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Nonunitary generation of nonclassical states of a bidimensional harmonic oscillator

S. Maniscalco, A. Messina, and A. Napoli
INFM and MURST, Dipartimento di Scienze Fisiche ed Astronomiche dell’Universita` di Palermo, via Archirafi 36, 90123 Palermo, Italy

~Received 12 May 1999; published 11 April 2000!

A scheme for generating quantum superpositions of macroscopically distinguishable states of the vibrational
motion of a bidimensionally trapped ion is reported. We show that these states possess highly nonclassical
properties controllable by an adjustable parameter simply related to the initial condition of the confined system

PACS number~s!: 42.50.Dv, 42.50.Vk, 32.80.Pj

Over the last few years there have been developed sophis-
ticated techniques of laser cooling and trapping of atoms,
opening a new research field for testing fundamental features
of atomic physics and quantum optics@1–4#. It is possible, in
fact, to demonstrate that an ion confined in an electromag-
netic trap is describable as a particle in a harmonic potential
in the sense that its center of mass~c.m.! can be quantized as
a harmonic oscillator@5,6#. Appropriately driving the trapped
ion by classical laser beams, its internal and external degrees
of freedom can be coupled. Thus, simply by controlling the
configuration of the driving lasers, it becomes possible to
manipulate the external motion of the confined ion. It is,
moreover, of particular relevance that, if the Lamb-Dicke
limit is satisfied and the driving field is tuned to one of the
vibrational sidebands of the atomic transition, then the quan-
tum dynamics of such systems may be deduced from gener-
alized nonlinear Jaynes-Cummings models wherein the
quantized radiation field is, obviously, replaced by the quan-
tized c.m. motion of the ion@7#. This prominent feature di-
rectly leads to the possibility of testing the rich dynamics
predicted by these models using trapped ions instead of cavi-
ties. One of the advantages of exploiting such systems is
related to the circumstance that typical dissipative effects
strongly limiting the performance of experiments in cavities,
in the optical as well as in the microwave regime, can be
significantly suppressed for the ion motion, thanks to the
extremely weak coupling between the vibrational modes and
the external environment. It is thus not surprising that ions
confined by electromagnetic fields are eligible systems for
producing, for example, specific nonclassical~vibrational!
states. Several schemes for the generation of Fock states,
coherent states, and squeezed states have, in fact, been re-
ported and realized in this context@8–13#. Quite recently,
Monroe et al. @14# have proposed an experimental scheme
for generating and detecting a Schro¨dinger-cat-like state of a
trapped ion providing insight into the fuzzy boundary be-
tween the classical and quantum worlds. The state generated
by exploiting the procedure of Monroeet al. is given by a
superposition of two coherent state wave packets of a single
trapped ion. Over the last few years, some interesting meth-
ods for creating generalized coherent states of the bidimen-
sional vibrational c.m. motion have been reported@15–18#.
In this paper we present an original scheme aimed at gener-
ating quantum superpositions of bosonic SU~2! macroscopi-
cally distinguishable coherent states@19,20# by exploiting
the wave packet reduction method. In particular, we show

that these states possess nonclassical properties controllable
by an adjustable parameter simply related to the initial con-
dition imposed on the confined system.

Consider a two-level ion of massM confined in a bidi-
mensional isotropic harmonic potential characterized by a
trap frequencyn. The operatorsâ (â†) andb̂ (b̂†) defined as

â5
1

A2
SAMn

\
X̂1 i

1

AMn\
P̂xD , ~1!

b̂5
1

A2
SAMn

\
Ŷ1 i

1

AMn\
P̂yD ~2!

are the annihilation~creation! operators of vibrational quanta
in the X and Y directions, respectively. It has been shown
@17# that by irradiating the trapped ion with an appropriate
configuration of laser beams the physical system under scru-
tiny can be studied, in the Lamb-Dicke limit and in the in-
teraction picture, by the following Hamiltonian model:

Ĥ5g@~ âb̂!ŝ11~ â†b̂†!ŝ2#, ~3!

where ŝz5u1&^1u2u2&^2u, ŝ15u1&^2u, ŝ25u2&^1u
describe the internal degrees of freedom,u1& andu2& being
the ionic excited and ground states respectively. Let us de-
note by una ,nb&5una&unb& the simultaneous eigenstates of
â†â and b̂†b̂ such that â†âuna ,nb&5nauna ,nb& and
b̂†b̂una ,nb&5nbuna ,nb&.

