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Empirical mode decomposition (EMD) is a signal analysis method which has received much attention lately due to its application
in a number of fields. The main disadvantage of EMD is that it lacks a theoretical analysis and, therefore, our understanding of
EMD comes from an intuitive and experimental validation of the method. Recent research on EMD revealed improved criteria
for the interpolation points selection. More specifically, it was shown that the performance of EMD can be significantly enhanced
if, as interpolation points, instead of the signal extrema, the extrema of the subsignal having the higher instantaneous frequency
are used. Even if the extrema of the subsignal with the higher instantaneous frequency are not known in advance, this new in-
terpolation points criterion can be effectively exploited in doubly-iterative sifting schemes leading to improved decomposition
performance. In this paper, the possibilities and limitations of the developments above are explored and the new methods are
compared with the conventional EMD.

Copyright © 2008 Y. Kopsinis and S. McLaughlin. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

The empirical mode decomposition (EMD) method [1] is
an algorithm for the analysis of multicomponent signals [2]
that works by breaking them down into a number of ampli-
tude and frequency modulated (AM/FM) zero mean signals,
termed intrinsic mode functions (IMFs). In contrast to con-
ventional decomposition methods, which perform the anal-
ysis by projecting the signal under consideration into a num-
ber of predefined basis vectors, EMD expresses the signal as
an expansion of basis functions which are signal-dependent,
and are estimated via an iterative procedure called sifting.
This attribute of EMD potentially leads to a number of mer-
its. To name a few: it can be applied regardless of the nonsta-
tionary and/or nonlinear characteristics of the signal under
consideration. The results are not prejudiced by the prede-
termined basis, a fact often leading to IMFs which preserve
the physical meanings of the intrinsic processes underlying
the signal. Moreover, the resulting IMFs are zero-mean nar-
rowband functions well suited for meaningful instantaneous
frequency (IF) estimates via the Hilbert transform or other

alternative techniques [3]. As a result, EMD in conjunction
with IF estimation offers an alternative path towards time-
frequency signal representation.

The main drawback of EMD is the lack of a strong theo-
retical analysis capable of evaluating and predicting EMD be-
haviour in generalized signal conditions. However, recently,
Rilling and Flandrin [4] have made some initial steps in this
direction by theoretically analyzing the EMD outcomes in a
two-tone signal case. Although the signal can be considered
simplistic, the analysis resulted in important conclusions. It
was shown that there is quite a wide range of two-tone com-
binations, for which EMD results do not, at least directly,
agree with intuition and physical interpretation. Revealing
such a limitation should definitely be a target for future EMD
variants.

The lack of theoretical developments on EMD has re-
stricted the potential for improvements of the method itself.
Literally, the current popular variation of EMD is roughly
the same as the one proposed in the original EMD paper
[1], with the attempts for development of novel variants be-
ing limited to less than a handful [5–8]. A recent study on
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EMD [9], even though it is not analytical, revealed specific
aspects that offer insight to its performance. More specif-
ically, information about improved criteria for interpola-
tion points selection was extracted based on a genetic al-
gorithm (GA) optimization approach. A recently presented
novel EMD variant [8] called doubly-iterative EMD (DI-
EMD) (DI-EMD Matlab functions can be downloaded from
http://www.see.ed.ac.uk/∼ykopsini/emd/emd.html) succee-
ds in estimating interpolation points in agreement with the
optimized criteria derived in [9] leading to enhanced overall
decomposition performance. In this paper, the performance
and behaviour of DI-EMD is further investigated mainly
through the Rilling two-tone signal model [4].

2. EMD METHOD

EMD [1] adaptively decompose a multicomponent signal
[2] x(t) into a number K of zero-mean, narrowband IMFs
h(i)(t), 1 ≤ i ≤ K ,

x(t) =
K∑

i=1

h(i)(t). (1)

Each one of the IMFs, say the kth one h(k)(t), is estimated
with the aid of an iterative process, called sifting, applied to
the residual multicomponent signal:

x(k)(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x(t), k = 1

x(t)−
k−1∑

i=1

h(i)(t), k ≥ 2.
(2)

During the nth iteration of the sifting process, an esti-
mate of the kth IMF is computed as follows:

h(k)
n (t) = h(k)

n−1(t)−m(k)
n−1(t), (3)

where, h(k)
j (t) is the temporal estimate of the kth IMF at the

jth iteration and m(k)
j (t) is an estimate of the local mean of

h(k)
j (t).

