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Abstract. Reliable detection of surface creases defined via loci of the principal
curvatures along their corresponding curvature lines is important for many geo-
metrical and graphical applications. Multivariate analogues of such creases have
received a considerable attention in recent studies on multidimensional image vi-
sualization and analysis. In this paper, we propose a numerically efficient and
reliable approach for estimating multidimensional curvature extremalities and de-
tecting ridge-like structures in multidimensional images. The approach is based
on local fitting of hypercubic polynomials and calculating their extremalities by
using newly derived formulas. We also propose a new thresholding scheme for re-
moving spurious and unessential extremalities. We test our approach by detecting
crease structures on 2D and 3D real-world images and demonstrating their ability
to capture salient geometric image features.

Key Words: Curvature extremalities, multidimensional ridges and creases, multi-
variate image analysis.

MSC 2010: 68U05, 53A30

1. Introduction

Accurate and robust detection of surface and creases and associated skeletal structures is
important for many of computer graphics, geometric modeling, and medical imaging applica-
tions [9, 4, 7, 13]. Recent progress in multidimensional and multivariate data acquisition calls
for developing advanced shape interrogation methods. In particular, extracting crease struc-
tures turns out to be useful for computational fluid dynamics and medical imaging purposes
[18, 17, 12] (see also references therein).
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In contrast to the so-called height ridges [8] and their multidimensional generalizations
[4, 18, 17], the principal direction ridges are rarely used for multivariate data analysis. The
principal direction ridges possess beautiful mathematical properties [10, 14], have numerous
2D surface-based analysis and modeling applications [9, 7, 13]. However their multivariate
extensions may seem too difficult to deal with. In this paper 1, we develop a computational
theory of multivariate principal direction ridges.

Our approach

In this work, we introduce a multivariate analogue of the principal direction ridges and propose
an efficient numerical procedure for estimating multidimensional curvature extremalities. Our
ridge detection method can be considered as an extension of our cubic-polynomial fitting
scheme developed in [20] for tracing salient curvature extrema on 2D surfaces approximated by
dense triangle meshes, see Fig. 1. We first derive a simple (and novel) formula for extremalities
of hyper-polynomial surfaces, and then the extremalities of images are estimated by local
fitting hyper-polynomial patches using our formula. We also introduce a differential invariant
measure based on the curvature extremalities (we call it cyclidity), and use it for detecting
salient ridge-like image structures.

Figure 1: Creases extracted on surface meshes by using the method of [20]. Red and blue
lines correspond to the salient extrema of principal curvatures along their curvature lines (a
subset of principal direction ridges called crest lines), respectively.

In our study, we deal with more difficult problems than those considered in [4, 18, 17] and
study pure geometric surface ridges and their multidimensional analogues. Such ridges are
invariant w.r.t. the Euclidean motions, scale changes, and generalized inversions (conformal
invariant), and, therefore, being extracted from a multidimensional image, convey intrinsic
information about image geometry.

Paper organization

The rest of paper is organized as follows. Sections 2 and 3 define curvature extremalities and
cyclidity measures for multidimensional surfaces, respectively. We derive a simple formula of
the extremalities in Section 4. Our algorithm of calculating the extremalities and its numerical
experiments are given in Sections 5 and 6, respectively. We conclude the paper in Section 7.

1It is an extension of our previous work [19]. The main difference from [19] is our thresholding scheme
consisting of the conformal invariant differential quantity (1) and its discrete implementation and numerical
experiments.
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2. Curvature extremalities

Consider a smooth hyper-surface (d-dimensional manifold) S in R
d+1. Let us assume that the

hyper-surface is defined parametrically, S = S(x) where the vector of parameters

x = (x1, x2, . . . , xd)

lives in R
d. The basic tangent vectors of S at x are given by Si =

∂S

∂xi

, i = 1, . . . , d. The unit

normal vector of S is defined by the so-called wedge product of S1 . . . ,Sd

n =

∧
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|
∧

(S1, . . . ,Sd)|
,

∧

(S1, . . . ,Sd) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

S
(1)
1 . . . S

(d+1)
1

...
. . .

...

S
(1)
d . . . S

(d+1)
d

e1 . . . ed+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where {e1, . . . , ed+1} is the coordinate basis and
[

S
(1)
i , . . . ,S

(d+1)
i

]

are components of Si w.r.t.

the coordinate basis, i = 1, . . . , d.

