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Abstract. This paper focuses on the possibility of simulating the open system
dynamics of a paradigmatic model, namely the damped harmonic oscillator,
with single trapped ions. The key idea consists in using a controllable physical
system, i.e. a single trapped ion interacting with an engineered reservoir, to
simulate the dynamics of other open systems usually difficult to study. The
exact dynamics of the damped harmonic oscillator under very general condi-
tions is firstly derived. Some peculiar characteristic of the system’s dynamics
are then presented. Finally a way to implement with trapped ion the specific
quantum simulator of interest is discussed.
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1. Introduction

The dynamics of closed systems may be calculated exactly by solving directly the
Schrödinger equation. In realistic physical conditions, however, quantum mechani-
cal systems need to be regarded as open systems due to the fact that, as in classical
physics, any realistic system is coupled to an uncontrollable environment which
influences it in a non-negligible way [1].

Nowadays the interest in the broad field of open quantum systems has no-
tably increased mainly for two reasons. On the one hand, experimental advances
in the coherent control of single or few atoms and ions have paved the way to the
realization of the first basic elements of quantum computers, c-not [2] and phase
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quantum gates [3]. Moreover, the first quantum cryptographic [4] and quantum
teleportation [5] schemes have been experimentally implemented. These technolog-
ical applications rely on the persistence of quantum coherence. Thus, understanding
decoherence and dissipation arising from the unavoidable interaction between the
system and its surrounding is necessary in order to implement these new quantum
technologies.

On the other hand, one of the most debated aspects of quantum theory, namely
the quantum measurement problem, has been recently interpreted in terms of en-
vironment induced decoherence [6]. According to this interpretation the emergence
of the classical world from the quantum world can be seen as a decoherence process
due to the interaction between the system and the environment. For this reason
the study of some paradigmatic models of open systems allows to gain new insight
in the theory of quantum measurement and in the related fundamental issues of
quantum theory.

This paper focus on the possibility of studying experimentally a paradigmatic
model of the theory of open quantum system, namely the damped harmonic oscil-
lator or quantum Brownian motion (QBM) model [7–9]. We propose to simulate
the system dynamics with single trapped ions coupled to artificial reservoirs. The
idea of simulating the dynamics of a given (closed) quantum systems by using other
more easily controllable systems was introduced by Feynman in [10]. Following
this idea, some experimental schemes for realizing quantum simulators have been
proposed in the trapped ion context [11, 12]. In this paper we propose to extend
the concept of quantum simulators from closed to open quantum systems. The
possibility of realizing an open system quantum simulator stems from the recent
experimental achievements in the realization of artificial reservoirs with trapped
ions. In this context, indeed, it is possible not only to engineer experimentally an
artificial reservoir but also to synthesize both its spectral density and the coupling
with the system oscillator [13, 14]. This makes it possible to think of new types
of experiments aimed at testing the predictions of fundamental models as the one
of quantum Brownian motion (or its high T limit: the famous Caldeira–Leggett
model [8]).

The paper is structured as follows. In Section 2 the exact master equation for
QBM is presented and an analytical method to solve it is discussed. In Section 3,
the time evolution of the mean energy of the particle is studied. In Section 4 the
experimental conditions for simulating QBM and observing the peculiar dynamics
of the mean energy of the systems are analyzed. Finally, in Section 5 conclusions
are presented.

2. Quantum Brownian Motion

2.1. Master Equation

The dynamics of a harmonic oscillator linearly coupled with a quantized reservoir,
modeled as an infinite chain of quantum harmonic oscillators, is described, in the
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secular approximation, by means of the following generalized Master Equation [15]

dρS(t)

dt
=
Δ(t)+γ(t)

2

[
2aρS(t)a

† − a†aρS(t)− ρS(t)a
†a

]

+
Δ(t)−γ(t)

2

[
2a†ρS(t)a− aa†ρS(t)− ρS(t)aa†

]
. (1)

The time dependent coefficients appearing in the Master Equation can be written,
to the second order in the coupling strength, as follows

Δ(t) =

∫ t

0

κ(τ) cos(ω0τ)dτ , γ(t) =

∫ t

0

μ(τ) sin(ω0τ)dτ , (2)

where κ(τ) and μ(τ) are the noise and dissipation kernels, respectively, and ω0 is
the frequency of the system oscillator [1].

The Master Equation (1) is local in time, even if non-Markovian. This fea-
ture is typical of all the generalized Master Equations derived by using the time-
convolutionless projection operator technique [1] or equivalent approaches such as
the superoperatorial one presented in [9, 16]. It is worth noting that the Master
Equation (1) is of Lindblad-type as far as the coefficients Δ(t) ± γ(t) are posi-
tive [17].

In what follows we study the time evolution of the heating function 〈n(t)〉 with
n quantum number operator. This operator belongs to a class of observables not
influenced by the secular approximation [9,18]. For this reason, in order to calculate
the exact time evolution of the heating function, one can use the solution of the
approximated Master Equation (1).