Usually, the local mean m(k)
j (t) is estimated as the aver-

age of two envelopes, an upper envelope and a lower one,

which enfold the corresponding IMF estimate h(k)
j (t). In gen-

eral, the envelopes are constructed in agreement with the fol-
lowing algorithm.

First, some time instances τu = [τu,1, . . . , τu,M], τ l =
[τl,1, . . . , τl,L] called nodes, which correspond to the up-
per and the lower envelope, respectively, are specified ac-
cording to some criteria. These time instances indicate the

positions h(k)
j (τu) = [h(k)

j (τu,1), . . . ,h(k)
j (τu,M)], h(k)

j (τ l) =
[h(k)

j (τl,1), . . . ,h(k)
j (τl,L)] at which the upper and lower en-

velopes Iτu(t), Iτl (t) “touch” the temporal IMF estimate as

can be seen in Figure 1. In order to succeed in this h(k)
j (τu),

h(k)
j (τ l) serve as interpolation points in a piecewise polyno-

mial interpolation scheme, usually cubic spline interpola-
tion.

ĥ(k)
j (t)

m(k)
j (t)

Upper & lower
envelopes

Interpolation
points

τl,i τu,i τu,i+2

Figure 1: Quantities related to the EMD method.

Finally, the current estimate of the local mean is given by

m(k)
j (t) = (Iτu(t) + Iτl (t))

2
. (4)

After N sifting iterations, which is a number chosen ei-
ther statically or dynamically according to specific criteria
[10, 11], the sifting process is concluded and the kth IMF

is set equal to h(k)(t) = h(k)
N (t). Alternatively, the intermedi-

ate estimates of the local mean can be summed up together
forming a total mean envelope:

M(k)
N (t) = m(k)

1 (t) + · · · +m(k)
N , (5)

which is actually an enhanced estimate of the local mean of
the residual signal under consideration x(k)(t). According to
such a reformulation, the kth IMF can be obtained directly
from the expression:

h(k)(t) = x(k)(t)−M(k)
N (t). (6)

Either (3) with (4) or (6) with (5) and (4) are equivalent ex-
pressions to the sifting process [9].

In other words, from (6) it can be inferred that EMD con-
siders signals (x(k)(t)) as fast oscillations (h(k)(t)) superim-

posed on slow oscillations [12] (M(k)
N (t)) and the sifting pro-

cess aims to iteratively estimate the slow oscillating signals
using (5). As a consequence, the kth IMF is an estimate of
the fast oscillating component of the signal x(k)(t). Lets say,
for example, that x(k)(t) consists of K AM/FM signals:

x(k)(t) =
K∑

i=1

αi(t) cos
(
φi(t)

)
, (7)

which have corresponding instantaneous frequencies (IF)
fi(t). It turns out that the sifting process tries to extract in
each time instant this signal among those consisting x(k)(t)
which has the higher instantaneous frequency. At the same
time, the extracted frequency modulated (FM) signal al-
though tends to be narrowband is not necessarily monocom-
ponent permitting in such a way the presence of amplitude
modulation (AM). As a result, the fast oscillating signal that
the sifting process tries to estimate with IMF h(k)(t) is given
by

s(k)
f (t) = αj(t) cos

(
φj(t)

)
, (8)
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Figure 2: (a) A transient signal having 256 samples. (b) The tran-
sient signal in the frequency domain.

where φj(t) corresponds to f j(t) = max{ f1(t), . . . , fK (t)}.
Note that s f (t) does not necessarily coincide with one of the
K signals comprising x(k)(t). s f (t) may consist of parts of
these signals depending on which one of them, in specific
time instances, has the higher instantaneous frequency. Ap-

parently, the “ideal” local mean of x(k)(t) is given by s(k)
s (t) =

x(k)(t)− s(k)
f (t).

