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Resonant modulational instability and self-induced transmission effects in semiconductors:
Maxwell-Bloch formalism

Oleksii A. Smyrnov* and Fabio Biancalana
Nonlinear Photonic Nanostructures Group, Max Planck Institute for the Science of Light, Günther-Scharowsky Straße 1/26,

D-91058 Erlangen, Germany
(Received 25 October 2011; revised manuscript received 17 January 2012; published 6 February 2012)

The nonlinear optical properties of semiconductors near an excitonic resonance are investigated theoretically by
using the macroscopic J model [Östreich and Knorr, Phys. Rev. B 48, 17811 (1993); 50, 5717 (1994)] based on the
microscopic semiconductor Bloch equations. These nonlinear properties cause modulational instability of long
light pulses with large gain and give rise to a self-induced transmission of short light pulses in a semiconductor.
By an example of the latter well-studied effect, the validity of the used macroscopic model is demonstrated, and
good agreement is found with both existing theoretical and experimental results.
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I. INTRODUCTION

The generation of coherent light at frequencies that are not
easily reachable by lasers, and resonant but almost lossless
soliton-like light pulse propagation in a semiconductor are
remarkable and useful optical phenomena. It has been recently
shown1 that the first effect can be, in particular, realized
by using the modulational instability2 (MI) of a long light
pulse (continuous wave) propagating in a semiconductor and
resulting in the parametric growth of equidistant spectral
sidebands. The second effect, the so-called self-induced trans-
mission (SITm),3 has been demonstrated both numerically and
experimentally for short intense light pulses.3–6 Both of these
effects originate from the exchange Coulomb exciton-exciton
interaction, which results in the nonlinear interplay of a
semiconducting medium with a light pulse spectrally centered
near the excitonic resonance.

Like most of the nonlinear optical phenomena in semi-
conductors, the mentioned effects can be investigated the-
oretically by using the microscopic semiconductor Bloch
equations (SBEs),7,8 which, however, are rather complicated
for both an analytical and a numerical treatment and require
large computational facilities, being based on a many-body
formalism. To obtain any relatively simple analytical results,
either the limiting behavior of SBEs (Refs. 9 and 10) or the
approximate but macroscopic models of these equations11,12

have to be considered. One of such macroscopic models,
the so-called J model, was proposed in Refs. 9 and 11
where it was demonstrated that the model sufficiently well
reproduced results obtained by numerical solution of the full
set of microscopic SBEs for a certain range of incident light
pulse intensities. Here, we apply this model to study the
mentioned optical effects. Unlike a previous paper,1 where
we have investigated MI and solitary waves formation in
semiconductors by using just a single nonlinear equation
for the semiconductor polarization, the present formalism
also describes the dynamics of electron-hole density (or
equivalently, of the so-called inversion) in a semiconductor
and, thus, does not have the restrictions (i.e., weak excitation
condition) of the model of Ref. 1.

The structure of the present paper is as follows. On the basis
of a macroscopic analog of SBEs developed within the J model
and coupled to Maxwell’s equations for the electromagnetic

field of the incident pulse, we derive the system of governing
equations (Sec. II). Then, we use this system to analyze the
stability of a long light pulse with regard to small perturbations.
As a result, we have found a strong MI of the pulse spectrum
with a very large gain. Also, all the results were confirmed
by a direct numerical simulation of the system of governing
equations without additional approximations (Sec. III). To
demonstrate the validity of the used model, we also have
applied it to describe the well-studied SITm effect.3 After per-
forming the slowly varying envelope approximation (SVEA),2

both the analysis of the governing equations and their
numerical simulations revealed good agreement with known
theoretical10,11 and experimental5,6 results (Sec. IV). CdSe was
selected as a representative material in this paper because it was
a semiconductor utilized in known experiments on SITm.3,5,6