We suppose that the initial state of the ion has the form

uC~0!&5Ut51,j 05
N

2 L u2&

[
1

2N/2 (
k50

N S N

k D 1/2

uN2k,k&u2&

[(
k50

N

PkuN2k,k&u2&. ~4!

The vibrational stateut51,j 05N/2& belongs to the class of
the so called SU~2! coherent states defined as
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ut, j &5
1

~11utu2! j (
k50

2 j S 2 j

k D 1/2

tku2 j 2k,k&, ~5!

where tPC and 2j PN. The statesuN2k,k& appearing in
Eq. ~4! are eigenstates of the operator (â†â1b̂†b̂) all per-
taining to the eigenvalueN52 j 0 representing the initial total
number of vibrational quanta. Very recently, number states
of the ion motion along theX direction of an electromagnetic
trap have been experimentally realized by Meekhofet al.
@11#. Of course, the applicability of this method is by no
means restricted to oscillations along theX axis only. As
pointed out by Gou and Knight@18#, the generation of the
initial state ut51,j 0& of a bidimensionally confined ion
amounts to realizing a Fock state of the ion motion along the
direction with an anglep/4 relative to theX axis.

If we turn on, att50, the laser fields realizing the Hamil-
tonian model given by Eq.~3!, then at any subsequent instant
of time t the state of the system in the Schro¨dinger picture,
apart from an overall phase factor, can be written as

uC~ t !&5uw2~ t !&u2&1uw1~ t !&u1& ~6!

with

uw2~ t !&5 (
k50

N

Pk cos~ f kt !uN2k,k& ~7!

and

uw1~ t !&52 i (
k51

N21

Pk sin~ f kt !uN2k21,k21&, ~8!

where

f k52gA~N2k!k ~9!

are the Rabi frequences. Equation~6! shows that, starting
from the factorized stateuC(0)&, the Hamiltonian model~3!
leads to entanglement between the external and internal de-
grees of freedom of the trapped ion, giving rise to far-
reaching interesting dynamical consequences. In order to ap-
preciate the meaning of this assertion, we focus our attention
on the time evolution of the vibrational entropy defined as
follows

Sv~ t !52Tr@rv~ t !ln rv~ t !#, ~10!

rv being the reduced density operator describing the external
motion of the ion. A straightforward calculation gives

Sv~ t !52 ln$c~ t !c(t)@12c~ t !#12c(t)%, ~11!

where

c~ t !5 (
k50

N

uPku2 cos2~ f kt !5
1

2 S 11 (
k50

N

uPku2 cos~2 f kt !D .

~12!

Exploiting an original analytical method based on analysis of
the Rabi frequencies relative to our system, we now demon-

strate that there existN-dependent instants of time at which
the internal and external degrees of freedom of the trapped
ion are disentangled@c(t)51 or c(t)50# or maximally en-
tangled@c(t)51/2#.

Consider first of all the case of disentanglement and, in
particular, the case in whichc(t) comes back to its initial
value 1. These revivals ofc(t) are of course related to the
rephasing of the oscillating terms appearing in Eq.~12!. In
order to evaluate these special instants of time, we observe
that uPku2 is a binomial distribution sharply peaked around
its mean valuê k&5N/2, with a variance equal toAN/2. If
N@1, it is reasonable to assume that only the terms satisfy-
ing the inequality

N

2
2

AN

2
<k<

N

2
1

AN

2
~13!

effectively contribute to the sum appearing in Eq.~12!. Indi-
cate with t̄ the instant of time at whichc(t) has its first
revival. It is easy to convince oneself that, at this time, the
necessary condition

2~ f k2 f k11! t̄ 52mkp, mk50,61, . . . , ~14!

must be satisfied. Taking into account the considerations
above, we have proved that Eq.~14! can be linearized as
follows:

2~ f k2 f k11! t̄ 54g t̄F2k2N11

N
1OS ~2k2N11!4

N4 D G
.

