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PHYSICAL REVIEW A, VOLUME 61, 053806
Nonunitary generation of nonclassical states of a bidimensional harmonic oscillator

S. Maniscalco, A. Messina, and A. Napoli
INFM and MURST, Dipartimento di Scienze Fisiche ed Astronomiche dell’'Univetsialermo, via Archirafi 36, 90123 Palermo, ltaly
(Received 12 May 1999; published 11 April 2000

A scheme for generating quantum superpositions of macroscopically distinguishable states of the vibrational
motion of a bidimensionally trapped ion is reported. We show that these states possess highly nonclassical
properties controllable by an adjustable parameter simply related to the initial condition of the confined system

PACS numbgs): 42.50.Dv, 42.50.Vk, 32.80.Pj

Over the last few years there have been developed sophithat these states possess nonclassical properties controllable
ticated techniques of laser cooling and trapping of atomsby an adjustable parameter simply related to the initial con-
opening a new research field for testing fundamental featuredition imposed on the confined system.
of atomic physics and quantum optids-4]. It is possible, in Consider a two-level ion of madd confined in a bidi-
fact, to demonstrate that an ion confined in an electromagmnensional isotropic harmonic potential characterized by a
netic trap is describable as a particle in a harmonic potentiatap frequency. The operators (a') andb (b") defined as
in the sense that its center of massn,) can be quantized as

a harmonic oscillatof5,6]. Appropriately driving the trapped 1 My 1

ion by classical laser beams, its internal and external degrees a=—| \/——X+i——P,|, (1)
of freedom can be coupled. Thus, simply by controlling the V2 h VMvh

configuration of the driving lasers, it becomes possible to

manipulate the external motion of the confined ion. It is, 1 M. 1 . )

moreover, of particular relevance that, if the Lamb-Dicke b=— \/—Y+i—Py (2)
limit is satisfied and the driving field is tuned to one of the V2 B VMvh

vibrational sidebands of the atomic transition, then the quan-

tum dynamics of such systems may be deduced from geneare the annihilatioricreatior) operators of vibrational quanta
alized nonlinear Jaynes-Cummings models wherein thé the X and Y directions, respectively. It has been shown
quantized radiation field is, obviously, replaced by the quan{17] that by irradiating the trapped ion with an appropriate
tized c.m. motion of the iofi7]. This prominent feature di- configuration of laser beams the physical system under scru-
rectly leads to the possibility of testing the rich dynamicstiny can be studied, in the Lamb-Dicke limit and in the in-
predicted by these models using trapped ions instead of cavieraction picture, by the following Hamiltonian model.

ties. One of the advantages of exploiting such systems is

related to the circumstance that typical dissipative effects A=g[(ab)o, +(a'hhe_], 3)
strongly limiting the performance of experiments in cavities,

in the optical as well as in the microwave regime, can be - - -~

significantly suppressed for the ion motion, thanks to thavhere oz =[+)(+[—=[=)}(=|, o =|+)(~|, o_=]=)(+]
extremely weak coupling between the vibrational modes ang€scribe the internal degrees of freed¢m, and|—) being

the external environment. It is thus not surprising that jondN€ ionic excited and ground states respectively. Let us de-
confined by electromagnetic fields are eligible systems fof°te by|”a;”p>:|”a>|”b> the simultaneous eigenstates of
producing, for example, specific nonclassi¢aibrationa) a'a and b'b such that a'an,,ny)=n,/n,,np) and
states. Several schemes for the generation of Fock statesib|n,,n,)=ng|n,,ny).

coherent states, and squeezed states have, in fact, been resWe suppose that the initial state of the ion has the form
ported and realized in this contep@—13]. Quite recently,

Monroe et al. [14] have proposed an experimental scheme

for generating and detecting a ScHimger-cat-like state of a | (0))=
trapped ion providing insight into the fuzzy boundary be-
tween the classical and quantum worlds. The state generated
by exploiting the procedure of Monrost al. is given by a
superposition of two coherent state wave packets of a single
trapped ion. Over the last few years, some interesting meth-
ods for creating generalized coherent states of the bidimen-
sional vibrational c.m. motion have been reporfé8-18.