II. MACROSCOPIC SEMICONDUCTOR
MAXWELL-BLOCH EQUATIONS

In Refs. 9 and 11, it has been demonstrated that, in the
coherent regime and for certain conditions, the complete
system of microscopic SBEs (Refs. 7 and 8) can be sufficiently
well approximated by a set of equations for macroscopic
variables that are much more suitable for an analytical
treatment. Such macroscopic variables are the dimension-
less complex envelope p of the polarization field P(z,t) =
{p(z,t) exp[ikz − iωt] + c.c.}/2 and the dimensionless inver-
sion w(z,t) = 2Neh(z,t) − 1 of a semiconductor, where Neh is
the normalized electron-hole density (Neh ∈ [0,1]).11 Here, it
is assumed that light is either guided or polarized, and z is the
longitudinal coordinate. In complex form, this set of equations
can be given as{

∂tp = −i[�p + Jp(w + 1) + �w],
∂tw = 2i[�p∗ − �∗p],

(1)

where � = ωx − ω defines the detuning of the pulse central
frequency ω from the 1s-exciton resonance ωx, � = dcvE/h̄

is the Rabi frequency, while E is the complex envelope of
electric field E(z,t) = {E(z,t) exp[ikz − iωt] + c.c.}/2, and
dcv is the interband dipole matrix element. J is a phenomeno-
logical model parameter, which originates from the exchange
(renormalization) terms of SBEs. In the low-excitation regime,
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in which � � ωb (ωb is the 1s-exciton binding frequency), J

was obtained on a microscopic level and was defined in Ref. 9.
Within the unscreened jellium model, one finds J = 13ωb/3.
We assume that the use of this definition of J in system
(1) is well justified, at least, for the low-excitation regime.9

This is the so-called J model, and it has been shown11 that it
reproduces results obtained by numerical solution of the full
system of microscopic SBEs in the range of incident pulse
intensities, which corresponds to the condition � � ωb. A
system similar to set (1) also was obtained from SBEs in
Ref. 12. However, here, we prefer to use the formalism of the J
model, in which, unlike Ref. 12, the electric field is considered
separately from the exchange (renormalization) terms of SBEs,
which, in turn, are included in the model parameter.9

System (1) is more general than the nonlinear equation for
the macroscopic polarization field previously used in Ref. 1 to
investigate nonlinear optical properties of semiconductors. Set
(1) can be reduced to the previous case without inversion1 in the
low-excitation regime under the well-known approximation
w � −1 + 2|p|2. For J = 0, set (1) is equivalent to the
optical Bloch equations (OBEs),13 which govern nonlinear
light propagation in systems of independent two-level atoms.
A more detailed discussion on a limiting behavior of system
(1) solutions will be given in Sec. IV.

Obviously, system (1) is coupled to the Maxwell
equations for the electric and magnetic fields, H(z,t) =
{H (z,t) exp[ikz − iωt] + c.c.}/2. Written for envelopes with-
out any additional approximations and in a proper dimension-
less form together with set (1), they are the governing equations
in this paper:⎧⎪⎪⎨

⎪⎪⎩
∂xη = (iω′ − ∂T )(ψ + λp) − ik′η,

∂xψ = (iω′ − ∂T )η − ik′ψ,

∂T p = −i[(�′ − iγ ′
x)p + J ′p(w + 1) + ψw],

∂T w = 2i[ψp∗ − ψ∗p] − γ ′
r (w + 1).