2k2N11

N
4g t̄. ~15!

In particular, fork5 k̄ with

k̄5H N

2
if N is even,

N11

2
if N is odd,

~16!

we get

2~ f k̄2 f k̄11! t̄ 55
4g t̄

N
if N is even

8g t̄

N
if N is odd,

~17!

so that, in view of Eq.~15!, the following relation between
( f k2 f k11) and (f k̄2 f k̄11) may be written down:

2~ f k2 f k11! t̄[Dk2 t̄ @ f k̄2 f k̄11#. ~18!

In this equation,

Dk5
2k2N11

22d2[N/2],N
~19!
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is an integer whatever the value of the naturalk, and the
symbol @x# means the integer part of the real numberx.

On the other hand, the linearized frequencyf k̄ , defined by
Eq. ~9! with k5 k̄, may be cast as follows:

f k̄5H gN if N is even,

gN1gO~1/N!.gN if N is odd.
~20!

From Eq.~18! it is possible to deduce the key relation

cos~2 f k11 t̄ !5cos@2 f k t̄ 22Dkt̄ ~ f k̄2 f k̄11!#, ~21!

where k5 k̄,k̄61, . . . . In view of Eqs. ~12! and ~21! and
recalling thatDk is integer, the timet̄ of the first revival can
be found by solving the system

2~ f k̄2 f k̄11! t̄ 52p, ~22!

2 f k̄ t̄ 52np, ~23!

where n is an unknown integer to be determined simulta-
neously with t̄ . As suggested by Eqs.~17! and ~22!, t̄ de-
pends on the parity ofN. We have in fact proved that, ifN
@1 is even,t̄ 5pN/2g[te andn5N2/2 whereas ifN@1 is
odd it is not difficult to verify that t̄ 5te/22p/4gN[to ,
with n5(N221)/4 up toO(1/N). Thus, in the case of odd
N, the first revival ofc(t) occurs at a time (to) which turns
out to be almost one-half of the instant of time (te) at which
c(t)51 if N is even. In view of the scheme we are going to
propose, in what follows we concentrate our attention on the
time to . It is possible to persuade oneself, by direct substi-
tution into Eq.~22!, that, if N is even, at the instantt5te/2
.to ,

2~ f k̄2 f k̄11!
te

2
5p ~24!

and then

2 f k11

te

2
52 f k

te

2
2Dkp ~25!

in view of Eq. ~18!. Taking into account that by definition
~19! Dk is odd whenN is even, we immediately deduce that

cosS 2 f k

te

2 D}~21!k ~26!

so that, from Eq.~12! we definitively getc(te/2). 1
2 if N is

even.
Summing up, we have proved analytically that ifN@1 is

odd, at the instantto5te/22p/4gN.te/2, c(to)51, and
thusSv(to) reaches its absolute minimum, indicating that the
internal and external degrees of freedom manifest a marked
tendency to disentangle from each other. On the contrary, at
te/25pN/4g, if N@1 is even,c(te/2)51/2, and thus the
vibrational entropySv(te/2) reaches its maximum value.
This means that the vibrational and electronic degrees of
freedom are, in this case, maximally entangled at this instant

of time. Figure 1 displays the time evolution ofSv , as given
by Eq. ~11!, corresponding toN520 andN521. These fig-
ures illustrate our prediction and, in particular, the existence
of an N-dependent instant of timeto.te/2 at which the sys-
tem under scrutiny exhibits different quantum behaviors de-
pendent on the parity ofN.

These results bring to light a peculiar nonclassical prop-
erty of our system, namely, a sensitivity to the granularity of
the initial total number of vibrational quanta,N. The physical
origin of this intrinsically quantum behavior stems directly
from the specific two-boson coupling mechanism envisaged
in this paper.