In turn, the slow oscillating part x(k+1) = x(k) − h(k) =
M(k)

N (t) is further processed through a number of sifting iter-
ations for its separation to a fast oscillation part (which is the

25020015010050

−1
0
1

25020015010050

−1
0
1

25020015010050

−1
0
1

Figure 3: Three chirp signals and the corresponding IMF estimates.

next IMF h(k+1)(t)) and a slow oscillating part which serves
as input to the next sifting process.

2.1. Example of EMD application

One of the potential applications of EMD is the analysis of
short-duration transient signals. The reason is that essen-
tially, the signal analysis performance of EMD does not de-
pend on the length of the signal and/or the available sam-
ples. In principle, the only requirement is the availability of
a large enough number of maxima and minima, which de-
pend on the order of the spline interpolation. As long as the
above requirement is fulfilled, the full performance of EMD
is guaranteed, otherwise, EMD cannot be applied.

The examined transient signal is the one shown in
Figure 2(a), which consists of three nonlinear chirp sig-
nal components depicted, in the time-frequency plane, in
Figure 2(b). The three signal components in the time domain
can be seen with solid lines in Figure 3.

When the standard EMD with cubic spline interpolation
is used for the analysis of the above signal, the result is a
number of IMFs with only three of them having significant
energy. It turns out that the higher energy estimated IMFs,
shown in Figure 3 with dashed lines, roughly coincide with
the actual signal components.

Based on the instantaneous frequency estimates of the es-
timated IMFs, a quite accurate spectrogram can be drawn as
it is seen in Figure 4(a). It is important to note that the con-
ventional short-time Fourier transform (STFT) regardless of
the adopted window length is not capable of producing such
a sharp and detailed spectrogram as it can be seen in Figures
4(a) and 4(b). This is happening due to the transient nature
of the specific signal. In other words, if the STFT window
is considered long enough to include an adequate number of
samples, in order to achieve reliable frequency resolution, the
signal itself changes considerable within the time span of the
specific window leading to poor time-frequency representa-
tion.

3. DOUBLY ITERATIVE EMD

Several variants of EMD can be formed by altering the way
that the local mean is obtained. The local mean estimates are
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Figure 4: (a) Spectrogram using IF estimates of the IMFs. (b) Spectrogram using STFT with kaiser window of length equal to 64 samples.
(c) Spectrogram using STFT with kaiser window of length equal to 128 samples.

determined from the upper and the lower envelope construc-
tion, which as discussed above, basically comes down to the
adopted criteria for the nodes selection as well as the inter-
polation scheme used. With respect to the standard version
of EMD, usually employed in practice, the maxima and min-

ima, referred to as local extrema, of signal h(k)
j (t) (or xk(t)

in the first iteration) are used as interpolation points and
natural cubic splines are used for interpolation. More specif-

ically, τu = {t : D1h(k)
j = 0,D2h(k)

j < 0} and τ l = {t :

D1h(k)
j = 0,D2h(k)

j > 0}, where the operator Dm f denotes
the mth derivative of function f . In [7, 9], it was shown

that the local extrema of the IMF estimates, h(k)
j (t), in each

sifting iteration are far from being the optimum choice of
interpolation points. It turned out that the decomposition
performance was significantly improved if the interpolation
points, where set fixed in all the sifting iterations and equal

to the extrema of the fast oscillating signal s(k)
f (t). Hereafter,

the extrema above will be called desired and the correspond-

ing nodes are given by τu = {t : D1s(k)
f = 0,D2s(k)

f < 0} and

τ l = {t : D1s(k)
f = 0,D2s(k)

f > 0}.
At first glance, the observation that the desired extrema

perform much better than the standard local extrema may

be considered useless in the sense that actually s(k)
f (t) is the

signal that the sifting process aims to extract. In that sense,
its extrema cannot be known in advance. However, in [9]
we saw that it is possible to obtain interpolation points es-
timates which are closer than the local extrema to the desired
ones. This can be realized by adopting, for example, the lo-
cal extema of a high-pass filtered version of the signal under

consideration h(k)
j (t). The filtering results in a signal with at-

tenuated slow oscillating components leading to improved
estimates of the extrema of the desired fast oscillating coun-

terpart. In other words, h(k)
j (t) are preprocessed in each it-

eration in order to resemble to s(k)
f (t) and then estimate the

desired extrema from this. In practice, the above technique
exhibits certain difficulties mainly related to the filter cut-
off choice which should also be time varying in the case of

nonstationary signals. Apart from that, it can be argued that
the filtering preprocess compromises the spontaneous, data-
driven nature of the EMD operation.