(2)

In the literature, such systems are referred to as the
semiconductor Maxwell-Bloch equations (SMBEs). Here,
we have performed the next scalings and redefinitions:
η = H/H0, ψ = �t0, x = z/z0, T = t/t0, ω′ = ωt0, k′ = k

z0,�
′ = �t0, J ′ = J t0, z0 = ct0/n, H0 = h̄n/(dcvt0), λ = ã

t0, γ
′
x = γxt0, γ ′

r = γrt0, c is the velocity of light in a
vacuum, n is the nonresonant background refractive index.
ã = 2d2

cv/(πa3
0h̄ε0εB) is the photon-exciton coupling

parameter, which naturally appears in Maxwell’s equations
after transition to the indicated dimensionless variables,
εB = n2 is the bulk background dielectric constant, ε0 is the
vacuum permittivity, and a0 is the 1s-exciton Bohr radius.
Parameter ã defines the width of the forbidden frequencies
region in the dispersion relation of a photon-exciton coupled
state.8 Here, the exciton damping γx and relaxation γr

parameters are introduced phenomenologically, and t0 is an
arbitrary time-scaling parameter, which is chosen properly in
the following sections.

III. MODULATIONAL INSTABILITIES

In analogy with Ref. 1 using SMBEs (2), we perform
the MI analysis2—we analyze the linear stability of a
long light pulse propagating in a semiconductor with
respect to small perturbations. For this purpose, we
substitute the perturbed fields and polarization envelopes
{ψ ; η; p}(x,T ) = [{ψ0; η0; p0} + {a; g; b}(x,T )] exp[iqx] as
well as the perturbed inversion w(x,T ) = w0 + d(x,T )
into system (2). After that, we define the small
perturbations as {a; g; b}(x,T ) = {a1; g1; b1} exp[iκx −
iδT ] + {a2; g2; b2} exp[iδT − iκ∗x], while d(x,T ) =
2d0Re exp[iκx − iδT ] because the inversion is a real
function. Then, requiring that system (2) is solvable, we
obtain, within the first-order perturbation theory,2 the
dispersion relation κ(δ) for perturbations:

∣∣∣∣∣∣∣∣∣∣∣∣∣

(ω′ + δ)2 − (q + κ)2 0 λ(ω′ + δ)2 0 0

0 (ω′ − δ)2 − (q∗ − κ)2 0 λ(ω′ − δ)2 0

p∗
0 −p0 −ψ∗

0 ψ0 δ/2

w0 0 �′ + J ′(w0 + 1) − δ 0 J ′p0 + ψ0

0 w0 0 �′∗ + J ′(w0 + 1) + δ J ′p∗
0 + ψ∗

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3)

where q = ω′{1 − λw0/[�′ + J ′(w0 + 1)]}1/2, κ is the per-
turbation wave number, and δ is the relative perturbation
frequency. By using the relation between the steady-state am-
plitudes p0 = −ψ0w0/[�′ + J ′(w0 + 1)] and a conservation
law w2 + 4|p|2 = 1, which follows from system (1), one can
obtain a fourth-order algebraic equation for w0:(

w2
0 − 1

)|�′ + J ′(w0 + 1)|2 + 4w2
0|ψ0|2 = 0. (4)

This defines w0 for given ψ0 and system parameters. Among
its solutions, we select the real ones (either two or four):
w0 ∈ (−1; 1). In most of the cases, there are only two real
solutions—a negative and a positive one, and they correspond

to a semiconductor, which was excited relatively weakly
or strongly before the incident pulse arrival. However, of
course, for certain combinations of parameters, there exist
four different real solutions, each of which corresponds
to a different excitation regime. Therefore, setting certain
incident pulse intensity and detuning and choosing one of the
mentioned excitation regimes, we completely determine the
dispersion relation (3) as all the other parameters are defined
by a medium. It is important to note, that, as in Ref. 1, the
excitonic damping is naturally taken into account in Eq. (3)
by a proper final redefinition �′ → �′ − iγ ′

x. After this, the
steady-state amplitudes and parameter q also become complex,
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FIG. 1. (Color online) The MI gain G(δ) spectrum according to
Eq. (3) for ψ0 = 5, �′ = 1.5, and γ ′

x = 0.267. (a) For J ′ = 65.4 and
w0 � −1. (b) The same w0 as in (a) but smaller J ′ = 6.54. (c) For
J ′ = 16.35 and w0 � −1. (d) The same J ′ as in (c) but different
w0 � 1. Insets in (a) and (d) show the same gain spectra but for a
smaller vertical scale. ω′ is positioned at the origin.

resulting in the appearance of conjugated terms in Eq. (3) after
the MI analysis.

