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The dynamics of a typical open quantum system, namely a quantum Brownian particle in a harmonic
potential, is studied focusing on its non-Markovian regime. Both an analytic approach and a stochastic wave-
function approach are used to describe the exact time evolution of the system. The border between two very
different dynamical regimes, the Lindblad and non-Lindblad regimes, is identified and the relevant physical
variables governing the passage from one regime to the other are singled out. The non-Markovian short-time
dynamics is studied in detail by looking at the mean energy, the squeezing, the Mandel parameter, and the
Wigner function of the system.

DOI: 10.1103/PhysRevA.70.032113 PACS number(s): 03.65.Yz, 03.65.Ta

I. INTRODUCTION

The description of the dynamics of quantum systems in-
teracting with their surroundings is, in general, a very diffi-
cult task due to the complexity of the environment. An exact
approach would require us to take into account not only the
degrees of freedom of the system of interest, but also those
of the environment. One can, in principle, look for the solu-
tion of the Liouville–von Neumann equation for the density
matrix of the total closed system. Even when this is possible,
however, the total density matrix contains much more infor-
mation than what we actually need, since one is usually in-
terested in the time evolution of the reduced system only.

A common approach to the dynamics of open quantum
systems consists in deriving a master equation for the re-
duced density matrix describing the temporal behavior of the
open system[1]. This equation is in general obtained by
tracing over the environmental variables, after performing a
series of approximations. Two of the most common ones are
the rotating-wave approximation(RWA) and the Born-
Markov approximation. The first one basically consists of
neglecting in the microscopic system-reservoir interaction
Hamiltonian the counter-rotating terms responsible for the
virtual exchanges of energy between system and environ-
ment. The second one neglects the correlations between sys-
tem and reservoir assuming that the changes in the reservoir
due to the interaction with the system cannot feed back into
the system’s dynamics.

The Born-Markov approximation leads to a master equa-
tion which can be cast in the so-called Lindblad form[2,3].
Master equations in the Lindblad form are characterized by
the fact that the dynamical group of the system satisfies both
the semigroup property and the complete positivity condi-

tion, thus ensuring the preservation of positivity of the den-
sity matrix during the time evolution. Moreover, it has been
shown that numerical techniques such as the Monte Carlo
wave-function method can always, in principle, be applied to
the description of the dynamics, provided that the master
equation is in the Lindblad form[4].

In many solid-state systems such as photonic band-gap
materials and quantum dots, the Markov approximation is,
however, not justified[5]. Similarly, the reservoir interacting
with a single mode cavity in atom lasers is strongly non-
Markovian [6]. These physical systems, therefore, necessi-
tate non-Markovian analytical or numerical approaches to
their dynamics. Moreover, the non-Markovian features be-
come of importance when one is interested in the initial tem-
poral regime, even for Markovian systems, where the
memory time of the reservoirtR is much smaller than the
system characteristic time scaletS.

It is worth mentioning that during the past few years,
interest in open quantum systems has increased mainly due
to three reasons. On the one hand, the phenomena of deco-
herence and dissipation, characterizing the dynamics of a
quantum system interacting with its surroundings[7], are
considered nowadays the major obstacles to the realization
of quantum computers and other quantum devices[8]. On
the other hand, recent experiments on engineering of envi-
ronments[9] have paved the way to new proposals aimed at
creating entanglement and superpositions of quantum states
exploiting decoherence and dissipation[10,11]. Moreover,
we emphasize that presently the fields of quantum informa-
tion and open quantum systems actually merge in the ques-
tion of to what extent the entangling power of the system-
reservoir interaction is the responsible factor for decoherence
[12,13]. In order to understand deeply the origin, essence,
and effects of decoherence phenomena, it is of great impor-
tance to have the tools for an exact description of the open-
system dynamics.*Electronic address: maniscalco@ukzn.ac.za
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In this paper, we focus on a ubiquitous model of the
theory of open quantum systems, that is, the quantum
Brownian motion model, which is also known as the damped
harmonic oscillator[1,14–24]. We consider the exact gener-
alized master equation obtained with the time-
convolutionless projection operator technique[1]. We exploit
an analytic approach based on the algebraic properties of the
superoperators appearing in the master equation[21]. The
knowledge of the explicit expression of the exact analytic
solution of this equation allows us to study in a complete
way the dynamics and, in particular, the short-time non-
Markovian regime. The analytic results are in very good
agreement with the numerical simulations obtained by means
of the non-Markovian wave-function(NMWF) method[25],
a variant of the Monte Carlo(MC) methods[4,26–29]. By
looking at the dissipation and diffusion coefficients, we
single out those parameters governing the passage from
Lindblad to non-Lindblad-type regimes. The dynamics of the
system in the Lindblad-type regime is governed by a
Lindblad-type master equation, whereas in the non-Lindblad
type regime, the master equation cannot be cast in the Lind-
blad form and the dynamics is dominated by virtual ex-
changes of energy between the system and the environment.