Let us define the curvature tensor (generalization of the Waingarten map) of S by the
d × d matrix W = IIg−1, where the Riemannian covariant metric tensor g is given by the

i-th row and j-th column element gij =
∂S

∂xi

·
∂S

∂xj

, and the i-th row and j-th column element

of the matrix II is defined by IIij =
∂2S

∂xi∂xj

· n. Here a · b is the inner product between a

and b. The quadratic forms g and II are natural analogues of the two-dimensional first and
second fundamental forms.

The d eigenvalues k1 ≤ k2 ≤ · · · ≤ kd and their corresponding eigenvectors {t1, t2, . . . , td}
of W give us the principal curvatures and directions of S.

We introduce generalized curvature extremalities of S as ei = ∂ki/∂ti = ∇ki · ti, where
∇ = {∂/∂x1, ∂/∂x2, . . . , ∂/∂xd} is the standard gradient operator. Zero-crossings of ei,
i = 1, 2, . . . , d describe principal direction ridges on S.

3. Dupin’s cyclides

The extremalities are closely related to a special family of surfaces called Dupin’s cyclides
which have been intensively studied in connection with various shape modeling tasks [3, 5].
The classical 2D Dupin’s cyclides live in three-dimensional space and can be characterized
by the conditions e1 = 0 = e2. A straightforward generalization leads us to the notion of
Dupin hyper-surfaces defined by a system of d equations ei = 0, i = 1, 2, . . . , d and, therefore,
constituting hyper-surfaces in R

d+1.

Let us introduce a cyclidity by

C =
d
∑

i

|ei|.

The cyclidity measures how a point on S is close to the Dupin hyper-surfaces. Recall the
zero-crossings of extremalities correspond to the surface creases. On the other hand, the
cyclides do not contain surface creases in general. Thus, the 2D analogue of cyclidity was
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Input Creases Tc > 0.15 Tc > 2.8

Input Creases Tc > 1 Tc > 2 Tc > 3 Tc > 4 Tc > 5

Figure 2: Filtering phantom surface creases (crest lines) via the conformal invariant differential
quantity Tc [20]. The images show the filtered surface creases whose Tc is greater than the
given thresholds.

employed in [20] to filter out the phantom surface creases around the surface parts close to
the cyclides:

Tc =

∫

√

|e1|+ |e2|ds,

where the integral is calculated along each extracted creases, ds is the arclength element of the
crease, and Tc is invariant w.r.t. the conformal transformations [20]. Figure 2 demonstrates
how well our threshold Tc work to filter our phantom surface creases around the surface parts
close to the Dupin’s cyclides.

In this paper, we use the cyclidity together with {ei} for extracting salient ridge-like image
structures by employing the following integral (1).

TRd =

∫

(

d
∑

i=1

e2i

)d
4

dA, (1)

where dA =
√

1 +
∑d

i=1 S
2
i dx1dx2 . . . dxd is the area element of S. We model that (1) is

also the conformal invariant differential quantity, since the ridges are invariant under the
conformal transformations.

4. Formula of extremalities

Consider a multidimensional image xd+1 = I(x), x = (x1, x2, . . . , xd). For the sake of simplic-
ity, we deal with single-modality images, i.e., the image intensity I is a scalar function (our
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results can be easily extended to multichannel images). Note that the equation xd+1 = I(x)
defines a hyper-surface in the extended spatial-tonal image space Rd+1 = {(x1, . . . , xd, xd+1)}.
Our main task now is to achieve fast and robust estimation of the extremalities {ei}. Note
that the curvature extremalities are shift and rotation invariant. The following formula is
very useful because it significantly reduces computational time needed for the curvature ex-
tremalities.

Main formula

Assume that the coordinates in R
d+1 are chosen such that the origin of coordinates 0 is

situated on S = {xd+1 = I(x)} and the hyperplane formed by the coordinate axes x1, . . . , xd

is orthogonal to S at 0. Then the extremality e(x) of S at x = 0 is given by

e =

d
∑

i,j,l=1

Iijltitjtl, (2)

where Iijl =
∂3I(x)

∂xi∂xj∂xl

are third-order partial derivatives of I(x) and t = (t1, t2, . . . , td) is the

principal direction corresponding to the curvature extremality e.

Derivation of main formula

Let
t = (t1, t2, . . . , td+1) and n = (n1, n2, . . . , nd+1)

be a principal direction and the unit normal of S at (x, xd+1) ∈ R
d+1, respectively. Let us

represent S in implicit form

0 = I(x)− xd+1 ≡ F (x, xd+1).