In the frequency regions, for which Im κ(δ) < 0 is valid,
the exponential growth of perturbations takes place, defining
the MI gain spectrum G(δ) = 2 max |Im κ(δ)|. Since Eq. (3) is
of fourth order in κ , among its solutions, we select, for a given
δ, the one with the maximum absolute value of the gain. The
MI gain spectra for different J ′ are given in Fig. 1, where high
resonant gain peaks clearly manifest themselves. The nature
of these resonant peaks, which are strongly affected by the
precise value of γ ′

x, is discussed in Ref. 1. A possibility to
vary J ′ due to screening effects is shown in Sec. IV, whereas,
here, we only demonstrate how the change in J ′ can influence
the MI gain spectrum [compare Figs. 1(a) and 1(b)]. Increase
in J ′ can lead to a shift of MI gain peaks farther from the
incident pulse central frequency ω′ and to their slight gain
enhancement [Fig. 1(a)]. In Figs. 1(c) and 1(d), for a fixed
J ′ (and other parameters), we compare the MI gain spectra
in different excitation regimes. In the regime of a preexcited
semiconductor [w0 � 1, Fig. 1(d)], the MI gain peaks are
shifted essentially farther from ω′ than those in the case of the
initially unexcited medium [w0 � −1, Fig. 1(c)]. However,
depending on the selected parameters, the opposite behavior
also is possible. It also is worth mentioning that, in the case
when all four solutions of Eq. (4) are real, one of them usually
corresponds to a regime with zero gain—the pulse is stable
with respect to small perturbations.

To confirm results of the mentioned analysis, we also have
performed direct numerical simulations of the full system
(2) by using a fourth-order Runge-Kutta algorithm with the
following initial conditions: ψ(x = 0,T ) is a wide super-
Gaussian pulse, η(x = 0,T ) = ψ(x = 0,T ), p(x = 0,T =
0) = 0, and w(x = 0,T = 0) = −1, what means that the
medium is not excited before the field arrival [see Fig. 2(a)].
A comparison with the respective analytical prediction on
the MI gain maxima positions indicates excellent agreement
[Fig. 2(b)]. The regime of a preliminarily excited medium
also was realized numerically by using the initial condition
w(x = 0,T = 0) � 1 and demonstrated qualitatively similar

x

0

1

2
(a)

G

(b)

Sideband Sideband

Pump

FIG. 2. (Color online) (a) Numerically simulated long pulse
spectral evolution according to system (2); the initial pulse is
ψ(x = 0,T ) = ψ0 exp[−(2T/Tw)2m], ψ0 = 3, Tw = 200, and m =
20, while the other parameters are as follows: �′ = 1.5, J ′ = 1.96,
and γ ′

x = 0.05. (b) The corresponding analytical prediction on the MI
gain maxima positions by Eq. (3). Inset in (b) shows the same gain
spectrum but for a smaller scale of G. ω′ is positioned at the origin.

spectral evolution in accordance with the analytical prediction
on the sidebands positions. At this point, for calculations,
we should specify the representative material, which, in this
paper, is CdSe. For this semiconductor at low temperatures
(e.g., 8 K in Ref. 5 and 2 K in Ref. 14), at which exci-
tonic effects are essential:5,14 h̄ωx = 1835, h̄ωb = 15, h̄ã = 1,
and h̄γx = 0.265 meV, γr < γx according to Ref. 14, a0 �
5.32 nm, dcv/e � 0.343 nm, and εB = 9. Now, we choose
t0 = 1/ã � 0.67 ps and, for simulations, remove a large
number ω′ ∼ ωx/ã from system (2) by multiplying its first
two equations by λ/ω′ and performing a space rescaling z0 →
z0λ/ω′ ∼ c/(nω) � 0.04 μm. From Fig. 1, in accordance with
this scaling, one can estimate, as in Ref. 1, the semiconductor
MI gain ∼100 μm−1, which is huge in comparison with that
of, for example, silica optical fibers (∼10 km−1).2

It is interesting to note that a MI gain spectrum qualitatively
similar to the considered ones can be obtained even for J = 0
(the case of OBEs),13 something that was impossible in the
model of Ref. 1.