The paper is structured as follows. In Sec. II, we recall the
exact time-convolutionless master equation for quantum
Brownian motion and its superoperatorial solution. In Sec.
III, we apply the non-Markovian wave-function method to
the system under scrutiny. Sections IV and V contain the
main results of the paper. In Sec. IV, we study the border
between Lindblad and non-Lindblad regions, and in Sec. V
we focus on the non-Lindblad-type dynamics looking at the
temporal evolution of the squeezing, of the Mandel param-
eter, and of the Wigner function. Finally, Sec. VI, concludes
the paper.

II. EXACT DYNAMICS OF QUANTUM
BROWNIAN PARTICLE

In this section, we first recall the microscopic model and
the exact master equation for the reduced density matrix of a
quantum Brownian particle. Then we briefly sketch an ana-
lytic approach to derive an exact solution for the master
equation.

Let us consider a harmonic oscillator of frequencyv0
surrounded by a generic bosonic environment. The Hamil-
tonianH of the total system can be written as follows:

H = H0 + HE + aXE, s1d

whereH0=v0sP2+X2d /2, HE, andaXE are the system, en-
vironment, and interaction Hamiltonians, respectively, anda
is the dimensionless coupling constant. The interaction
Hamiltonian considered here has a simple bilinear form with
the position of the oscillatorX and the position environmen-
tal operatorE;on knxn, wherexn are the position operators
of the environmental oscillators. For the sake of simplicity,
we have written the previous expressions in terms of dimen-
sionless position and momentum operators for the system
oscillator. The key quantity governing the nature of the cou-
pling is the spectral densityJsvd=on kndsv−vnd / s2mnvnd,

with mn andvn masses and frequencies of the environmental
oscillators, respectively.

We denote byr the density matrix of the total system.
Under the assumptions that(i) at t=0, the system and envi-
ronment are uncorrelated, that is,rs0d=rSs0d ^ rEs0d, with
rS and rE density matrices of the system and the environ-
ment, respectively;(ii ) the environment is stationary, that is,
fHE,rEs0dg=0; and(iii ) the expectation value of the environ-
mental operatorE is zero, that is, TrEhErEs0dj=0 (as, for
example, in the case of a thermal reservoir), one can derive
the following master equation[23]:

drSstd
dt

=
1

i"
H0

SrSstd − FDstdsXSd2 − PstdXSPS−
i

2
rstdsX2dS

+ igstdXSPSGrSstd. s2d

We indicate withXSsSd and PSsSd the commutator(anticom-
mutator) position and momentum superoperators, respec-
tively, and withH0

S the commutator superoperator relative to
the system Hamiltonian. It is not difficult to prove that such
a master equation, obtained by using the time-
convolutionless projection operator technique[1,15,30], is
the superoperatorial version of the Hu-Paz-Zhang master
equation [18]. This equation can be solved in generality
[14,18–21], although the time-dependent coefficients have
no obvious closed form. For this reason, the exact study of
the non-Markovian behavior of the system for strong cou-
plings may be performed only by means of numerical meth-
ods. Also in this case, however, one needs, first, to find out
the parameter regime in which a perturbation expansion to a
given order yields reliable numerical results. This is in gen-
eral a very difficult task. In the following, we will focus on
the dynamics of the system in the weak-coupling limit, and
in particular we will consider the case in which a truncation
of the expansion in the coupling strengtha to the second
order is physically meaningful. Under this condition, the
time-dependent coefficients appearing in the master equation
can be written as follows:

Dstd =E
0

t

kstdcossv0tddt, s3d

gstd =E
0

t

mstdsinsv0tddt, s4d

Pstd =E
0

t

kstdsinsv0tddt, s5d

rstd = 2E
0

t

mstdcossv0tddt, s6d

where

kstd = a2khEstd,Es0djl, s7d

and
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mstd = ia2kfEstd,Es0dgl s8d

are the noise and dissipation kernels, respectively. For the
case of an Ohmic reservoir spectral density with Lorentz-
Drude cutoff[1]

Jsvd =
2v

p

vc
2

vc
2 + v2 , s9d

the noise and dissipation kernels assume the form

kstd = 4a2kTvc
2 o

n=−`

`
vce

−vct − nne
−unnut

vc
2 − nn

2 , s10d

mstd = 2a2vc
2e−vct, s11d

wherevc is the cutoff frequency andnn=2pnkT denote the
Matsubara frequencies.

It is worth noting that, as shown in Ref.[15], it is possible
to estimate in an easy way the order of magnitude of the
error associated with the truncated expression of the coeffi-
cients. This allows us to check the range of validity of the
weak-coupling approximation. The errors of the time-
dependent coefficients, up to the fourth order in the coupling
constant, are studied in Refs.[1,15].