In order to bring to light the link between the quantum
dynamics followed by our system and the occurrence of such
a nonclassical feature, it appears highly interesting to con-
struct a detailed representation ofuw2(t)& and uw1(t)& at t
5te/2 and t5to . To this end we introduce and study the
time evolution of the SU~2! Q function defined as

Q( j )~t!5^t, j urvut, j &. ~27!

FIG. 1. Time evolution of the vibrational entropySv(gt) for ~a!
N520 and~b! N521.
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Q( j )(t) is a j-dependent quasiprobability distribution func-
tion defined over the phase space parametrized bytPC @21#.
For what follows it is of relevance to underline that the total
excitation number operatorN̂5â†â1b̂†b̂1ŝz11 is a con-
stant of motion and that the initial state of our system,
uc(0)&, is an eigenstate ofN̂ corresponding to the eigenvalue
n52 j 0 with j 05N/2. Observing thatut, j & is orthogonal to
una ,nb& when 2j Þna1nb , then it is easy to convince one-
self that uw2(t)& @ uw1(t)&] can be expressed as a quantum
superposition of different SU~2! coherent statesut, j 5 j 0
5N/2& @ ut, j 5 j 0215(N22)/2&] obtained by varyingt.
This circumstance directly leads to us considering theQ
functionsQ( j 5 j 0)(t) or Q( j 5 j 021)(t) only. In particular, we
fix our attention here on the quasiprobability function
Q( j )(t) with j 5 j 05N/2. Figures 2~a! and 2~b! @3~a! and
3~b!# display, forN520 (N521), Q( j 5 j 0)(t) at t50 andt
5te/2 (t5to), respectively. A careful analysis of these fig-
ures suggests that detection at theseN-dependent instants of
time of the electronic state of the trapped ion in its ground
state u2& projects the c.m. motion into a superposition of
two macroscopically distinguishable SU~2! coherent states.
In addition, we find that such a superposition exhibits a high
sensitivity to the parity of the total number of vibrational
quanta present att50, in accordance with our conclusions
previously deduced on the basis of the properties ofSv .

In fact, Figs. 2~b! and 3~b! strongly suggest that, after the
measurement act, the two components of the vibrational state
are ut51,j 5N/2& and ut521,j 5N/2& if N is even, orut
5 i , j 5N/2& and ut52 i , j 5N/2& if N is odd. It is of rel-
evance to emphasize that measurement of the internal state
of a trapped ion, as required in this paper, is currently per-
formed using the quantum jump technique@11,14#. A theo-
retical description of this method may be found in a paper of
Poyatoset al. @22#. Of course it is very difficult to guess the
exact superposition of the two vibrational SU~2! coherent
states into which the c.m. motion is projected after measure-
ment of the electronic state from this kind of analysis of the
Q( j )(t) plots. For this reason, in order to know the exact
form of the vibrational state generated by the procedure pro-
posed in this paper, let us consider the following two classes
of normalized quantum superpositions:

uCNeven
&5

1

A2
S Ut51,j 5

N

2 L 1eiwUt521,j 5
N

2 L D
~28!

and

uCNodd
&5

1

A2
S Ut5 i , j 5

N

2 L 1eiwUt52 i , j 5
N

2 L D .

~29!

Assuming thatN is even~odd!, the modulus of the scalar
product f (w,t) @g(w,t)# between the stateuCNeven

&
(uCNodd

&) and the normalized state

uc~ t !&5
1

Ac~ t !
uw2~ t !& ~30!

obtained by detecting, at the instantt, the internal state of the
ion asu2&, can be written as

f ~w,t !5 z^c~ t !uCNeven
& z

5
1

A2c~ t !
U(

k50

N

Pk
2 cos~ f kt !@11eiw~21!k#U,

~31!

g~w,t !5 z^c~ t !uCNodd
& z

5
1

A2c~ t !
U(

k50

N

Pk
2 cos~ f kt !@ i k1eiw~2 i !k#U.

~32!