IV. SELF-INDUCED TRANSMISSION SOLITONS

To demonstrate the validity of the used macroscopic model,
we now apply it to a well-studied nonlinear optical effect. The
SITm effect in semiconductors3 is an analog of the known
self-induced transparency (SIT) effect in idealized systems of
two-level atoms.13,15 Although both of them consist in almost
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lossless soliton-like propagation of short (subpicosecond in
semiconductors) light pulses in a resonant medium, they
essentially differ, what is discussed in detail, for example, in
Refs. 3–6. Here, we only briefly remind that, due to strong
influence of Coulomb exchange interactions between the
Wannier excitons in semiconductors, which are not inherent to
electrons in atomic systems, the Rabi frequency of the incident
field approximately doubles16 in a semiconducting medium
when it is about � ∼ ωb.10,11 In particular, this results in a
substantial deviation from the so-called area theorem, which is
known from the theory of a light pulse propagation in systems
of two-level atoms and mainly states that, only for an incident
pulse of an area θ = 2

∫ ∞
−∞ |ψ |dT |x=0 equal to 2π the SIT

effect takes place—pulse is stable during the propagation. A
pulse with an area, which is an integer multiple of 2π , should
undergo a breakup into 2π pulses.13 Such phenomena also
have been found in semiconductors but for pulses with area
θ � π and their respective multiples.5,6,17 Such experimental
and numerical observations (based on microscopic SBEs)
have never been explained in clear physical terms in the
literature—from which one of the motivations of the present
paper originates.

Here, we demonstrate the latter effect using system (2),
changing the variable τ = T − x/V (V is the dimensionless
pulse group velocity) and applying the SVEA.2 SMBEs (2)
transform in this way into the system:⎧⎨

⎩
∂τψ = −ip,

∂τp = −i[(�′ − iγ ′
x)p + J ′p(w + 1) + ψw],

∂τw = 2i[ψp∗ − ψ∗p] − γ ′
r (w + 1),

(5)

where we set t0 = √
α and α = 2(ãω)−1(1/V − 1) > 0 as

V � 1.5 Following Ref. 18, where light propagation in a dense
medium of interacting dipoles has been investigated by using
a system analogous to set (5), we briefly reproduce an exact
solution of Eqs. (5) in the coherent limit (γx,γr = 0). Evidently,
when using the first equation in set (5), the last one becomes
integrable, and hence, w = −1 + 2|ψ |2. Therefore, the whole
set (5) reduces to a single equation for ψ only:

∂2
τ ψ + i(�′ + 2J ′|ψ |2)∂τψ + (2|ψ |2 − 1)ψ = 0.

Looking for its solution in the form ψ(τ ) =
ψ̃(τ ) exp[iϕ(τ )], ψ̃ ≡ |ψ |, we finally come to a couple of
equations:

∂2
τ ψ̃ + Aψ̃5 + Bψ̃3 − Cψ̃ = 0, (6a)

ϕ = −�′τ
2

− J ′

2

∫ τ

−∞
ψ̃2dτ, (6b)

where A ≡ 3J ′2/4, B ≡ �′J ′ + 2, and C ≡ 1 − �′2/4.
Equation (6a) contains the so-called cubic-quintic nonlinear-
ity; it is integrable and has a solitonic solution:19

ψ̃ = 2
√

C/B

(1 +
√

1 + 16AC/(3B2) cosh[2
√

Cτ ])1/2
. (7)