Similar to the 3D case (see, for example, [11, 1]) the extremality e of

F (x, xd+1) = 0

is given by

e =
∂k

∂t
=

d+1
∑

i,j,l=1

Fijltitjtl + 3k
d+1
∑

i,j=1

Fijtinj

|∇F |
, (3)

where Fij =
∂2F

∂xi∂xj

and Fijl =
∂3F

∂xi∂xj∂xl

.

Since F (x, xd+1) ≡ I(x) − xd+1, we have Fi d+1 = 0. Further, ∇F ≡ (∇
x
I,−1) and

∇
x
I(0) = 0. Thus |∇F (0)| = 1. Note that the sum of Fijtinj in (3) the indices vary from 1

to d and, therefore, the sum vanishes because only the first d components of n(0) are zeros.
Formula (2) is proved.

For the sake of completeness, we present here a derivation of (3). Assume that the
components of the surface orientation normal are given by ni = −Fi/g, where g = |∇F | is the
absolute value of the gradient. Let k, t, and s stand for a principal curvature, the associated
principal direction, and the arclength parameter along the curvature line corresponding to k
and t. According to the Frenet formulas we have at a point on S

dt

ds
= kn,

dn

ds
= −kt.
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Differentiating
d+1
∑

i=1

Fiti = 0 w.r.t. s yields

d

ds

(

d+1
∑

i=1

Fiti

)

=
d+1
∑

i,j=1

Fijtitj + k
d+1
∑

i=1

Fini =
d+1
∑

i,j=1

Fijtitj − kg.

Thus the principal curvatures k is given by

k =
1

g

d+1
∑

i,j=1

Fijtitj (4)

Note that
dg

ds
=

d+1
∑

i=1

giti =
1

g

d+1
∑

i,j=1

FijtiFj = −

d+1
∑

i,j=1

Fijtinj .

Finally differentiating (4) w.r.t. s yields

e =
dk

ds
=

d

ds

(

1

g

d+1
∑

i,j=1

Fijtitj

)

=
1

g

(

d+1
∑

i,j,l=1

Fijltitjtl + 3k
d+1
∑

i,j=1

Fijtinj

)

which is desired formula (3).

Relation to derivative of curvature tensor

Our formula (2) can be also obtained by extending the derivative-of-curvature tensor derived
by Rusinkiewicz [16] (see formula (8) there) to d-manifolds. He used a 2 × 2 × 2 tensor
composed by {∂W/∂x1, ∂W/∂x2} for 2-manifolds. The curvature derivative w.r.t. t was given
by multiplying t three times to the tensor. According to this observation, the extremality of S
is given by the gradient of the Weingarten map multiplying by t three times: e = ∇W(t, t, t)
where ∇W is a d× d× d tensor. Since the Weingarten map W is equivalent to the Hessian
of I(x) in our case because II becomes an identity matrix at x = 0, we have

e = ∇Hess(I(x))(t, t, t) =
d
∑

i,j,l=1

Iijltitjtl.

Implementation to cubic polynomials

By using our formula (2), the following simple forms are derived for the 2D and 3D polyno-
mials.

For a 2D cubic polynomial

f(x1, x2) =
1

2
(b0x

2
1 + 2b1x1x2 + b2x

2
2) +

1

6
(c0x

3
1 + 3c1x

2
1x2 + 3c2x1x

2
2 + c3x

3
2),

we have

W =

(

b0 b1
b1 b2

)

(5)

and

e =

(

t21
t22

)T (

c0 3c1
3c2 c3

)(

t1
t2

)

(6)
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at (x1, x2) = (0, 0).
For a 3D cubic polynomial

f(x1, x2, x3) =
1

2
(b0x

2
1 + 2b1x1x2 + 2b2x1x3 + b3x

2
2 + 2b4x2x3 + b5x

2
3)+

+
1

6
(c0x

3
1 + 3c1x

2
1x2 + 3c2x

2
1x3 + 3c3x

2
2x1 + c4x

3
2 + 3c5x

2
2x3+

+3c6x1x
2
3 + 3c7x2x

2
3 + c8x

3
3),

we have

W =





b0 b1 b2
b1 b3 b4
b2 b4 b5



 (7)

and

e =





t21
t22
t23





T 



c0 3c1 3c2
3c3 c4 3c5
3c6 3c7 c8









t1
t2
t3



 (8)

at (x1, x2, x3) = (0, 0, 0).