Let us focus our attention on the caseN@1 odd. Using Eqs.
~20!, ~18!, and~22!, it is simple to deduce that

FIG. 2. Plot ofQj 5 j 0 (x5Re@t#,y5Im@t#) for N520, corre-
sponding to~a! t50, ~b! t5te .
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cos~ f k̄to!5cosS p~N221!

4 D5~21!(N11)/2 ~33!

and that

~ f k2 f k11!to5Dkp. ~34!

In view of these considerations, and remembering thatDk
PZ, it is possible to verify that cos(fkto) can assume only the
values11 and21. In more in detail, itsk dependence may
be expressed as

cos~ f kto!.~21! k̄i (k2 k̄)
@12 i ~21!(k2 k̄)#

i 21
~35!

with k̄5(N11)/2. Remembering that, att5to , c(to)51,
and substituting Eq.~35! into Eq. ~32! we obtain

g~w,to!5 1
2 ueiw2 i ~21!(N11)/2u. ~36!

Looking at Eq.~36!, we may conclude that ifN is odd, then
g(w5p/2,t5to).1 or g(w53p/2,t5to).1 when (N
11)/2 is odd or even, respectively.

Consider now the caseN@1 even. Following an analysis
similar to the one adopted forN odd, it is not difficult to
establish that

cosS f k̄

te

2 D5cosS pN2

4 D5~21!N/2 ~37!

and

~ f k2 f k11!
te

2
5Dk

p

2
. ~38!

We recall that the integerDk given by Eq.~19! is an odd
integer whateverk is, if N is even. This property allows us to
write cos(fkte/2) in the form

cosS f k

te

2 D. 1
2 @~21!k1~21!N/2# ~39!

FIG. 3. Plot ofQj 5 j 0 (x5Re@t#,y5Im@t#) for N521, corre-
sponding to~a! t50, ~b! t5to . FIG. 4. ~a! Plot of the function f (w,u)5 z^cNeven

uc& z for N
520, with u5gt. ~b! Plot of the functiong(w,u)5 z^cNodd

uc& z for
N521, with u5gt.
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so that, substituting Eq.~39! into Eq. ~31! and remembering
that c(te/2)51/2, we get

f ~w,te/2!5 1
2 ueiw1~21!N/2u. ~40!

In this case Eq.~40! tells us that f (we52p,te/2).1 or
f (w5p,te/2).1, whenN/2 is even or odd, respectively.

In Fig. 4 we report the functionsf (w,t)5 z^CNeven
uc& z for

N520 andg(w,t)5 z^CNodd
uc& z for N521, in a range of

values oft centered aroundto.te/2.
These results allow us to conclude that the properties of

the state generated following the procedure envisaged in this
article strongly depend on the parity of the total initial num-
ber N of vibrational quanta. In more detail, we get

UcS te

2 D L 5
1

A2
S Ut51,j 5

N

2 L 1~21!N/2Ut521,j 5
N

2 L D
~41!

if N is even, whereas we obtain

uc~ to!&5
1

A2
S Ut5 i , j 5

N

2 L 2 i ~21!(N11)/2Ut52 i , j 5
N

2 L D
~42!

if N is odd. In words this means that ifN is even the state
uc(te/2)&, defined by Eq.~41!, has the form of an even~odd!
SU~2! coherent state@20#, if N/2 is even~odd!. On the other
hand, ifN is odd, the two statesuc(to)& obtained by measur-
ing at t5to the internal state of the ion asu2& may be called
SU~2! Yurke-Stoler-like coherent states, with a difference of
p/2 (3p/2) in the relative quantum phase, when (N11)/2 is
even~odd!.

Summarizing, in the context of our conditional scheme,
based on a single measurement act, the total number of ex-
citationsN present in the initial state of the ion c.m. motion
behaves as an adjustable parameter, allowing the realization
of vibrational states possessing very different nonclassical
bosonic number distributions. It is worth emphasizing that,
whatever the parity ofN, the states discussed in this paper
are quantum superpositions of two distinguishable SU~2! co-
herent states of a bidimensional isotropic harmonic oscilla-
tor.
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