The parameter space for this soliton is |�′| < 2 and �′ >

−2/J ′—it can form only if the incident pulse is centered
spectrally very close to the excitonic resonance. The area of
soliton (7) θJ = 2

∫ ∞
−∞ ψ̃ dτ tends to 2π only if J ′ → 0 and

ψ̃ → √
Csech[

√
Cτ ], otherwise, almost for the whole range

| |2

|p|2

w

(a)

0

1

1

0

1

1

| |2

|p|2
w

(b)

0

1

1

| |2

|p|2 w

(c)

(d)

a

b

c

J

J

FIG. 3. (Color online) (a) Temporal shapes of |ψ |2 (solid), |p|2
(dashed), and w (dot-dashed line) in accordance with Eq. (7) for
�′ = 1 and J ′ = 3. (b) The same functions but for �′ = 0 and J ′ = 2.
(c) The same but for �′ = −1 and J ′ = 1. (d) Dependence of the
pulse area θJ on the value of J ′ for �′ = {−1; 0; 1}—dashed, solid,
and dot-dashed lines, respectively. Gray dots indicate the pulse areas
for the considered cases. The parameter space restrictions of soliton
(7) are clearly demonstrated by the example of �′ = −1.

of parameters θJ < 2π (see Fig. 3). This, in accordance with
known theories4,17 and experiments,5,6 clearly demonstrates
within the used model that exchange Coulomb interactions be-
tween excitons, from which parameter J actually originates,9

can reduce the area of a SITm soliton in a semiconductor [see
Fig. 3(d); an explanation on why J can vary is given further
in this section].

To support the above-mentioned analytical conclusions, we
also have performed direct numerical simulations of system
(5) after returning to the x,T variables and by employing a
numerical algorithm similar to that described in Sec. III. In
Fig. 4(a), a propagating pulse of a doubled area of θJ � 2.2π

[parameters are given in Fig. 3(a)] undergoes a breakup in
two well-separated pulses of areas θJ � 1.2π and � 1π [see
Fig. 4(b)], what is in good accordance with the prediction on a
SITm soliton shape and area ∼1.1π given by Eq. (7) [compare
with Figs. 3(a) and 3(d)]. Also, we should notice that the soliton
shown in Fig. 3(c) (�′ = −1, J ′ = 1) was unstable under the
propagation.

Now, in order to perform a more detailed limiting analysis
of solution (7) and to obtain some quantitative estimates, we
return to the microscopic definition of model parameter J ,
which, as we have already mentioned, is given in Ref. 9
(J = β1/2, formula 12) for the low-excitation regime � � ωb.
In regimes of stronger excitation, for higher electron-hole
densities, the screening of interparticle Coulomb interactions
in a semiconductor becomes important.7 Here, we assume that
the microscopic definition of J from Ref. 9 remains valid even
in those regimes, but for the calculation of J within the jellium
model instead of the bare Coulomb interaction potential and
the respective 1s-exciton hydrogenic wave function, we use
a proper screened potential and the corresponding ground-
state eigenfunction of the Schrödinger equation. We utilize a
natural statically screened Coulomb interaction potential—the
Yukawa potential:8 v(r) = e2(4πε0εB)−1 exp[−κsr]/r , where
r is the radius-vector modulus and κs is the screening wave
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| |

|p|

w

T

0

–1

1
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2.2 ~1.2 ~1

(a)

T

J

0 0 20 40 60

2
(b)

~1.2

~1

FIG. 4. (Color online) (a) Numerical demonstration of a pulse
breakup under propagation by using system (5). The electric field |ψ |
(solid), the polarization |p| (dashed), and the inversion w (dot-dashed
line) after a propagation of x = 60 are shown. The initial double pulse
(dotted line) is ψ(x = 0,T ) = 2ψ̃(x = 0,T ) exp[iϕ(x = 0,T )] in
accordance with Eqs. (6b) and (7), whereas, the parameters are �′ = 1
and J ′ = 3 [similar to those in Fig. 3(a)]. The areas θJ of electric-field
pulses are indicated. (b) Changes in the total |ψ | pulse area θJ with
time after the propagation. The regions, which correspond to the areas
of formed pulses, are indicated by the gray bars.

