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We quantify precisely the maximum secure information capacity of photons entangled in high dimensions
for entanglement in the orbital angular momentum and angular degrees of freedom. Our analysis takes careful
account of the influence of experimental imperfections, such as nonunity detection efficiency, on the degree of
Einstein-Podolsky-Rosen (EPR) entanglement and hence on the secure information capacity of the photon pairs.
We find that there is is an optimal dimension that maximizes the secure information capacity whose value can be
predicted analytically from the knowledge of only a few experimental parameters.
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Introduction. Entanglement is one of the defining properties
of quantum mechanics and is a key resource for many quantum
information protocols. Systems entangled in high dimensions
have recently been proposed as a resource for loophole-free
tests of nonlocality [1] in addition to providing dense coding
for quantum key distribution (QKD) [2–11]. It is therefore
important to understand the mechanisms that affect the degree
of entanglement in high-dimensional systems.

The characteristic signature of quantum entanglement is
the observation of correlations of spatially separated particles
in two or more mutually unbiased bases. One can deduce
that the particles are entangled provided that the correlations
violate appropriate bounds for separability [12]. The degree
of violation of the bound is an important quantity in certain
quantum information protocols such as QKD. Crucially, it is
known that entanglement is a precondition for secure quantum
key distribution [13] and that all entangled states contain secret
correlations [14].

Quantum key distribution is a protocol that allows two
parties, Alice and Bob, to generate a secure key with which
to encode a private message [15–17]. In the Ekert protocol for
QKD, Alice and Bob make use of pairs of entangled photons.
The protocol is secure against attacks by an eavesdropper,
who would necessarily have to disturb the system when
attempting to intercept the key. QKD implemented in a
high dimensionally entangled space provides the advantages
of increased information capacity and higher tolerance to
eavesdropping [2–11].

Recent work on high-dimensional spatial entanglement has
included studies of full-field position and momentum corre-
lations [18,19] and orbital angular momentum (OAM) and
angular position correlations [20–24]. Here, the large Hilbert
space of the spatial degree of freedom enables increased
information-carrying capacity of the photons compared the
two-dimensional polarization degree of freedom.

In this Rapid Communication, we demonstrate the relation-
ship between the degree of Einstein-Podolsky-Rosen (EPR)
entanglement of high dimensionally entangled photon pairs
and their maximal secure information-carrying capacity. The
discrete nature of the OAM states allows us to directly control
the size of the state space over a wide range. We find that,
because of unavoidable experimental imperfections, there exist
both an optimal dimension that maximizes the degree of

entanglement and a threshold dimension beyond which there
is no entanglement and therefore no secure information. By
extracting the key parameters that influence our experiment,
we provide a model to predict the maximal secure information
capacity of general high dimensionally entangled systems.

OAM states, angle states, and entanglement. We consider
the OAM modes of light for which there are, in principle, an
infinite number of discrete eigenstates. The OAM eigenstates,
associated with helical phase fronts exp(i�φ), are denoted by
|�〉. Restricting the size of the state space to a D-dimensional
space enables the photons to act as quDits. The specific
OAM states we consider in our experiment range from �min =
−[(D − 1)/2] to �max = [D/2], where [x] is the integer part
of x. Consequently, a basis mutually unbiased with respect to
the OAM basis is the angle basis in which the eigenstates are
defined by [25–27]

|φ〉 = 1√
D

�max∑
�=�min

ei�φ|�〉. (1)

Here, φ = 2πn/D and n is an integer that ranges from 1 to D.
The two photons produced through parametric down-

conversion (PDC) are entangled in the OAM and angle degrees
of freedom [20–23,28]. The entangled state in the OAM basis
is given by

|�〉 =
∞∑

�=−∞
c�|�A〉|−�B〉, (2)

where c� is the complex coefficient of the modes, the range of
|c�|2 is considered as the spiral bandwidth, and subscripts A

and B refer to the signal and idler modes. We probe the state
defined in Eq. (2), and we restrict the dimension of the state
space by projecting over a finite range of modes.

Entropic uncertainty relations. To establish the information
content present in a high dimensionally entangled system,
consider first the implications of an entropic form of the
uncertainty principle for a single particle and then for two
entangled particles. For a single particle, one form of the
uncertainty principle, which relates the entropies of conjugate
variables X and Y , is [29,30]

H (X) + H (Y ) � log2 D. (3)
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The Shannon entropy H (X), which is a measure of information
content, is defined by

H (X) = −
D∑

n=1

P (xn) log2 P (xn), (4)

where P (xn) is the probability of the outcome xn and D is the
dimension of the space. As it is not possible for a single particle
to violate inequality (3), it follows that one has complete
uncertainty regarding one variable [H (Y ) or H (X)= log2 D]
if one has complete knowledge about the other [H (X) or
H (Y ) = 0].