According to DI-EMD, the estimation of the desired ex-
trema is approached from a different viewpoint which is
based on the fact that for the estimation of the desired ex-
trema it is not the actual fast oscillating signal s(k)

f (t) that is
needed to be known, but its first derivative. As we will see the
first derivative of s(k)

f (t) can be effectively estimated directly
in each iteration. More importantly, this can be naturally re-
alized within the data-driven framework of EMD.

Figure 5(a) shows an example of a residual signal after k

IMF extractions (which is denoted as h(k)
j (t) for generaliza-

tion purposes due to the fact that the procedure described
next can be applied not only to the residual signal x(k) but

to any tentative IMF estimate h(k)
j (t). The dotted curve de-

picts the corresponding local mean s(k)
s and the filled circles

indicate the local extrema of h(k)
j which lay in the positions

where the first derivative of h(k)
j , shown with solid line in

Figure 5(b), equals to zero. Moreover, the desired extrema,
which are the extrema of the fast oscillating signal compo-

nent, s(k)
f (t), are shown with asterisks in Figure 5(b). It can

be readily seen that the local extrema are deviated not only
from the desired positions but also have been smeared out

completely in many cases. D1h(k)
j (t) can be written as

D1h(k)
j (t) = D1s(k)

s (t) +D1s(k)
f (t), (9)

where D1s(k)
s (t) is the first derivative of the local mean de-

picted in dotted line. The estimation of the desired extrema

can be achieved by estimating D1s(k)
f (t) and then comput-

ing the positions in which it vanishes to zero. Due to the
fact that the differentiation operator does not effect the fre-

quency content of the signal, we still expect D1s(k)
f (t) and

D1s(k)
s (t) to be the fast and the slow oscillating component of

D1h(k)
j (t), respectively. Following the discussion in Section 2,

the fast oscillating part and the local mean of a signal can
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be efficiently estimated through a sifting process. As a result,
the application of a predefined number of sifting iterations

on D1h(k)
j (t) produces an estimate of D1s(k)

s (t) which in turn

can be subtracted from D1h(k)
j (t) leading to an estimate of

the first derivative of the fast oscillating part of h(k)
j (t) shown

in Figure 5(c). The filled circles indicates the zero-crossing

points of D1s(k)
f (t) which are adopted as estimates of the de-

sired extrema. From now on, the sifting iterations used for
the desired extrema estimates will be referred to as internal
and the normal EMD sifting iterations used for the current
IMF estimate will be called external.

A summary of the DI-EMD is given next by

(1) set j = 0 and h(k)
j (t) = x(k)(t);

(2) apply a number of sifting operations on D1h(k)
j (t) in

order to obtain an estimate of the first derivative of the
total local mean D1s(k)

s (t);
(3) find the zero-crossings of the first derivative of the fast

oscillating part D1s(k)
f (t) = D1h(k)

j (t)−D1s(k)
s (t);

(4) in order to estimate h(k)
j+1(t), perform a sifting iteration

on h(k)
j (t) using as interpolation nodes. the positions

of the zero-crossing points estimated at Step (3). The
characterization of the extrema as maxima or minima
simply result from D2s(k)

f (t);
(5) set j = j + 1 and return to Step (2) until the stoping

criterion is fulfilled.

As we are going to see in the simulations section, the estima-
tion of the desired extrema described at Steps (2) and (3) is
not necessary to be performed for each external sifting itera-
tion.

4. METHOD EVALUATION

In this section, DI-EMD will be tested in two different sim-
ulation scenarios. The first one is based on a two-pure tone
signal model [4] and the second one contains a tone of lin-
early increased amplitude leading to a decomposition prob-
lem with gradually increased, with respect to time, difficulty.