As we will see in the following, truncating the perturba-
tion expansion to the second order, it is possible to find a
closed analytic form for two time-dependent coefficients
playing a special role in the dynamics: the diffusion coeffi-
cientDstd and the dissipation coefficientgstd. Dealing with a
closed analytic expression of these parameters allows us to
gain new insight into the dynamics of the open system. In
fact, the possibility of studying analytically the border be-
tween Lindblad- and non-Lindblad-type dynamics stems
from the availability of a closed expression for these time-
dependent parameters.

Let us now look in more detail at the form of the master
equation(2). First of all, we note that this master equation is
local in time, even if non-Markovian. This feature is typical
of all the generalized master equations derived by using the
time-convolutionless projection operator technique[1,25] or
equivalent approaches such as the superoperatorial one
[23,31].

The time-dependent coefficients appearing in Eq.(2) con-
tain all the information about the short-time system-reservoir
correlation. The coefficientrstd gives rise to a time-
dependent renormalization of the frequency of the oscillator.
In the weak-coupling limit, one can show thatrstd gives a
negligible contribution as far as the reservoir cutoff fre-
quency remains finite[1]. The term proportional togstd is a
classical damping term while the coefficientsDstd and Pstd
are diffusive terms. Averaging over the rapidly oscillating
terms appearing in the time-dependent coefficients of Eq.
(2), one gets the following secular approximated master
equation:

drS

dt
= −

Dstd + gstd
2

fa†arS− 2arSa
† + rSa

†ag

−
Dstd − gstd

2
faa†rS− 2a†rSa + rSaa†g, s12d

where we have introduced the bosonic annihilation and cre-
ation operatorsa=sX+ iPd /Î2 anda†=sX− iPd /Î2. The form
of Eq. (12) is similar to the Lindblad form, with the only
difference that the coefficients appearing in the master equa-
tion are time-dependent. We say that this master equation is
of Lindblad-type when the coefficientsDstd±gstd are posi-
tive at all times[24]. Note, however, that Lindblad-type mas-
ter equations, contrary to master equations of Lindblad form,
in general do not satisfy the semigroup property.

In what follows, we focus on the secular master equation
given by Eq.(12). Let us stress that the secular approxima-
tion invoked here does not coincide with the RWA com-
monly used to describe quantum optical systems. Indeed, as
shown in Ref.[23], differences in what we may call theRWA
performed before or after tracing over the environmentdo
exist, and they are in principle measurable. The RWA per-
formed before tracing over the environment consists in ne-
glecting the counter-rotating terms in the microscopic Hamil-
tonian describing the coupling between system and
environment. The RWA performed after tracing over the en-
vironment is more precisely a secular approximation, con-
sisting in an average over rapidly oscillating terms, but does
not wash out the effect of the counter-rotating terms present
in the coupling Hamiltonian(see also Ref.[24]).

It is worth noting that there exists a class of observables
not influenced by the secular approximation[21,32]. The ex-
act time evolution of the operators belonging to such a class
can be obtained by solving Eq.(12). Examples of such ob-
servables are the mean value of the quantum number opera-
tor knstdl, hereafter called the heating function, and the Man-
del parameterQ.

For the Ohmic spectral density introduced in Eq.(9), the
analytic expression for the dissipation coefficientgstd, to sec-
ond order in the coupling constant, is

gstd =
a2v0r

2

r2 + 1
f1 − e−vct cossv0td − re−vct sinsv0tdg,

s13d

with r =vc/v0.
As for the diffusion coefficientDstd, defined in Eq.(3), a

simple analytic expression is obtained only in the high- and
low-temperature regimes. In Appendix A, we give the ex-
pression forDstd for genericT and in Appendix B its high-T
and Markovian approximations.

The master equation(2) can be exactly solved by using
specific algebraic properties of the superoperators[21]. The
solution for the density matrix of the system is derived in
terms of the quantum characteristic function(QCF) xtsx,pd
at time t, defined through the relation[33]
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rSstd =
1

2p
E xtsx,pde−ispX−xPddxdp. s14d

It is worth noting that one of the advantages of this approach
is the relative ease in calculating the analytic expressions for
the mean values of observables of interest by means of the
relations

kXnl = s− idnS ]n

] pnxsx,pdD
x,p=0

,

kPnl = sidnS ]n

] xnxsx,pdD
x,p=0

. s15d

In the secular approximation, the QCF is found to be[21]

xtsx,pd = e−DGstdsx2+p2d/2x0se−Gstdx̃,e−Gstdp̃d, s16d

wherex0 is the QCF of the initial state of the system, and we
defined

x̃ = cossv0tdx + sinsv0tdp,

p̃ = − sinsv0tdx + cossv0tdp. s17d

The quantitiesDGstd and Gstd appearing in Eq.(16) are de-
fined in terms of the diffusion and dissipation coefficients
Dstd and gstd, respectively[see Eqs.(13) and (A1)], as fol-
lows:

