”), for various initial pool sizes L0. All participants
are age 60 and have initial wealth w0 = 1 unit at time 0.
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Figure 4: Mean withdrawal amount rate and percentiles when the lifetime
breakeven costs are charged. They are calculated for the pooled annuity fund
(“Pool”) and mortality-linked fund (“M-L”), for initial pool size L0 = 100. All
participants are age 60 and have initial wealth w0 = 1 unit at time 0. For each
fund, the central line is the mean, the next two lines above and below the mean
are the 25% and 75% percentiles, and the outermost two lines are the 5% and
95% percentiles.
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Figure 5: Mean withdrawal amount rate and percentiles when the lifetime
breakeven costs are charged. They are calculated for the pooled annuity fund
(“Pool”) and mortality-linked fund (“M-L”), for initial pool size L0 = 1 000.
All participants are age 60 and have initial wealth w0 = 1 unit at time 0. For
each fund, the central line is the mean, the next two lines above and below the
mean are the 25% and 75% percentiles, and the outermost two lines are the 5%
and 95% percentiles.