In this paper we present an original scheme aimed at gener-
ating quantum superpositions of bosonic(8JUmnacroscopi-
cally distinguishable coherent statgk9,20 by exploiting  The vibrational statér=1,j,=N/2) belongs to the class of
the wave packet reduction method. In particular, we shovihe so called S(2) coherent states defined as

N
r=Ljo=5)|-)

1 N 1/2
2T’2|Zo ( k) IN—k,k)|—)

N
> PUN—Kkk)|-). (4)
k=0
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1 2j j\ 12 strate that there exi$ti-dependent instants of time at which

|70)=—05= > ( ™2j —k,k), (5)  the internal and external degrees of freedom of the trapped

(1+]7?)) &=o | k ion are disentanglefc(t)=1 or c¢(t)=0] or maximally en-
i L tangled[c(t)=1/2].
where 7 C gnd 3 eN. The states*,N—Ak,Ak> appearing In Consider first of all the case of disentanglement and, in
Eq. (4) are eigenstates of the operatar'@+b'b) all per-  particular, the case in which(t) comes back to its initial
taining to the eigenvalud = 2j, representing the initial total \gjye 1. These revivals af(t) are of course related to the
number of vibrational quanta. Very recently, number state$ephasing of the oscillating terms appearing in E®). In
of the ion motion along th& direction of an electromagnetic oder to evaluate these special instants of time, we observe
trap have been experimentally realized by Meekboll.  that|p,|2 is a binomial distribution sharply peaked around
[11]. Of course, the applicability of this method is by N0 jts mean valugk)=N/2, with a variance equal tqN/2. If

means restricted to oscillations along theaxis only. AS  Ns.q it is reasonable to assume that only the terms satisfy-
pointed out by Gou and Knightl8], the generation of the ing the inequality

initial state |7=1,jo) of a bidimensionally confined ion
amounts to realizing a Fock state of the ion motion along the
direction with an angler/4 relative to theX axis.

If we turn on, att=0, the laser fields realizing the Hamil-
tonian model given by Ed3), then at any subsequent instant effectively contribute to the sum appearing in Etg). Indi-
of time t the state of the system in the Sctimger picture, cate witht the instant of time at whicle(t) has its first

apart from an overall phase factor, can be written as revival. It is easy to convince oneself that, at this time, the

——=<ks-+ (13

N Z

IN
2

N Z

IN
2

(W) =le-(t)|=)+es(t)+) (6)  necessary condition
with 2(fi—freDt=2mem, m=0+1,..., (14
N must be satisfied. Taking into account the considerations
|<P7(t)>:§_: Py cog fit)[N—k,k) (7)  above, we have proved that E(l4) can be linearized as
k=0 follows:
and
_ 2k—N+1 (2k—N+1)*
N-1 2(f —fropt=4gt| ————+ 0| —
i i N N4
0+ (0)==1 2 Pysin(fi)|N-k=1k=1), (8
N 2k—N+14 — 15
where - N gt (15)
fi=2gV(N—k)k (9 In particular, fork=k with
are the Rabi frequences. Equati®®) shows that, starting N
from the factorized statgl'(0)), the Hamiltonian mode(3) > if N iseven,
leads to entanglement between the external and internal de- k= (16)
grees of freedom of the trapped ion, giving rise to far- N+1 i N is odd
reaching interesting dynamical consequences. In order to ap- 2 ! IS odd,
preciate the meaning of this assertion, we focus our attention
on the time evolution of the vibrational entropy defined aswe get
follows .
49t .
S,(1)==Tr{p,(t)Inp,(1)], (10 N if N iseven
i | bi 2fift=y (a7
p, being the reduced density operator describing the external 8gt
motion of the ion. A straightforward calculation gives N if N isodd,
t)=—In{c(t)*O[1—c(t)]* M}, 11
Su(t) {e®™ (©)] } (D so that, in view of Eq(15), the following relation between
where (fy—frr1) and (fr— i 1) may be written down:
N N e bl f—  f—
1 2(f —frapt=A2t[ fi— el (18
c(t)=3 [P2cod(f)=5|1+ 3 |Pk|2cos(2fkt)). e T e e
k=0 k=0 ; ;
(12) In this equation,
" . . . 2k—N+1
Exploiting an original analytical method based on analysis of ———— (19)
the Rabi frequencies relative to our system, we now demon- 2= 6aNi2) N

