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Abstract: The carrier-envelope-offset frequencies of the pump, signal, idler 

and related second-harmonic and sum-frequency mixing pulses have been 

locked to 0 Hz in a 20-fs-Ti:sapphire-pumped optical parametric oscillator, 

satisfying a critical prerequisite for broadband optical pulse synthesis. With 

outputs spanning 400 - 3200 nm, this result represents the broadest zero-

offset comb demonstrated to date. 
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1. Introduction 

Coherent pulse synthesis takes as its objective the piecewise assembly of a sequence of 

identical broadband pulses from two or more mutually-coherent sequences of narrowband 

pulses. The fundamental prerequisites for synthesis are that the pulse sequences share a 

common repetition frequency ( fREP
) and a common carrier-envelope offset (CEO) frequency. 

The necessary technical tools have existed for some time that enable sufficient repetition-

frequency stabilization [1] and CEO-frequency control [2, 3]. Several CEO-stabilized 

ultrashort pulse sources have been demonstrated to date, including mode-locked solid-state 

oscillators [4, 5], high-repetition-rate fiber lasers [6], optical parametric oscillators (OPOs) 

[7–9] and high-pulse-energy amplifiers [10]. The most common application of CEO-

controlled sources is in laser frequency combs, which provide a metrologically robust link 

between the optical and microwave frequency domains [2], however their potential in optical 

pulse synthesis has also been recognized for some time [11]. Coherent pulse synthesis has 

since been achieved between two identical [12] and two different [13, 14] pump sources, as 

well as between a pump source and a synchronously-pumped OPO [15]. More recent work in 

this field has demonstrated synthesis between two ultra-broadband optical parametric 

amplifiers [16]. Dual-laser synthesis schemes demand sophisticated stabilization approaches 

to achieve sufficient synchronization between each frequency comb, however synthesis based 

around a femtosecond OPO benefits from the intrinsic low-jitter synchronization between the 

OPO and its pump source [15]. 

In the context of coherent pulse synthesis, the specific opportunity presented by 

femtosecond OPOs arises from their ability to generate multiple nonlinear mixing frequencies 

from interactions between the pump, signal and idler pulses. In general terms the OPO 

produces pump (p), signal (s) and idler (i) combs which can be described by, 

 

p

p REP CEOf kf f= +
 (1a) 

 
s

s REP CEOf lf f= +
 (1b) 

 
i

i REP CEOf mf f= +
 (1c) 

where k, l and m are integers. Nonlinear frequency-mixing processes lead to new combs, 

which can be expressed generally as: 

 
p s

NL REP CEO CEOf nf pf qf= + +
 (2) 

with n, p and q being integers. The idler CEO frequency does not appear explicitly since it 

can always be eliminated by using the relation p s i

CEO CEO CEOf f f= + . Synthesizing a new 

pulse sequence from two or more nonlinear mixing outputs requires the participating combs 

to share a common CEO frequency, implying that, 

 
etc,

p s p s p s

CEO CEO CEO CEO CEO CEOpf qf p f q f p f q f′ ′ ′′ ′′+ = + = +    
 (3) 

which is only generally possible when 0
p s i

CEO CEO CEOf f f= = = , however special cases are 

possible for two-comb synthesis in which 0CEOf ≠ , for example the synthesis between the 

Ti:sapphire pump pulses (λ = 780 nm) and the second-harmonic generation (SHG) signal 
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pulses from an OPO (λ = 650-780 nm), whose CEO frequencies were locked to a common 

value of 50 MHz [15]. 

The ability to synthesize arbitrary pulses by coherently combining the fields of multiple 

harmonic outputs of an OPO would allow the generation of ultra-broadband sub-optical-cycle 

waveforms, with potential practical applications in coherent broadband time-resolved 

spectroscopy. In this paper we demonstrate complete phase coherence between a Ti:sapphire 

laser and a synchronously-pumped OPO by locking the CEO frequencies of the pump and all 

of the OPO outputs to 0 Hz. Coherence has been confirmed through interferometric 

measurements, realizing a critical prerequisite for sub-cycle pulse synthesis. 

2. Experiment 

The experiment (Fig. 1) was based on a Ti:sapphire pump laser producing 20-fs pulses with a 

center wavelength of 800 nm, a full-width-half-maximum bandwidth of 35 nm and fREP = 100 

MHz. The laser was pumped by a Coherent Verdi laser and generated 1.4 W of average 

mode-locked power from 8.9 W of pump power. External compensation of the output coupler 

group-delay dispersion was achieved using Gires-Tournois interferometer (GTI) mirrors. 