Gstd = 2E
0

t

gst1ddt1, s18d

DGstd = e−GstdE
0

t

eGst1dDst1ddt1. s19d

Equation(16) shows that the QCF is the product of an ex-
ponential factor, depending on both the diffusionDstd and
the dissipationgstd coefficients, and a transformed initial
QCF. The exponential term is responsible for energy dissipa-
tion and it is independent of the initial state of the system.
Information on the initial state is given by the second term of
the product, the transformed initial QCF. In the weak-
coupling limit considered here, the asymptotic values of the
diffusion and dissipation coefficients coincide with the Mar-
kovian ones (see Appendix B). In this case,
x0fe−Gstdx̃,e−Gstdp̃g→1 for long times, and the system ap-
proaches, as one would expect, a thermal state at reservoir
temperature, whatever the initial state was. In general, how-
ever, for strongly coupled systems, the steady state could be
very different from the thermal state. For example, in Ref.
[1] (see pp. 481–483) it is shown that, already fora=0.25,
the steady-state solution in the low-temperature regime
shows squeezing in position.

III. NON-MARKOVIAN WAVE-FUNCTION SIMULATIONS

In this section, we describe how to implement the non-
Markovian wave-function(NMWF) method for the study of
quantum Brownian motion by using the stochastic unravel-

ing of the master equation in the doubled Hilbert space
[1,25]. We use Monte Carlo(MC) methods both to confirm
the validity of the involved analytical solution and to dem-
onstrate that these methods can be used to study the heating
dynamics of a quantum Brownian particle in very general
conditions. One might think that it is straightforward to ap-
ply MC methods, e.g., the NMWF method, once the master
equation of the system and the corresponding jump operators
are known. However, there exist situations in which the MC
simulations become exceedingly heavy from the computer
resource point of view[34,35]. In the following, we show
that, in our case, MC methods can be used conveniently to
study numerically the system dynamics also in the non-
Lindblad regime where the time-dependent decay coeffi-
cientsDstd±gstd may acquire temporarily negative values.

A. General form of the non-Markovian wave-function method
in the doubled Hilbert space

The most general form of the master equation obtained
from the time-convolutionless projection operator technique
reads[1,25]

]

] t
rstd = Astdrstd + rstdB†std + o

i

CistdrstdDi
†std, s20d

with time-dependent linear operatorsAstd, Bstd, Cistd, and
Distd. The unraveling of the master equation can be imple-
mented by using the method of stochastic unraveling in the

doubled Hilbert space[1] H̃=HS% HS, where the state of the
system is described by a pair of stochastic state vectors

ustd = Sfstd
cstd

D . s21d

The time evolution ofustd can be described as a piecewise
deterministic process(PDP) [1]. The deterministic part of the
PDP is obtained by solving the following differential equa-
tion:

]

] t
ustd = FFstd +

1

2o
i

iJistdustdi2

iustdi2 Gustd, s22d

with

Fstd = SAstd 0

0 Bstd
D s23d

and

Jistd = SCistd 0

0 Distd
D , s24d

whereAstd, Bstd, Cistd, andDistd are the operators appearing
in Eq. (20).

The stochastic part of the PDP is described in terms of
jumps inducing transitions of the form

ustd → iustdi
iJistdustdi

SCistdfstd
Distdcstd

D . s25d

The jump rate for channeli is given by
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Pistd =
iJistdustdi2

iustdi2 . s26d

Finally, the solution for the reduced density matrix is ob-
tained as

rstd =E DuDu* uflkcuP̃fu,tg, s27d

whereP̃fu ,tg denotes the probability density functional and
the integration is carried out over the doubled Hilbert space

H̃ [1,25].

B. Implementation of the method for QBM

The doubled Hilbert space state vector for the quantum
Brownian particle reads

ustd = Sfstd
cstd

D =1o
n=0

`

fnstdunl

o
n=0

`

cnstdunl 2 , s28d

wherefnstd and cnstd are the probability amplitudes in the
Fock state basis.

By comparing Eq.(20) with the master equation(12), the
operatorsAstd andBstd in Eq. (23) have to be chosen as

Astd = Bstd = − iv0a
†a −

1

2
hfDstd + gstdga†a

+fDstd − gstdgaa†j. s29d

Accordingly, the operatorsCi andDi are

C1std = D1std = ÎuDstd − gstdua†,

C2std = D2std = ÎuDstd + gstdua s30d

and the corresponding operatorsJi, given by Eq.(24), be-
come

J1std = ÎuDstd − gstduSsgnfDstd − gstdga† 0

0 a†D ,

J2std = ÎuDstd + gstduSsgnfDstd + gstdga 0

0 a
D . s31d

When the system dynamics and occupation of the states are
restricted to the two lowest Fock states, the equations re-
semble closely the ones used for the study of the Jaynes-
Cummings model with detuning[25].