5. Interrogation algorithm

Let r and rf be the user-specified fitting and thresholding radii, respectively. We perform the
following local polynomial fitting procedure to each image element (pixels/voxels) in order to
obtain {ei} and C.
Step 1: For an image element at xi, consider its (2r + 1)d neighboring elements centered

at xi. Fit the polynomial f(x) to I(x) − I(xi) in the least-squares sense by using the
neighboring elements.

Step 2: Calculate the Weingarten map W via the equations (5) or (7), and compute the
eigenvalues (principal curvatures {ki}) and eigenvectors (principal directions {ti}) of
W.

Step 3: Obtain the curvature extremalities {ei} via the equations (6) or (8).

Step 4: Apply thresholding (if neccesary) to the obtained extremalities. Consider the
(2rf +1)d neighboring elements centered at xi. In our implementation, we approximate
the threshold (1) by

TRd ≈
∑(2rf+1)d

j=1 aj
(
∑d

i=1(ti · ti,j)e
2
i,j

)
d
4 ,

where aj, ti,j, and ei,j are the area element, principal direction, and extremality of neigh-
boring element centered at xi, respectively. We estimate how the neighboring element
is close to be located on the ridge-like structure at xi by the inner-product of their prin-
cipal directions (ti · ti,j). The second order central finite difference scheme is employed

for approximating partial derivatives of

√

1 +
∑d

i |
∂I(x)

∂xi

|2 ≈ aj .

Discussion

In our current implementation of polynomial fitting, we did not use the normals of S, and we
omitted a constant and linear terms. Although our fitting scheme provides smoother results
than the case of incorporating these terms, adapting the normal-based [6] or/and osculating
jets [2] fitting methods to our approach is promising to improve accuracy of polynomial fitting.
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We employed same fitting radius for all image elements. Thus, the fitting process is
time consuming when the radius is large (especially for d ≥ 3). Adaptive radius fitting
with multiresolution or/and scale-space strategy may accelerate our approach, and also gain
flexible control over extracting multi-scale features.

Future work includes developing a robust and efficient method to extract zero-crossings
of the computed extremalities.

6. Numerical experiments

In our implementation, the singular value decomposition [15] for least-squares fitting and
Jacobi method [15] for eigenanalysis (because W is a real symmetric matrix in our case) were
employed. All our numerical experiments reported in this paper were performed on a Core2
Extreme X9770 (3.2 GHz quad core, no parallelization was used) PC with 16GB RAM and
64 bit OS.

Figure 3: Input images: Lena (5122), Trui (2562), Mandrill (512×506), and Zebra (507×379).

We tested our approach on the real-world 2D and 3D images and find it useful for extract-
ing meaningful image structures, see Figs. 3, 6, 7, 9, and 10. Since the extremalities vary with
the High Dynamic Range (HDR), we applied the following normalization technique for visu-
alization purposes. To map HDR values onto more intuitively visible domain, |ei| and C are
normalized into [0, 1] range and white (black) color corresponds to high (low) intensity value,
while clipping 1% on the low (black) end and 2% on the on the high (white) end of the his-
togram (16 bit bins). We also used RGB color channels to visualize |ei| and C simultaneously.
For example, the 2D extremalities are visualized by ergb = (R,G,B) = (1−|e1|, 1−C, 1−|e2|)
in Figs. 6 and 7. The convex and concave edge regions are well distinguished similar to true
ridges in meshes (as in Fig. 1). Similar coloring technique was also employed in the 3D images,
see caption of Figs. 9 and 10.

Our approach has a user-specified parameter for polynomial fitting: fitting radius (r).
The influence of changing the radius is demonstrated in Fig. 6. As we can see the multi-scale
features as shadows in the left image of Fig. 5, increasing the radius provides extraction of
large size ridge-like structures.

Figures 8 and 11 demonstrate our thresholding scheme applied to the extremalities of Lena
and MRI-Head images (Figs. 7 and 10), respectively. We can see that the extremalities at the
image regions close to the Dupin’s cyclides (no creases) are adaptively removed according to
increasing the threshold (1) while the salient ridge-like structures are preserved well.

The computational complexity of our approach is linear (O((2r + 1)2d) ) w.r.t. image
size (fitting radius, since the singular value decomposition possess quadratic complexity).
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Figure 4: Computational time required for all necessary computations on 2D (left) and 3D
(right) images.
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Figure 5: Left: image consists of multi-scale features. Center and right: computational time
on 2D (center) and 3D (right) images w.r.t. varying fitting radius (r).