Now consider a pair of high dimensionally entangled
particles in systems A and B that exhibit correlations in
conjugate degrees of freedom. EPR entanglement can be
demonstrated by the violation of the entropic uncertainty
relation [12,22,31,32],

HInf(XB) + HInf(YB) � log2 D. (5)

Here, HInf(XB) = H (XB |XA) and HInf(YB) = H (YB |YA) are
the inferred entropies of B, given precise knowledge of the
state of A, for the variables X and Y . For a maximally
entangled system with no noise, perfect correlations will be
observed [HInf(XB) = HInf(YB) = 0], and the inequality will
be maximally violated.

Finally, consider the implications of Eq. (5) for the secure
information capacity of photons entangled in the OAM and
angle degrees of freedom. The inferred entropies, HInf (XB) and
HInf(YB), become HInf(�B) and HInf(φB) respectively, when we
associate X with the OAM basis and Y with the angle basis.
For the most general eavesdropping attack ( i.e., a coherent
attack) the EPR entanglement condition requires the violation
of Eq. (5) to have a secure information capacity greater than
zero [4,13,14]. Thus, we reformulate Eq. (5) to provide the
upper limit of the secure information capacity measured in
bits per photon pair, defined through the relation

�I � log2 D − [HInf(�B) + HInf(φB)]. (6)

We note that due to the symmetry of the system and the fact
that the OAM and angle measurements are mutually unbiased,
Eq. (6) is consistent with the general result of Berta et al., who
recently considered the uncertainty principle in the presence
of quantum memory [33–35].

Experiment. A brief summary of the experimental proce-
dure is as follows. First, we choose a pump power to set the
photon-pair generation rate. Second, we select a dimension
size to restrict the number of states in the Hilbert space.
Third, we record the coincidence rates for the projective
measurements over ranges �A and �B ∈ {�min, . . . ,�max}, and
φA and φB ∈ {2π/D, . . . ,2π}. From the resulting data set,
we calculate the secure information capacity via Eq. (6). The
second and third stages are repeated for a range of dimensions.
Finally, we repeat the above procedures for a range of different
pump powers.

To produce entangled photons, we use a 3-mm-long type
I BBO (β barium borate) crystal pumped with mode-locked
ultraviolet laser of 150 mW average power and λ = 355 nm
(Xcyte, JDSU); see Fig. 1. We use the first diffracted orders
of spatial light modulators (Pluto, Holoeye) in combination
with optical fibers, 10-nm bandpass filters (Chroma), and

SLMA

150 mW
at 355 nm

SLMB

L1

L2

L2 L3

L3 L4

L4

Coincidence
detection

BBOND

IF

IF

FIG. 1. (Color online) ND, neutral density filter; BBO, β barium
borate crystal; SLM, spatial light modulator; IF, interference filter;
L1, 150 mm; L2, 500 mm; L3, 1000 mm; and L4, 1.45 mm. The
combination of the lenses L1 and L2 (L3 and L4), act as a 4f imaging
system; thus the distance from the crystal to each SLM is 1300 mm
(the distance from the SLMs to the fibers is ∼2003 mm).

single-photon avalanche photodiodes (Perkin-Elmer) to make
projective mode measurements on the entangled photons. The
coincidence counting is performed with a timing resolution of
25 ns (National Instruments, PCI-6601). While faster timing
electronics are available, our coincidence electronics enables
us to investigate the interplay between coincidence rates
arising from correlated and uncorrelated events.

For state-space sizes ranging from D = 2 to D = 31, we
perform projective measurements for all possible combina-
tions of the eigenstates in both the OAM and angle bases. These
measurements are repeated for four separate pump powers of
0.47, 1.5, 47, and 150 mW. The coincidence counts in the OAM
basis are measured using phase-only holograms and single-
mode fibers. The angle-state coincidence counts are measured
using multimode fibers with the holograms on the SLMs
encoded with both the phase and intensity profile of the mode.

Results. Samples of the measured correlations are shown in
Fig. 2. The two identifiable sources of errors in the data are
cross-talk events and uncorrelated coincidences that arise from
a nonunity heralding efficiency and finite-timing coincidence
electronics. To quantify the degree of EPR entanglement, we
calculate HInf(�B) and HInf(φB) for all of the state space sizes
and pump powers; see Fig. 3. As a result of the reduced
uncorrelated coincidence count rate, the maximal violation
occurs with lowest pair generation rate (ND = 1.5). We can
see clearly that increasing the state-space size beyond a certain
threshold leads to an inability to confirm the entanglement.