The statistics of the quantum jumps is described by the
waiting time distribution functionFwstd, which represents
the probability that the next jump occurs within the time
interval ft ,t+td. Fwstd, derived from the properties of the
stochastic process, reads

Fwstd = 1 − expF−E
0

t

o
i=1,2

PissddsG , s32d

where for channel 1(jump up, the system absorbs a quantum
of energy from the environment)

P1std =
uDstd − gstdu

iustdi2 o
n=0

`

sn + 1dfufnstdu2 + ucnstdu2g, s33d

and for channel 2(jump down, the system emits a quantum
of energy into the environment)

P2std =
uDstd + gstdu

iustdi2 o
n=0

`

nfufnstdu2 + ucnstdu2g. s34d

When the jump occurs, the choice of the decay channel is
made according to the factorsP1std and P2std. The times at
which the jumps occur are obtained from Eq.(32) by using
the method of inversion[1].

For very low temperatures, the non-Markovian behavior
of the heating function of the quantum Brownian particle
may occur whenknl is of the order of 10−10, see Fig. 1. To
reach such an accuracy, a MC simulation for the estimation
of knl would require more than 1010 realizations to be gen-
erated. This problem may be circumvented by an appropriate
scaling of the time-dependent coefficientsDstd±gstd of the
master equation. The method is based upon the following
considerations. Let us look at the properties of the Hilbert
space path integral solution of the stochastic process corre-
sponding to the unraveling of Eq.(20). The Hilbert space
path integral representation is essentially the expansion of
the propagator of the stochastic processTfu ,tuu0,t0g in the
number of quantum jumps[1],

Tfu,tuu0,t0g = o
N=0

`

TsNdfuu,tuu0,t0g, s35d

whereN denotes the number of jumps, andTsNd are theN
jump contributions to the propagator. As long as in the time
evolution period of interest there is maximally one jump per
realization, it can be shown that, in the weak-coupling limit
and for the initial conditions used here, the relevant contri-
bution to the propagator is given by the first two termsTs0d,
Ts1d. In this case, the expectation value of an arbitrary opera-
tor O is given by

kOlstd =E DuDu*kfstduOucstdl

3hTs0dfuu,tuu0,t0g + Ts1dfuu,tuu0,t0gj. s36d

The contribution fromTs0d gives the initial expectation value
kOls0d plus a term which is directly proportional to the decay
coefficientsD±g. SinceTs1d is also directly proportional to
the decay coefficients, we get as a result that the change in
the expectation value is also proportional to the decay coef-
ficients

kOlstd − kOls0d ~ D ± g. s37d
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Thus, to simplify the numerics and still to obtain the cor-
rect result, it is possible to speed up the decay by multiplying
the coefficientsD±g with some suitable factorb, and to do
the corresponding scaling down by dividing the calculated
ensemble average by the same factor at the end of the simu-
lation. For the heating function, the validity of the scaling
can be seen directly from the analytic solution[see Eq.(40)
of the following section]. The scaling allows us to reduce the
ensemble size for the estimation of the heating function from
the unpractical 1010 to the more practical 104–105.

IV. THE LINDBLAD–NON-LINDBLAD BORDER

This section contains the main results of the paper. Stimu-
lated by the recent achievement in reservoir engineering
techniques, we look at the dynamics of a quantum Brownian
particle for different classes of reservoirs. We single out two
reservoir parameters playing a key role in the dynamics of
the open system, i.e., its temperatureT and the frequency
cutoff vc of its spectral density. As we will see in this sec-
tion, by varying these two parameters, the time evolution of
the system oscillator varies from Lindblad-type to non-
Lindblad-type.

A. Heating function

In order to illustrate the changes in the dynamics of the
system, we will focus, first of all, on the temporal behavior

of the heating functionknstdl. In the following section, we
will further investigate the non-Markovian time evolution by
looking at the Mandel parameter, at the squeezing properties,
and at the Wigner function of the system.

Having in mind Eq.(16) and using Eq.(15), one gets the
following expression for the heating function:

knstdl = e−Gstdkns0dl +
1

2
se−Gstd − 1d + DGstd, s38d

with DGstd andGstd defined by Eqs.(18) and (19).
The asymptotic long-time behavior of the heating func-

tion, for times t much bigger than the reservoir correlation
time tR=1/vc, is readily obtained by using the Markovian
stationary values forDstd andgstd, as given by Eqs.(B1) and
(B2),

knstdl = e−Gtkns0dl + nsv0ds1 − e−Gtd, s39d

with nsv0d=se"v0/KT−1d−1. This equation gives evidence for
a second characteristic time of the dynamics, namely the
thermalization timetT=1/G, with G=a2v0r

2/ sr2+1d. The
thermalization time depends both on the coupling strength
and on the ratior =vc/v0 between the reservoir cutoff fre-
quency and the system oscillator frequency. Usually, when
studying QBM, one assumes thatr @1, corresponding to a
natural Markovian reservoir withvc→`. In this case, the

FIG. 1. Dynamics of the heating functionknstdl in the short-time non-Markovian regime. For the highT, graphics(c),(f),(i), we have used
r0=v0/KT=0.1; for the intermediateT, graphics(b),(e),(h), we have usedr0=v0/KT=1; for low T, graphics(a),(d),(g), we have usedr0

=v0/KT=100. We indicate with a solid line the analytic solution and with circles the simulations performed using the NMWF method. In
the lower right corner of all graphics, we indicate whether the asymptotic long-time value of the heating function is null(zeroT reservoir)
or not.
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thermalization time is simply inversely proportional to the
coupling strength. For an “out-of-resonance” engineered res-
ervoir with r !1, tT is notably increased and therefore the
thermalization process is slowed down.