053806-2
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is an integer whatever the value of the natutaland the (a)
symbol[x] means the integer part of the real numker 0.7
On the other_hand, the linearized frequeffigy defined by
Eq. (9) with k=k, may be cast as follows: 0.6
gN if N iseven, 051
fi= . . (20
gN+gO(1/N)=gN if N isodd.
0.4
From Eq.(18) it is possible to deduce the key relation Sy
031
cog 2fy, t)=cod 2f t —2A,t(fi—fi )], (2D
0.2 1
wherek=k,k*x1,... . Inview of_Eqs.(12) and (21) and
recalling thatA is integer, the timeé of the first revival can 0.17
be found by solving the system

07T é1'01'21h1’6é§2’02’2242'62'83b3'234

2(fi— fi ) t=2m, (22
2fit=2nm, @3 ., (b)
wheren is an unknown integer to be determined simulta- ‘ |
neously witht. As suggested by Eq$17) and (22), t de- 061
pends on tkE parity ofl. We have in fact proved that, M 051

>1 is event=mwN/2g=t, andn=N?/2 whereas iN>1 is

odd it is not difficult to verify thatt=t./2— w/4gN=t,, 0.4
with n=(N?—1)/4 up toO(1/N). Thus, in the case of odd s,
N, the first revival ofc(t) occurs at a timetg) which turns 031
out to be almost one-half of the instant of timg)(at which

c(t)=1 if Nis even. In view of the scheme we are going to 0.2
propose, in what follows we concentrate our attention on the
time t,. It is possible to persuade oneself, by direct substi- 0.1
tution into Eq.(22), that, if N is even, at the instarit=t./2

=to, L A U TR I Y VR TR T P

te
2(fi— fk”)f -7 (24) FIG. 1. Time evolution of the vibrational entroiy(gt) for (a)
N=20 and(b) N=21.
and then

¢ t of time. Figure 1 displays the time evolution 8f, as given

2fpi1==2f = —Apmr (25) by Eq.(11), corresponding t&N=20 andN=21. These fig-

2 2 ures illustrate our prediction and, in particular, the existence
of an N-dependent instant of timig=t./2 at which the sys-
tem under scrutiny exhibits different quantum behaviors de-
pendent on the parity dfl.

te These results bring to light a peculiar nonclassical prop-
cos( 2fk§> o (—1)K (26) erty of our system, namely, a sensitivity to the granularity of
the initial total number of vibrational quants, The physical
origin of this intrinsically quantum behavior stems directly
even. from the specific two-boson coupling mechanism envisaged

Summing up, we have proved analytically thaNi&=1 is 1N this paper.
odd, at thegzJ inpstant :telzp— 749 Nztzlz c)(/t y=1, and In order to bring to light the link between the quantum
1 o] 1 0. ’

thusS, (,) reaches its absolute minimum, indicating that thedynamlcs followed by our system and the occurrence of such

internal and external degrees of freedom manifest a marke@ Nonclassical feature, it appears highly interesting to con-
ruct a detailed representation |gf_(t)) and |, (t)) att

tendency to disentangle from each other. On the contrary, at : :
t/2=mN/4g, if N>1 is even,c(tJ/2)=1/2, and thus the fte/2 and§=t0. To this end we_mtrodupe and study the
vibrational entropyS,(ts/2) reaches its maximum value. time evolution of the SI2) Q function defined as