We examined computational time of our approach on varying image size (Fig. 4) and radius
(center and right images of Fig. 5). The slope of resulting timing lines are reasonably close to
the complexity. Our approach approximately processes 66K pixels and 8K voxels per second
in average for small fitting radius (r ≤ 5 and r ≤ 3), respectively.

7. Conclusion

In this paper, we have developed a numerically efficient approach to extracting the curvature
extremalities from multidimensional images. We have also introduced the formula and differ-
ential invariant measure for extremalities. Our numerical experiments demonstrate that the
proposed approach is capable of detecting salient ridge-like image structures on real-world
images. We believe that our study in a multidimensional analogue of the surface creases as
geometric shape descriptors will be beneficial to obtain new aspects of feature analysis in
early vision tasks.
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r = 1 r = 4 r = 7

r = 10 r = 13 r = 16

r = 1 r = 4 r = 7

r = 10 r = 13 r = 16

Figure 6: Cyclidity (C, top two rows) and extremalities (ergb, bottom two rows) with varying
the fitting radius r. The image consisting of 768x512 pixels shown in the left image of Fig. 5
took 2.9 (r = 1), 11 (r = 4), 27.2 (r = 7), 88.7 (r = 10), 172 (r = 13), and 251 (r = 16)
seconds, respectively for all necessary computations. Increasing the radius for our approach
extracts the large size ridge-like structures. See the shadow regions in the left image of Fig. 5
and corresponding parts in the above images.
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Cyclidity (r = 1): C

Extremalities (r = 1): ergb, timing: 1.96, 0.48, 1.93, and 1.44 seconds.

Cyclidity (r = 5): C

Extremalities (r = 5): ergb, timing: 10.66, 2.71, 10.46, and 8.05 seconds.

Figure 7: The images show both cyclidity C and extremalities ergb by using 32 and 112 pixel
neighborhoods for polynomial fitting, where the input images are given in Fig. 3. Timings
listed above present computational times required for all necessary computations. Here red
and blue regions correspond to low value (close to zero) of |e1| and |e2|, respectively.
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TR2 > 0.1Ta TR2 > 0.4Ta TR2 > 0.8Ta TR2 > 1.6Ta

Figure 8: Filtering phantom ridge-like structures via the conformal invariant differential quan-
tity (1), where the input image is shown in Fig. 3, the extremalities (ergb) corresponding to
TR2 ≥ 0 are illustrated in Fig. 7 (upper: r = 1 and bottom: r = 5), we use rf = 5, and Ta is
an average of TR2 within the input image.

(a) (b) (c) (d) (e) (f)

Figure 9: 3D extremalities of CT-Engine (2562x110) took 6.4 and 85 minutes respectively
for r = 1 and r = 3. (a): volume rendering of {|e1|, |e2|, |e3|} where RGB color channels
are given by (R,G,B) = (1 − |e1|, 1 − |e2|, 1 − |e3|). (f): sectional images of (a). (b,c,d,e):
sectional images where their locations correspond to (f), and their RGB color channels consist
of (1−C, 1−C, 1−C), (1−|e1|, 1−|e2|, 1−C), (1−|e1|, 1−C, 1−|e3|), and (1−C, 1−|e2|, 1−|e3|),
respectively. The upper and bottom images are obtained by using 33 (r = 1) and 73 (r = 3)
voxel neighborhoods to the fitting process, respectively.
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(a) r = 1 (b) (a) r = 3 (b)

(c) (d) (e) (f)

Figure 10: 3D extremalities of MRI-Head (2563) took 17 and 195 minutes respectively for
r = 1 and r = 3. (a): volume rendering of {|e1|, |e2|, |e3|} where RGB color channels are given
by (R,G,B) = (1 − |e1|, 1 − |e2|, 1 − |e3|). (f): sectional images of (a). (b,c,d,e): sectional
images where their locations correspond to (f), and their RGB color channels consist of
(1−C, 1−C, 1−C), (1−|e1|, 1−|e2|, 1−C), (1−|e1|, 1−C, 1−|e3|), and (1−C, 1−|e2|, 1−|e3|),
respectively. The upper and bottom images are obtained by using 33 (r = 1) and 73 (r = 3)
voxel neighborhoods to the fitting process, respectively.
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