Estimation of the secure information. In our model we
assume that we generate a maximally entangled state and that
the signal and idler arms have identical properties. Thus, the

FIG. 2. (Color online) Coincidence count rates for the OAM basis
(a) and the angle basis (b) for the case of D = 11. For this data set,
there is no neutral density filter placed between the pump and the
BBO crystal. The integration time for each measurement point is 1 s.
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FIG. 3. (Color online) Inferred entropy HInf (�B ) + HInf (φB ) as a
function of dimension D and pair generation rate. The green squares
represent the conditions where inequality (5) is violated and hence the
secure information is greater than zero; the red circles represent the
conditions where it is not violated and hence there can be no secure
information. The gray dashed lines are the theoretical predictions
based on our model.

only sources of error are accidental coincidences and cross
talk among measurement channels. The parameters that we
include are the heralding efficiency η, the single-photon rates
at each detector S, the finite resolution of the timing electronics
�t , and the cross-talk probability PX. We define cross-talk
counts as coincidences measured in the two channels adjacent
to the signal channel minus the anticipated uncorrelated
coincidences.

The joint detection of a photon at detector A and a photon
at detector B results in a coincidence. This can be either
a coincidence arising from an entangled photon pair or an
accidental coincidence arising from uncorrelated events with a
probability PU = S(1 − η)2�t . The coincidence rates arising
from the entangled pairs RC , cross talk RX, and uncorrelated
events RU are given by

RC = Sη, RX = RCPX, and RU = SPU . (7)

Given the assumptions that we have made, the inferred
entropies in each basis will be equal. Thus, the calculation
of the secure information only requires the inferred entropy
in one basis. Assuming P (xA) = P (xB) = 1/D, the inferred
entropy of XB can be expressed as

HInf(XB) = −RC + RU

RT

log2
RC + RU

RT

− 2
RX + RU

RT

× log2
RX + RU

RT

− (D − 3)
RU

RT

log2
RU

RT

. (8)

Here, the total coincidence rate is given by RT = RC +
2RX + (D × RU ).1 The first term of Eq. (8) can be associated
with coincidences arising from both entangled pairs and
uncorrelated events, the second with both cross-talk and
uncorrelated events, and the third solely with uncorrelated
events. To gain insight as to why we may not violate Eq. (5),
we see that to the first approximation, the third term in Eq. (8)
causes HInf(XB) to increase linearly as a function of the size

1For the case of D = 2, we include only the first two terms of Eq. (8)
and the second term is divided by two.
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FIG. 4. (Color online) Contour plots of the maximum secure
information capacity �I and information rate R�I (η = 5%, PX =
10%, and �t = 25 ns). The red dotted lines indicate the threshold to
achieve a positive �I and R�I , the green dashed line indicates the
analytical solution for the optimal dimension Dopt given singles rate
S, and the blue solid lines indicate the numerically found maxima.

of the space. As a result, the left-hand side of Eq. (5) will be
greater than log2 D beyond a certain dimension.

An estimate of the maximum secure information capacity
is given by inserting Eq. (8) into Eq. (6) [33]:

�I (S,η,PU ,PX,D) � log2 D − 2[HInf(XB)]. (9)

Equation (9) can be used to determine the experimental
conditions that are required to obtain a given level of per-
formance for various situations. For example, the information
rate R�I = SηD�I measured in bits per sec is most important
for QKD, whereas the degree of entanglement �I in bits per
photon pair is most important for tests of local hidden variable
theories. If one is concerned with maximizing R�I , one
operates in the maximal possible dimension D and then finds
the optimal singles rate Sopt. On the other hand, one operates
in the maximal possible dimension D with the lowest possible
singles rate S if one is concerned with maximizing �I .

For parameters appropriate to our experimental conditions,
Fig. 4 illustrates the influence of the singles rate and dimension
on the secure information capacity and maximum achievable
secure bit rate. Note that for a given singles channel rate, there
is a maximum in the secure information capacity that occurs
at a specific dimension. By solving ∂D�I = 0 for D, we we
find that

Dopt(PU,η) = η

PU

(√(
ln

η

PU

)2

+ 1 − ln
η

PU

)
, (10)

where we have made use of the approximation (η + PU )/PU ≈
η/PU (see the green dashed line in Fig. 4). Equation (10)
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provides the optimal dimension for both �I and, to first
approximation, the equation scales as 1/S.

The secure information capacity and maximum secure
information rate can fall to zero; the threshold for this behavior
is indicated in the figure by the red dotted lines. A secure
information capacity of zero occurs at high single-photon
rates, where uncorrelated coincidences dominate, and when
the dimension of the space is low, where cross talk dominates.
In addition, the maximum secure information rate is optimized
by maximizing D and then finding the appropriate singles rate
S. As ∂SR�I = 0 is not easily solved for S, we numerically
solve to find the optimal singles rate for a given dimension.

Conclusions. We experimentally demonstrate the rela-
tionship between state-space size and the degree of EPR

entanglement for the case of high dimensionally entangled
photons. By relating the degree of entanglement of the photon
pairs to the maximal secure information-carrying capacity,
we find that, because of experimental limitations, there is an
optimal dimensionality that maximizes the secure informa-
tion capacity. Under the conditions of our experiment, the
maximum secure information per photon �I is 1.3 bits. The
model presented here provides a clear pathway for obtaining
even larger values of �I , for example by using coincidence
circuitry with a smaller time window �t .
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