 

Fig. 1. Optical (solid lines) and electronic (dashed lines) layout. APD, avalanche photodiode; 

BS, beam splitter; CM, chirped mirror; IF, interference filter; PBS, polarizing beam splitter; 

PCF, photonic crystal fiber; PD, silicon photodiode; PI, proportional integral amplifier; PL, 

polarizer. See text for other label definitions. 

The laser output was split using a partially reflecting mirror (PRM), and 1.2 W of pump 

power was directed into a femtosecond OPO based on a 0.5-mm-thick crystal of periodically-

poled potassium titanyl phosphate (PPKTP). The crystal was coated on one face with a high-

reflectivity (HR) near-infrared (NIR) coating and on the other with a broadband anti-

reflection (AR) visible-NIR coating. This design increases mechanical stability and minimizes 

dispersive broadening of the incident pump pulses. The OPO operated with resonant signal 

pulses at 1060 nm and was tunable across the wavelength range 980 – 1200 nm. Visible 

pulses were generated by several non-phasematched nonlinear frequency-mixing processes, 

which are listed in Table 1. These outputs were typically observed at mW-level average 

powers and were partially output coupled through mirrors M1 and M2. 
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Table 1. Output wavelengths from the pump and OPO. 

Wavelength (nm) 400 456 530 642 800 1060 3260 

Origin 2ωp ωp + ωs 2ωs ωp + ωi ωp ωs ωi 

CEO frequency 2 p

CEOf
 

p s

CEO CEOf f+
 

2 s

CEOf
 

p i

CEO CEOf f+
 

p

CEOf
 

s

CEOf
 

i

CEOf
 

The remaining 0.2 W of pump power was used for CEO frequency stabilization of both 

the pump and OPO. The beam was split and coupled into a pair of photonic crystal fibers 

(PCFs; NKT Photonics NL-2.0-750) to generate two independent pump supercontinua. By 

using the nonlinear interferometers shown in Fig. 1 the idler CEO frequency, fCEO

i , was 

obtained by interfering the 642-nm p + i sum-frequency mixing (SFM) pulses with one pump 

supercontinuum after a 10-nm bandwidth interference filter (IF). Similarly a beat frequency at 
s

CEO

p

CEO ff 2−  was obtained by interfering the 530-nm SHG signal (2s) pulses with the 

second pump supercontinuum. The spectral overlap between these supercontinua and the 

OPO outputs is illustrated in Fig. 2. Locking both of these beat frequencies to 0 Hz achieves 

fCEO

p
= fCEO

s
= fCEO

i
= 0 , and the use of two PCFs allows their output wavelengths to be 

independently optimized for almost any combination of SHG and SFM wavelengths. 

 

Fig. 2. Visible spectra from the OPO (filled region), p + i locking PCF (red) and 2s locking 

PCF (green). The dashed lines indicate the bandpass filter regions used to detect a heterodyne 

beat. 

Locking of the CEO frequencies to 0 Hz was achieved by blue-shifting the p + i and 2s 

pulses before the nonlinear interferometers by using an acousto-optic modulator (AOM) 

(IntraAction ASM-803B47) driven at 3fREP/4 (75 MHz). It was not possible to drive the AOM 

at fREP/4 (25 MHz) because of its limited radio-frequency acceptance bandwidth. The AOM 

can be considered to red-shift the p + i and 2s modes by -fREP/4, and for this reason we 

referenced the detected beat frequencies to fREP/4. Detecting a heterodyne beat between a 

pump supercontinuum and the AOM-shifted SFM and SHG OPO outputs requires that the 

first-order shifted beam be used for detection. This beam carries less power than the zero-

order beam, and the diffraction efficiency can only be optimized across a limited range of 

wavelengths. For this reason a component of the pump-idler SFM light closest in wavelength 

to the signal SHG output was chosen for overlap with the pump supercontinuum, as 

illustrated in Fig. 2. The resulting error signals were used to control fCEO

p  and fCEO

s  via 
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piezoelectric transducers (PZTs) mounted in the pump and OPO cavities. The PZT in the 

Ti:sapphire pump laser (PZT1) was used to actuate the angle of the cavity end-mirror which 

received spatially dispersed light from the intracavity dispersion-compensating prism pair, 

and in this way modified fCEO

p . The length of the OPO cavity was actuated by PZT2, directly 

controlling fCEO

s . In this way the CEO frequencies of all the pulses on the optical bench were 

locked to 0 Hz, making the complete ensemble of pulses listed in Table 1 mutually coherent. 