4.1. Two-tone signal example

The signal under consideration is given by

x(t) = cos 2πt + α cos(2π f t + ϕ), t ∈ R. (10)

When f takes values in ]0, 1[, the term cos 2πt is the higher
frequency component and α cos(2π f t + ϕ) is the lower fre-
quency one. The aforementioned study tried to analytically
answer the question: for which ranges of the parameters f ,α,
the conventionalEMD

(i) is capable of separating the two signal components,
that is, the first IMF h(1)(t) equals to cos 2πt;

(ii) it considers the signal as a single component, that is,
h(1)(t) = x(t);

(iii) or h(1)(t) is something else.

s(k)
s (t)

h(k)
j (t)

(a)

D1h(k)
j (t)

D1s(k)
s (t)

f (t) = 0

(b)

D1s(k)
f (t)

(c)

Figure 5: (a) The signal under consideration (solid line) together
with its slow oscillating counterpart (dotted line). The correspond-
ing local and desired extrema are depicted with filled circles and
asterisks, respectively. (b) Shows the first derivative of the signals in
(a). (c) Shows the first derivative of the fast oscillating part, that is,
D1s(k)

f (t) = D1h(k)
j (t)−D1s(k)

s (t).

The latter behaviour can be considered as undesirable
since the produced results are not directly related to the an-
alyzed signal and its intrinsic properties. Interestingly, con-
ventional EMD interprets the first extracted component nei-
ther as x(t) nor as cos 2πt for a quite wide range of f and α
when α f 2 > 1 [4].

In Figure 6, the gray area on the f − log10a plane cor-
responds to parameters ranges where the EMD behaviour is
undesirable since it does not produces IMFs directly related
to the signal components under consideration. The metrics
used for this graph are similar to the ones used in [4]. In the
specific case, the 49.54% of the area α f 2 > 1 corresponds to
undesirable decisions.

Figure 7(a) exhibits a comparison between the ill-beha-
viour area of the conventional EMD and ill-behaviour area
that corresponds to the 3rd-order DI-EMD when 30 inter-
nal iterations per external iteration are used. In both cases,
the number of siftings is set equal to 10. The light gray area
corresponds to the ill-behaviour of the conventional EMD,
the black area corresponds to ill-behaviour of the 3rd-order
DI-EMD and the midtone gray area corresponds to common
ill-behaviour area between the two methods. Figure 7(b)
compares the conventional EMD with the DI-EMD having
13th-order splines for the external iteration and 3rd-order
splines for the internal. From Figure 7 is observed that the
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Figure 6: EMD decision areas. The white areas correspond to h(1)(t)
either equal to x(t) or cos 2πt, and the gray area corresponds to a
different decision.

ill-behaviour area is reduced in some extent, especially when
the high-order DI-EMD method is used. More specifically,
using the DI-EMD configuration of Figure 7(a), the ill-
behaviour area is reduced to the 37.61% of the α f 2 > 1 area
and using the higher-order DI-EMD (Figure 7(b)) leads to
28.84% undesirable area. In the two-tone example, the use of
high-order splines in the internal iterations offered no fur-
ther improvement. However, as will be seen in the next exam-
ple, the latter observation cannot be taken as a general rule.

4.2. Increased AM signal example

For the second performance evaluation, we adopted the sig-
nal shown in Figure 8. It consists of a constant frequency and
constant amplitude sinusoid x1(t) with frequency f1 and am-
plitude a1 and a sinusoid x2(t) having a linearly increased
amplitude a2(t) and constant frequency f2. Two cases are ex-
plored. In the first one f1 = 2.2 f2, and in the second one
f1 = 1.5 f2. This simulation example explores the ability of
several variants of EMD to extract the faster oscillating sig-
nal, that is, the signal x1(t), in a progressively “hostile” envi-
ronment, namely, in the presence of a slow oscillating signal
having a gradually increased amplitude. In such an example,
the performance can be quantified by the value of the ratio
a2(t)/a1 up to which EMD succeeds in resolving the x1(t).