As we will see in the following, there exist other two
characteristic time scales ruling the heating process: the pe-
riod of the system oscillatortS=1/v0 and the thermal time
tth=1/n1=1/2pkT defined as the inverse of the smallest
positive Matsubara frequency. In Table I, we summarize the
definitions of the four time scales we have introduced up to
now. In general, the open-system dynamics depends strongly
on the relative value of these four characteristic time scales
(see also[36]).

Let us consider now the dynamics of the heating function
for times t!tT. For simplicity, we consider as the initial
condition the ground state of the system oscillator. The gen-
eralization to a generic initial state is, however, direct and
similar conclusions hold. For times much smaller than the
thermalization time, Eq.(38) can be approximated as fol-
lows:

knstdl . E
0

t

fDst1d − gst1dgdt1, s40d

where Eq.(18) has been used. This equation shows that the
initial dynamics of the heating function depends strongly on
the sign of one of the time-dependent coefficients of the
secular master equation(12). The reason for the heating
function to depend only on the coefficientDstd−gstd and not
on Dstd+gstd is simply related to the initial condition we
have assumed. Indeed, when the initial state is the ground
state of the oscillator, for timest!tT, the probability of a
jump up [absorbtion of a quantum of energy from the reser-
voir, see Eq.(33)] dominates over the probability of a jump
down [emission of a quantum of energy into the reservoir,
see Eq.(34)]. This second process, which is the signature of
the quantized nature of the reservoir, ensures the thermaliza-
tion.

Equation(40) shows us that the coefficientDstd−gstd is
the time derivative of the heating function. Therefore, if
Dstd.gstd for all times t!tT, the heating function grows
monotonically, whereas if there exist intervals of time in cor-
respondence of whichDstd,gstd, the heating function de-
creases and eventually oscillates. We remind the reader that,
for the case considered here, wheneverDstd−gstd.0 at all
times, the master equation(12) is of Lindblad-type, while if

for some time intervalsDstd−gstd,0, it is a non-Lindblad-
type master equation.

B. Lindblad and non-Lindblad regions

To better understand such a behavior, we study in more
detail the dynamics for three different regimes of the ratior
between the reservoir cutoff frequency and the system oscil-
lator frequency:r @1, r =1, andr !1. The first case corre-
sponds to the assumption commonly done when dealing with
a natural reservoir, while the last case corresponds to an en-
gineered “out-of-resonance” reservoir.

By using Eqs. (13) and (A1), a straightforward but
lengthy calculation shows that, forr @1, Dstd.gstd.0. In
this case, the master equation(12) is always of Lindblad-
type and the heating function is a monotonically growing
function. The three upper graphics of Fig. 1 show the time
evolution of the heating function forr =20 in the case of low
(a), intermediate(b), and high(c) temperatures.

In the case of an engineered “out-of-resonance” reservoir,
that is, whenr !1, the sign of the diffusion coefficient is
positive in the low-temperature regime while for intermedi-
ate and high temperatures it assumes negative values for
some time intervals. However, for intermediate and low tem-
peratures, there exist intervals of time in correspondence of
which Dstd−gstd,0. WheneverDstd−gstd is negative, the
heating function decreases, so the overall heating process is
characterized by oscillations as shown in Figs. 1(g)–1(i),
where the dynamics ofknstdl for low, intermediate, and high
T, respectively, andr =0.1 is plotted for 0,vct,10. The
decrease in the population of the ground state of the system
oscillator, after an initial increase due to the interaction with
the reservoir, is due to the emission and subsequent reabsorb-
tion of the same quantum of energy. Such an event is pos-
sible since the reservoir correlation timetR=1/vc is now
much longer than the period of oscillationts=1/v0. We un-
derline that, although the master equation in this case is not
of Lindblad type, it conserves the positivity of the reduced
density matrix. This of course does not contradict the Lind-
blad theorem, since the semigroup property is clearly vio-
lated for the reduced system dynamics[1].

Finally, for r =1, one can show numerically thatDstd.0
at all times whatever the reservoir temperatureT is. None-
theless, for intermediate and low temperatures, the time-
dependent coefficientDstd−gstd assumes negative values for
some intervals of times. Such a situation leads again to an
oscillatory behavior of the heating function as shown in Figs.
1(d) and 1(e).