The signal paths in the CEO-frequency-locking scheme are shown on the left of Fig. 1. 

The CEO frequencies monitored in the nonlinear interferometers were compared with a 

reference frequency using separate phase-frequency detector (PFD) circuits [17]. A 25-MHz 

reference frequency at fREP/4 was derived using a frequency divider from the 100-MHz pump 

pulse repetition frequency fREP, which was detected with a fast photodiode. A double-balanced 

mixer was used to generate the 75-MHz drive frequency (3fREP/4) for the AOM by mixing the 

25-MHz and 100-MHz signals. The outputs from the PFD circuits were used to lock the pump 

and signal CEO frequencies by, respectively, a piezo-electric transducer (PZT1; >500 kHz 

unloaded resonant frequency) mounted on the end mirror of the Ti:sapphire laser to change 

the intracavity dispersion, and a second transducer (PZT2, Thorlabs AE0203D04F, 261 kHz 

unloaded resonant frequency) mounted on an OPO folding mirror to apply fine (~10 nm) 

adjustments to the OPO cavity length. The FWHM bandwidths of the CEO frequency beats 

from the two interferometers were both ~10kHz when locked to the reference frequency. 

3. Results and discussion 

When locked, optical heterodyning at the avalanche photodiode (APD; Hamamatsu 

C5331-11) in each nonlinear interferometer produced a frequency at fREP with sidebands at ± 

fREP/4 (Fig. 3). Consequently, either beat frequency could be locked to fREP/4 or 3fREP/4 with 

no electronic means of distinguishing between the two scenarios, giving a total of 4 locking 

combinations, only one of which achieved the desired condition of

0 Hz
p s i

CEO CEO CEOf f f= = =  . 

 

Fig. 3. Amplified RF spectrum as detected by the APD used for pump CEO locking. The CEO 

has been locked to fREP/4, so sidebands are detected at both fREP/4 and 3fREP/4. 
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Because of the potential ambiguity of purely electronic detection, confirming phase 

coherence requires either a spectral or temporal interferometric measurement to be made. A 

measurement interferometer was constructed in which light from the second PCF, containing 

a strong 530-nm component and a weaker 642-nm component, was interfered with visible 

SFM light exiting OPO folding mirror M2 (Fig. 1). A temporal interferometry experiment 

was implemented, in which the OPO beam path was modulated using a piezo-electric stage 

(PZT3; PI P.625.10L) with a frequency of 1.4 Hz and a displacement of 400 µm. The beams 

were combined and passed through an appropriate interference filter before being detected by 

a silicon photodiode (Thorlabs DET10A/M). 

With the CEO frequencies of the pump and OPO correctly locked we observed 

interference fringes between the pump supercontinuum pulses and the p + i and 2s pulses  

(Fig. 4, blue lines), indicating strong coherence over the acquisition time of the interferogram 

(100 ms). When either CEO frequency was unlocked, or locked to a different beat frequency, 

no fringes were observed, which indicated a lack of coherence between the pulses (Fig. 4, red 

and green lines). Observing interference simultaneously at two distinct wavelengths 

demonstrated that all the CEO frequencies from the pump and the OPO were locked to 0 Hz, 

confirming phase coherence across the complete ensemble of pulses listed in Table 1. 

 

Fig. 4. Interferograms showing simultaneous phase coherence between 530 nm and 642 nm 

OPO outputs and a pump super-continuum. (a) Photodiode signal at 530 nm (2s) with locking 

on (blue) and off (green); (b) photodiode signal at 642 nm (p + i) with locking on (blue) and 

off (red). 

4. Conclusions 

We have demonstrated broadband phase coherence between a Ti:sapphire laser and a 

synchronously pumped OPO, with a coherent bandwidth extending from 400 nm to 3200 nm 

and comprising an ensemble of pulses sharing a common comb offset of 0 Hz. To our 

knowledge this represents the broadest zero-offset comb demonstrated to date. 

The coherence between the visible pulses generated by the OPO is well suited to future 

experiments concerned with the synthesis of sub-optical-cycle pulses. The OPO also provides 

a potential resource for phase-sensitive broadband spectroscopy, for example in time-resolved 

2D visible – infrared spectroscopy, or in using phase-coherent ultraviolet – visible pulses to 

study dynamic photoabsorption and photodissociation in amino acids and DNA bases. 

Acknowledgments 

We gratefully acknowledge support for this research from the UK Engineering and Physical 

Sciences Research Council, under grant number EP/H000011/1. 

 

#168853 - $15.00 USD Received 23 May 2012; accepted 19 Jun 2012; published 2 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16274