2.2. Time evolution of the Quantum Characteristic Function

The Master Equation (1) can be solved exactly by using specific algebraic properties
of the superoperators [9]. The solution for the density matrix of the system is
derived in terms of the quantum characteristic function (QCF) χt(ξ) at time t,
defined through the equation [19]

ρS(t) =
1

2π

∫
χt(ξ) e(ξa†−ξ∗a)d2ξ . (3)

It is worth noting that one of the advantages of this approach is the easiness in
calculating the analytic expression for the mean values of observables of interest by
means of the relation

〈a†man〉 =

(
d

dξ

)m (
−

d

dξ∗

)n

e|ξ|
2/2χ(ξ)

∣∣∣∣
ξ=0

. (4)

The exact analytic expression for the time evolution of the heating function can be
obtained from the solution of Eq. (1). In the secular approximation the QCF takes
the form [9]

χt(ξ) = e−ΔΓ(t)|ξ|2χ0

[
e−Γ(t)/2e−iω0tξ

]
, (5)
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with χ0 QCF of the initial state of the system. The quantities ΔΓ(t) and Γ(t)
appearing in Eq. (5) are defined in terms of the diffusion and dissipation coefficients
Δ(t) and γ(t), respectively, as follows

Γ(t) = 2

∫ t

0

γ(t1) dt1 , ΔΓ(t) = e−Γ(t)

∫ t

0

eΓ(t1)Δ(t1)dt1 . (6)

We now focus on the dynamics of the heating function 〈n(t)〉. Having in mind
Eq. (5) and using Eq. (4), one gets the following expression for the heating function

〈n(t)〉 = e−Γ(t)〈n(0)〉+
1

2

(
e−Γ(t) − 1

)
+ΔΓ(t) . (7)

In the next section we will discuss in detail the dynamics of the heating process and
we will show the changes in the short time behavior due to the variations of typical
reservoir parameters.

3. Time Evolution of the Mean Energy: Lindblad-Type and

Non-Lindblad-Type Dynamics

In a previous paper we have presented a theory of heating for a single trapped
ion interacting with a natural reservoir able to describe both its short time non-
Markovian behavior and the asymptotic thermalization process [20]. Here we focus
instead on the case of interaction with engineered reservoirs. In the trapped ion
context, it is possible to engineer artificial reservoirs and couple them to the system
in a controlled way. Since the coupling with the natural reservoir is negligible for
long time intervals [21], this allows to test fundamental models of open system
dynamics as the one for QBM we are interested in. By using the analytic solution,
one can look for ranges of the relevant parameters of both the reservoir and the
system in correspondence of which deviations from Markovian dissipation become
experimentally observable.

In the experiments on artificially engineered amplitude reservoirs [14] the high
temperature condition �ω0/KT � 1 is always satisfied. For this reason here we con-
centrate on this regime of the parameters. We assume an Ohmic reservoir spectral
density with Lorentz–Drude cut-off

J(ω) =
2ω

π

ω2
c

ω2
c + ω2

, (8)

with ωc cut-off frequency.
For times much smaller then the thermalization time τT = 1/Γ, with Γ asymp-

totic value of Γ(t), the heating function takes the form

〈n(t)〉 �

∫ t

0

Δ(t1)dt1 =
2α2KT

ωc

r2

(r2 + 1)2

{
ωct(r

2 + 1)

− (r2−1)
[
1− e−ωctcos(ω0t)

]
−re−ωctsin(ω0t)

}
, (9)
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with r = ωc/ω0, α system-reservoir coupling constant, and K is the Boltzmann
constant. In deriving the previous equation we have assumed that the initial state
of the ion is its vibrational ground state, as it is actually the case at the end of the
resolved sideband cooling process [21].

This approximation shows a clear connection between the sign of the diffusion
coefficient Δ(t) and the time evolution of the heating function before thermalization.
The diffusion coefficient is indeed the time derivative of the heating function. Since
in the high T limit Δ(t) � γ(t), whenever Δ(t) > 0 the Master Equation (1) is of
Lindblad-type, whilst the case Δ(t) < 0 corresponds to a non-Lindblad-type Master
Equation. From Eq. (9) one sees immediately that while for Δ(t) > 0 the heating
function grows monotonically, when Δ(t) assumes negative values it can decrease
and present oscillations [22].

To better understand such a behavior we consider three exemplary values of the
ratio r between the reservoir cut-off frequency and the system oscillator frequency:
r � 1, r = 1 and r � 1. The first case corresponds to the assumption commonly
done when dealing with natural reservoir while the last case corresponds to an
engineered “out of resonance” reservoir. For r � 1 the diffusion coefficient Δ(t) is
positive for all t and r. Therefore the Master Equation is always of Lindblad-type
and the heating function grows monotonically from its initial null value. Equation
(9) shows that, for times t� τR, and for r � 1, 〈n(t)〉 � (α2ωckT )t2, i.e. the initial
non-Markovian behavior of the heating function is quadratic in time. For r = 1, a
similar behavior is observed since also in this case Δ(t) is positive at all times.