It is worth stressing that the non-Markovian features of
the heating function discussed here do not depend on the
secular approximation. Indeed, as we have mentioned in Sec.
II, Eq. (38) coincides with the expression derived from the
exact solution. Stated in another way, the appearance of vir-
tual exchanges of energy between system and reservoir, char-
acterizing the non-Lindblad region, is a general feature of the
non-Markovian dynamics of the system and it is not con-
nected with the secular approximation.

C. The key parametersr and T

The border between the Lindblad and non-Lindblad re-
gions depends on two relevant reservoir parameters, namely

TABLE I. Various time scales.

Time scale name Symbol Explanation

reservoir correlation tR=1/vc vc is the environment cutoff

thermalization tT=1/G G=a2v0r
2/ sr2+1d

system oscillator period tS=1/v0 v0 is the oscillator frequency

thermal tth=1/n1 n1 is the Matsubara frequency

reservoir memory tcorr=tR for high T

tcorr=tth for mediumT

tcorr=tS for low T
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its temperatureT and the ratior between its cutoff frequency
and the system oscillator frequency. For high reservoir tem-
peratures, the quantity effectively ruling the dynamics is the
diffusion coefficientDstd, sinceDstd@gstd. In other words,
for short times and highT, diffusion is always dominant with
respect to dissipation. Oscillatory dynamics of the heating
function appears forr !1 since Dstd oscillates assuming
negative values. Figure 2(a) shows a contour plot ofDsr ,td
for high T. The curve defined by the equationDsr ,td=0 for
high T, with Dsr ,td given by Eq.(B4), defines the Lindblad–
non-Lindblad border. From Fig. 2(a), one can see that the
largest value ofr in correspondence of which the system
exhibits non-Lindblad oscillatory heating isr .0.27.

For decreasing temperatures, the amplitude ofDstd be-
comes smaller and smaller. Thus, also in the presence of an
oscillatory behavior ofDstd, that is, whenr !1, for low tem-
peratures the diffusion coefficient remains always positive.
In this case, however, dissipation is not negligible with re-
spect to diffusion anymore and their combined action is such
that, for intermediate and low temperatures, the non-
Lindblad dynamics appears already forr .1 [see Fig. 2(b)].
Stated in another way, decreasing the temperature, the oscil-
latory behavior of the heating function appears for higher
values of the ratior, which means that the non-Lindblad
region becomes larger. Figure 2 shows clearly that this re-
gion, corresponding to negative values ofDstd−gstd [Dstd for
high T], is notably wider for lowT (b) than for highT (a).

While in this section we have investigated the border be-
tween the Lindblad- and non-Lindblad-type regions, in the
following section we will concentrate on the non-Lindblad-
type dynamics for two reasons. The first reason is that, in
general, due to difficulties in dealing with non-Lindblad-type
master equations, only a few studies have been carried out in
this regime. Secondly, we have shown elsewhere that typical
non-Lindblad dynamical features may be experimentally re-
vealed in the trapped ion context with currently available
technology[37].

V. NON-MARKOVIAN DYNAMICS
OF NON-LINDBLAD-TYPE

In this section, we focus on the dynamics of a quantum
Brownian particle in the case of interaction with an engi-
neered out-of-resonance reservoir, i.e., forr !1. By using
the techniques for reservoir engineering typical of trapped
ion systems, such a region of the parameter space is already
in the grasp of the experimentalists. Indeed, by slightly
modifying the experimental conditions used in Ref.[9], the
oscillatory non-Markovian dynamics of the heating function
can be measured[37].

In order to characterize completely the dynamics of the
quantum Brownian particle in the non-Lindblad region, we
look at the dynamics of the squeezing, of the Mandel param-
eter, and of the Wigner function for some exemplary initial
states. We begin with an analysis of the squeezing in posi-
tion. By using Eq.(15), it is possible to derive the following
expression for the variance of the dimensionless position op-
eratorX:

sDXdt
2 = e−GstdfsDXd0

2 cos2sv0td + sDPd0
2 sin2sv0td

+ C0 sins2v0tdg + DGstd ; e−GstdsDXdfstd + DGstd,

s41d

wheresDXd0
2 and sDPd0

2 are the initial variances of position
and momentum operators, respectively, andC0=skX0P0

+P0X0l−kX0lkP0ld is the initial position-momentum correla-
tion function. In the last line of Eq.(41), we have defined the
function sDXdfstd describing the time evolution of the vari-
ance of a quantum harmonic oscillator in the absence of in-
teraction with the environment. In the high-temperature
limit, it is not difficult to prove that the interaction with the
environment generally causes an increase in the variance of
the position operator with respect to its free dynamics. In-
deed, for times much smaller than the thermalization timet
!tT, Eq. (41) may be approximated as follows:

FIG. 2. Contour plots ofDsr ,td=Dsr ,td /2a2KT for high T (a), and of the coefficientDsr ,td−gsr ,td=fDsr ,td−gsr ,tdg /a2 for low T (b).
In (b) we have chosen 2prc="vc/KT=10. In both(a) and (b) the contour line corresponding toDsr ,td=0 (a) andDsr ,td−gsr ,td=0 (b) is
indicated by a thick solid line.
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sDXdt
2 . sDXdfstd +E