number. Accurate analytic approximations of the respective
ground-state eigenvalue and eigenfunction are given, for
example, in Ref. 20. Phenomena related to excitons take place
at rather low temperatures, therefore, all the experiments on
the SITm in semiconductors were performed in this range of
temperatures (e.g., 8 K, such as in Refs. 5 and 6). That is why
here we use the Thomas-Fermi form of the screening wave
number8 κs = [μe2(3Nx/π )1/3/(πε0εBh̄2)]1/2, where μ is the
exciton reduced effective mass (it is 0.0969me for CdSe)5 and
Nx is the total density of excitons (e-h pairs) generated by an
incident pulse. Here, we estimate it as Nx ∼ I/(cnh̄ωx); I =
cnε0(h̄�)2/(2d2

cv) is the incident pulse intensity.2 In this way,
we come to an approximate but natural and explicit relation
between the model parameter J and the incident field Rabi
frequency—J can essentially decrease when �, Nx, and κs

are large enough and the screening effects become significant.
The limiting behavior of the SITm solitons, thereby, is

straightforward. For the high-excitation regime (� � ωb), the
screening is strong, electron-hole pairs are almost decoupled,
and J → 0, whereas, θJ → 2π in complete accordance with

the results of analysis of microscopic SBEs limiting behavior
in Ref. 11. For the low-excitation regime (� � ωb), the
screening effects are negligible, and J → 13ωb/3, whereas,
θJ becomes even smaller than unity, again in accordance with
the results of analysis of the respective limiting behavior of
SBEs.10 However, we should note that, in the used model, J

remains finite, and θJ � 1 even for � below the low-excitation
regime, whereas, in Ref. 10, in this case, θJ � 1. This indicates
a restriction of the used model—� should not be vanishing.
Here, and further in this section, calculations are performed
by using data on t0 = √

α = (τ−2
w + �2/4)−1/2 = 0.8 ps (τw

is the soliton temporal width) and � = 0, taken from the
experiment on the SITm in CdSe.5

In the intermediate case � ∼ ωb (for CdSe this corresponds
to I ∼ 750 MW/cm2), for which an approximate doubling
of the incident-field Rabi frequency should occur,10,11 we
estimate J and θJ using typical incident pulse intensi-
ties employed in experiments on the SITm in CdSe:5,6

I ∼ 100 MW/cm2. According to the developed formalism,
this yields Nx � 3.8 × 1015 cm−3, 1/κs � 8.94 nm, and J �
0.236ωb, and hence, θJ � 1.08π (e.g., θJ ∈ [0.82,1.48]π for
I ∈ [50,200] MW/cm2). Therefore, in good accordance with
the known experiments,5,6 for the considered intensities range,
the SITm effect indeed takes place for incident pulses of areas
θJ � π .

V. CONCLUSIONS

To summarize, a strong resonant MI effect in semicon-
ductors has been demonstrated analytically on the basis of
a known simple semiclassical macroscopic model,9,11 which
originates from microscopic SBEs. New ways to shift the
MI gain peaks and, therefore, the generated frequencies
have been discussed. The analytical results are confirmed
completely by direct numerical simulations of the governing
equations. The validity of the used macroscopic model has
been shown by studying the SITm effect in semiconductors, for
which good agreement with both existing theoretical10,11 and
experimental5,6 results has been found. Further investigation
of nonlinear light-semiconductor interplay beyond the SBEs
formalism (e.g., see Ref. 21) can lead to a revelation of novel
aspects of the studied phenomena.
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