This means that the vibrational and electronic degrees of

freedom are, in this case, maximally entangled at this instant QU =(mjlp,|J). (27

in view of Eg. (18). Taking into account that by definition
(19) Ay is odd whenN is even, we immediately deduce that

so that, from Eq(12) we definitively getc(to/2)=3 if N is

053806-3
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QU(7) is aj-dependent quasiprobability distribution func- (@)
tion defined over the phase space parametrizetlb§ [21].
For what follows it is of relevance to underline that the total
excitation number operatd=a‘a+b'b+o,+1 is a con-
stant of motion and that the initial state of our system,

|#(0)), is an eigenstate & corresponding to the eigenvalue
n=2j, with jo,=N/2. Observing thatr,j) is orthogonal to ~ **
[n,,np) when 2 #n,+ny, then it is easy to convince one- a0
self that|¢_(t)) [|¢,(t))] can be expressed as a quantum o«
superposition of different S@2) coherent statesr,j=j, 02
=N/2) [|7,j=]jo—1=(N—2)/2)] obtained by varyingr. " \ 2
This circumstance directly leads to us considering e == 2
functionsQU=19(7) or QU=Ilo~1)(7) only. In particular, we
fix our attention here on the quasiprobability function
QW(7) with j=j,=N/2. Figures 2a) and 2b) [3(a) and
3(b)] display, forN=20 (N=21), QU=I0d(7) att=0 andt e
=t./2 (t=t,), respectively. A careful analysis of these fig- (b)
ures suggests that detection at thislséependent instants of
time of the electronic state of the trapped ion in its ground
state|—) projects the c.m. motion into a superposition of
two macroscopically distinguishable 8 coherent states.
In addition, we find that such a superposition exhibits a highos
sensitivity to the parity of the total number of vibrational
quanta present dt=0, in accordance with our conclusions ,
previously deduced on the basis of the propertieS,of Q
In fact, Figs. Zb) and 3b) strongly suggest that, after the
measurement act, the two components of the vibrational stat”' 5 \ SIS
are|r=1,j=N/2) and|r=—1,j=N/2) if N is even, or|7 L's ; ‘ \ 2% ¥
=i,j=N/2) and|7=—1i,j=N/2) if N is odd. It is of rel-
evance to emphasize that measurement of the internal sta
of a trapped ion, as required in this paper, is currently per-
formed using the quantum jump techniquiel,14]. A theo- 22
retical description of this method may be found in a paper of
Poyatoset al.[22]. Of course it is very difficult to guess the FIG. 2. Plot ofQi=io (x=Rq 7],y=Im[7]) for N= 20, corre-
exact superposition of the two vibrational &)Y coherent sponding to(a) t=0, (b) t=t,.
states into which the c.m. motion is projected after measure-
ment of the electronic state from this kind of analysis of the

0.4

_ 1
QUW(7) plots. For this reason, in order to know the exact l(t))= —=|@_(1)) (30)
form of the vibrational state generated by the procedure pro- ve(t)
posed in this paper, let us consider the following two classes . i i i
of normalized quantum superpositions: obtained by detecting, at the instdnthe internal state of the
ion as|—), can be written as
1 N\ N fle. ) =Ky, )l
= =1ji=— 1O i — 1 | =— even
PN, \/§< =1, 2>+e 7=—1; 2>) X .
(28) o go PZcod fi)[1+e'¢(—1) ]|,
and (31
. N N 9l =g ¥y,
= — =] j=— 1P| r= | | =—
|q,N0dd> \/E( T=1,] 2>+e T 1) 2>) 1 N , » . L
(29 = ooty 2 Pr oI+
(32

Assuming thaiN is even(odd), the modulus of the scalar

product f(¢,t) [g(e,t)] between the state|Wy__)  Let us focus our attention on the case 1 odd. Using Egs.
(|\IfNodd>) and the normalized state (20), (18), and(22), it is simple to deduce that

053806-4
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(@)

FIG. 3. Plot ofQI~io (x=Re 7],y=Im[7]) for N=21, corre-
sponding to(a) t=0, (b) t=t,.