Starting with f1 = 2.2 f2, Figure 9 shows in the logarith-
mic scale the difference between the fast oscillating signal
x1(t) and the IMF estimated after 2000 external sifting itera-
tions h2000(t) using several different variants of EMD. In fact,
the error curves undergo rapid oscillations which have been
smoothed out here for visualization purposes. We observe
that in general the EMD methods exhibits a gradually in-
creased error as a function of a2(t)/a1 as long as the problem

210−1−2

log10(α)

0

0.2

0.4

0.6

0.8

1

f

(a)

210−1−2

log10(α)

0

0.2

0.4

0.6

0.8

1

f

(b)

Figure 7: (a) The light gray area corresponds to ill-behaviour of
the conventional EMD, the black area corresponds to ill-behaviour
of 3rd-order DI-EMD, and the midtone gray area corresponds to
common ill-behaviour area between the two methods. (b) The same
as (a), but the 13th-order splines have been used for the external
sifting iterations.

of extracting x1(t) becomes more and more difficult. More-
over, for each method there is a point at which the error is ris-
ing abruptly due to the fact that the fast signal can no longer
be extracted properly.

We can consider a specific error value, say 0, that indi-
cates the a2(t)/a1 value up to which a specific EMD method
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Figure 8: Multicomponent signal consisting of a constant ampli-
tude signal and a signal with a linearly increased amplitude.
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Figure 9: Error between the fast oscillating signal x1(t) and the IMF
estimated after 2000 external sifting iterations.

succeeds in resolving x1(t). According to this performance
measure, we can explore the ability of extracting the fast os-
cillating signal as a function of the external sifting iterations
as it is shown in Figure 10. With respect to the figure legend,
st-EMD(q) corresponds to the standard EMD using local ex-
trema and spline interpolation of qth order. Furthermore,
the notation DI-EMD(q | iq, it, ex) corresponds to doubly-
iterative EMD using spline interpolation of orders qth and
iqth for the external and the internal sifting processes with
the internal sifting process being realized by a preset number
of it iterations. Moreover, there is the option for the internal
sifting process to be performed not after every external sifting
iteration, but every ex ones. The latter option corresponds to
reduced complexity DI-EMD.
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Figure 10: Performance results of different EMD variants for the
case of f1 = 2.2 f 2.
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Figure 11: Performance results of different EMD variants for the
case of f1 = 1.5 f2.

Clearly, in such an example, the proposed doubly-
iterative EMD outperforms the standard EMD. More specif-
ically, the standard EMD needs more than 2000 sifting itera-
tions in order to extract x1(t) up to the point where the slow
oscillating signal has amplitude 5 times larger than the am-
plitude of the fast oscillating signal. On the other hand, all the
variants of DI-EMD exceed the value a2(t)/a1 = 10 within
200 external sifting iterations. At the same time, the com-
plexity remains low. For example, in the case of DI-EMD(3 |
3, 20, 50) the aforementioned performance is achieved with
only a 40% increase in the total number of siftings. Moreover,
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the performance can be further improved with the use of
higher-order splines in the internal iterations. However, it
turns out that the higher the order of splines is, the larger
the number of external siftings has to be in order to achieve
the potential performance. Remember that in the case of the
two tone signal the high-order splines in the internal itera-
tions did not lead to performance improvements. The other
way around is happening in the case of the increased AM
example, namely, the performance deteriorates when high-
order splines in the external iterations are used. When the
frequency relation is reduced to f1 = 1.5 f2, the advantages of
using DI-EMD instead of the conventional EMD are reduced
as it can be seen in Figure 11.

In general, based on examples examined here, it can be
argued that the use of DI-EMD is not “harmful,” however,
the corresponding performance improvements depend on
the signal to be analyzed. Moreover, high-order splines al-
though, especially in the internal iterations can help, they do
not guarantee enhanced performance compared to the cubic
spline case and should be carefully used.

5. CONCLUSIONS

In this paper, the doubly-iterative EMD which incorporates
an enhanced technique for interpolation points estimates for
the EMD method was examined in two different simulation
examples. An improvement was demonstrated in the over-
all decomposition performance which can in some cases en-
hanced when the doubly-iterative method is combined with
envelope estimation using high-order spline interpolation.
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