Finally, in the case r � 1, Δ(t) oscillates acquiring also negative values. It is
worth noting, however, that the long time asymptotic value of Δ(t) is always posi-
tive. Whenever the diffusion coefficient is negative, the heating function decreases,
so the overall heating process is characterized by oscillations of the heating func-
tion. The decrease in the population of the ground state of the system oscillator,
after an initial increase due to the interaction with the high T reservoir, is due to
the emission and subsequent reabsorption of the same quantum of energy. Such an
event is possible since the reservoir correlation time τR = 1/ωc, for r � 1, is much
longer than the period of oscillation τs = 1/ω0. We underline that, although the
Master Equation in this case is not of Lindblad-type, it conserves the positivity of
the reduced density matrix [17].

4. Experiment for Simulating QBM with Trapped Ions

In the trapped ion context, a high T amplitude reservoir is obtained by applying a
random electric field �E whose spectrum is centered on the axial frequency ωz/2π =
11.3 MHz of oscillation of the ion [14]. The trapped ion motion couples to this

field due to the net charge q of the ion: Hint = −q�x · �E, with �x = (X, Y, Z)
displacement of the c.m. of the ion from its equilibrium position. Remembering
that �E ∝

∑
i �εi(bi + b†i ), with bi and b†i annihilation and creation operators of the

fluctuating field modes, and that X ∝
(
a+ a†

)
one realizes that this coupling is

equivalent to the bilinear one assumed to derive Eq. (1).
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The random electric field is applied to the endcap electrodes through a network
of properly arranged low pass filters limiting the natural environmental noise but
allowing deliberately large applied fields to be effective. This type of drive simulates
an infinite-bandwidth amplitude reservoir [14]. It is worth stressing that, for the
times of duration of the experiment, namely Δt = 20 μs, the heating due to the
natural reservoir is definitively negligible [14].

The reservoir considered in our paper is a high T thermal reservoir with spectral
distribution given by

I(ω) =
2KT

π

ω2
c

ω2
c + ω2

. (10)

The infinite-bandwidth amplitude reservoir realized in the experiments corresponds
to the case ωc → ∞ in the previous equation. Therefore, for high T , the reser-
voir discussed in this paper can be realized experimentally by filtering the random
field, used in the experiments for simulating an infinite-bandwidth reservoir, with
a Lorentzian shaped low pass filter at frequency ωc. The change of the ratio r thus
would be accomplished simply by changing the low pass filter.

It is well known that non-Markovian features usually occur in the dynamics
for times t � τR = 1/ωc. In general, since ωc � ω0 and typically ω0 � 107 Hz
for trapped ions, this means that deviations from the Markovian dynamics appear
for times t � 0.1 μs. This is the reason why the initial quadratic behavior of the
heating function is not observed in the experiments, wherein the typical time scales
go from 1 to 100 μs.

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t (µs)

<n
>

Fig. 1. Time evolution of the heating function for 2α2KT/π = 0.84 · 109 Hz,
ωc = 1 MHz, r = 0.1. Solid line is the analytical and circles the simulation result
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A way to force non-Markovian features to appear is to ‘detune’ the trap fre-
quency from the reservoir spectral density. This corresponds, for example, to the
case in which r = ωc/ω0 = 0.1. In this case the reservoir correlation time is bigger
than the period of oscillation of the ion and this leads to the oscillatory behavior of
the heating function predicted by Eq. (9) for r � 1. Under this condition τc = 1 μs,
and therefore the non-Markovian features show up in the time evolution and can
be measured. Detuning the trap frequency from the reservoir, however, decreases
the effective coupling between the system and the environment and, for this reason,
in order to obtain values of the heating function big enough to be measured we
need to increase either the coupling constant α2, which correspond to an increase
in the intensity of the voltage applied to the electrodes, or the strength of the fluc-
tuations 〈V 2〉, which correspond to an increase in the effective temperature of the
reservoir [23]. When these conditions are satisfied, the heating function behaves as
shown in Fig. 1.

5. Conclusions

In this paper the dynamics of a single harmonic oscillator coupled to a quantized
high temperature reservoir is studied, focusing in particular on the non-Markovian
heating dynamics typical of short times. In this regime the system time evolution
is influenced by correlations between the system and the reservoir. For certain
values of the system and reservoir parameters, virtual exchanges of energy between
the system and its environment become dominant. These virtual processes strongly
affect the short time dynamics and are responsible for the appearance of oscillations
in the heating function (non-Lindblad-type dynamics).

Extending the ideas of using trapped ions for simulating quantum optical sys-
tems, a QBM quantum simulator with single trapped ions coupled to artificial
reservoirs is proposed. We have carefully analyzed the possibility of revealing, by
using present technologies, the non-Markovian dynamics of a single trapped ion
interacting with an engineered reservoir, underlining the conditions under which
non-Markovian features become observable.
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