2_
COE(fEto)zco< M) :(_1)(N+1)/2 (33)

and that

(fk=frr ) to=Aym. (34
In view of these considerations, and remembering that
e Z, itis possible to verify that co§f,) can assume only the
values+1 and—1. In more in detall, itk dependence may
be expressed as

[1—i(—1)* W]

cog fytg)=(~ 1) =——

(39

with k=(N+1)/2. Remembering that, dt=t,, c(t,)=1,
and substituting Eq(35) into Eq.(32) we obtain

g(p,te)=3]ee—i(—1)N*D7, (36)

Looking at Eq.(36), we may conclude that il is odd, then
g(e=ml2t=t,)=1 or g(¢=37/2t=ty,)=1 when
+1)/2 is odd or even, respectively.

FIG. 4. (a) Plot of the functionf(qo,0)=|(¢,//Neven| Y| for N
=20, with 6=gt. (b) Plot of the functiong(e,8) = (¥, )| for
N=21, with =gt.

Consider now the cadé>1 even. Following an analysis
similar to the one adopted fdd odd, it is not difficult to
establish that

2
c05< f;tz—e) = cos( %) =(—1)N?

(37

and

t

v
(fe—fren)5 =My (39

We recall that the integef, given by Eq.(19) is an odd
integer whatevek is, if N is even. This property allows us to
write cosfts/2) in the form

cos(fktf)z%n—l)kﬂ—lw’ﬂ 39

053806-5
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so that, substituting Eq39) into Eqg.(31) and remembering
thatc(t/2)=1/2, we get

f(ete/2)=3]e"*+(-1)N7. (40)

In this case EQq.40) tells us thatf(g.=2m,t/2)=1 or
f(e=,t/2)=1, whenN/2 is even or odd, respectively.
In Fig. 4 we report the function§ ¢,t) = |<\IfNeUen| | for
N=20 andg(e,t)=KW¥y_,J#)| for N=21, in a range of
values oft centered arount,=t./2.
These results allow us to conclude that the properties

article strongly depend on the parity of the total initial num-
ber N of vibrational quanta. In more detail, we get

a4 )

1

V2

le

al

2

N
r=1j= E> +(—1)N2

(41
if N is even, whereas we obtain
1 N N
- i i=—) —i(—=1)Y(N+L)2 i
l4h(to)) ﬁ(T i, 2> i(—1) T=—1,j 2>)
(42)

PHYSICAL REVIEW A61 053806

if N is odd. In words this means that N is even the state
| 4(te/2)), defined by Eq(41), has the form of an evefodd
SU(2) coherent statg20], if N/2 is even(odd). On the other
hand, ifN is odd, the two statels/(t,)) obtained by measur-
ing att=t, the internal state of the ion &s-) may be called
SU(2) Yurke-Stoler-like coherent states, with a difference of
/2 (37/2) in the relative quantum phase, whedi« 1)/2 is
even(odd).

Summarizing, in the context of our conditional scheme,

ased on a single measurement act, the total number of ex-

. ' ) O,ZitationsN present in the initial state of the ion c.m. motion
the state generated following the procedure envisaged in thg

ehaves as an adjustable parameter, allowing the realization
of vibrational states possessing very different nonclassical
bosonic number distributions. It is worth emphasizing that,
whatever the parity oN, the states discussed in this paper
are quantum superpositions of two distinguishablé23do-
herent states of a bidimensional isotropic harmonic oscilla-
tor.
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