0

t

Dst1d − 2sDXdfst1dgst1d, s42d

where Eqs.(18) and (19) have been used. Having in mind
that for high temperatures the conditionDstd@gstd holds,
one realizes that, provided thatsDXdfstd is not too big(cor-
responding to either a very high initial squeezing in position/
momentum or a very high initial position-momentum corre-
lation or a mixture of these cases), the integral appearing in
Eq. (42) gives always a positive contribution. In the short-
time non-Markovian regime, for low reservoir temperatures,
situations in which the system-environment correlations lead
to a decrease in the squeezing in position, compared to its
free time evolution, may, in principle, occur. Such a situation
would be of interest since it could be exploited to generate
squeezing through the interaction with an artificial low-
temperature reservoir. We plan to investigate this point fur-
ther in the future.

In Fig. 3(a), we plot the short-time behavior ofsDXd2std
for an initial squeezed state with squeezing factors=0.4, that
is, with sDXd0

2=s/2=0.2 andsDPd0
2=1/s2sd=1.25. We re-

mind the reader thatX and P are dimensionless, therefore
squeezing in position corresponds tosDXd2,0.5. In the fig-
ure, we compare the time evolution of the position variance
for the damped harmonic oscillator with the case of the iso-
lated harmonic oscillator. From the figure one sees clearly
the effect of the virtual processes which tend to decrease the
position variance and to bring it back to its initial value. The
overall effect of the environment tends, however, to wash out
the initial squeezing.

Let us now consider the time evolution of the Mandel
parameter[38],

Qstd =
kn2stdl − knstdl2

knstdl
− 1. s43d

This quantity gives an indication of the statistics of the quan-
tized mode described by the system oscillator. For a Fock
state,Q takes its lowest valueQ=−1, while for a coherent
stateQ is equal to 0. Therefore, values ofQ,0 indicate
sub-Poissonian statistics, whileQ=0 characterizes Poisso-
nian statistics andQ.0 super-Poissonian statistics. Using

Eq. (15), we have derived the time evolution of the Mandel
parameter as follows:

Qstd =
knstdl2 + e−2Gstdkns0dlfQs0d − kns0dlg

knstdl
. s44d

In Fig. 3(b), we show the time evolution of the Mandel pa-
rameter for an initial Fock stateun=3l. Due to the interaction
with the artificial reservoir, the initial temporal evolution is
characterized by oscillations between sub-Possonian and
Poissonian statistics of the quantized mode. This behavior
may be traced back to the virtual photon exchanges between
the system and the reservoir and therefore is typical of the
non-Markovian non-Lindblad-type region. Looking at Eq.
(44), and remembering thatGstd.0, and that knstdl
ù kns0dl, it is easy to convince ourselves that, if the initial
state is Poissonian or super-Poissonian, i.e.,Qù0, the Man-
del parameter will remain positive at all times. In other
words, the interaction with the environment never creates
sub-Poissonian statistics from an initial Poissonian or super-
Poissonian statistics. This conclusion is valid for generic
temperaturesT, provided that the weak-coupling assumption
is satisfied.

We now look at the the system dynamics in the non-
Lindblad regime, considering the time evolution of the
Wigner function of an initial coherent stateua0l. Having in
mind Eq.(16) and recalling that the Wigner function is sim-
ply the Fourier transform of the quantum characteristic func-
tion,

Wsad =
1

p2E
−`

`

d2jxsjdeaj*−a*j, s45d

one gets

Wtsad =
1

pfDGstd + 1/2g
expF ua0e

−Gstd/2e−iv0t − au2

DGstd + 1/2
G .

s46d

From this equation and from Fig. 4, one can see clearly that
the system-reservoir interaction spreads the initial Wigner
function. Breathing of the Wigner function, that is, the oscil-
lation in its spread, appears in correspondence of the virtual
processes. This is a new dynamical feature which is absent

FIG. 3. (a) Time evolution of the position variance for an initial squeezed state having squeezing parameters=0.4. The reservoir
parameters area=10−2, r =0.05, andrc=vc/2pKT=0.2310−6. The dotted line shows the variance of the free harmonic oscillator in the
absence of coupling to the environment. The system exhibits squeezing wheneversDXd2std,0.5. (b) Time evolution of the Mandel
parameter for an initial Fock stateun=3l. The reservoir parameters are the same as in(a).

LINDBLAD- AND NON-LINDBLAD-TYPE DYNAMICS OF … PHYSICAL REVIEW A 70, 032113(2004)

032113-9



both in the Markovian dynamics of the damped harmonic
oscillator and in the Lindblad-type non-Markovian dynam-
ics. Indeed, in both of the previous regimes, the spread in the
Wigner function simply increases, linearly in time in the
Markovian case and quadratically in time in the non-
Markovian Lindblad-type case. We note that different breath-
ing scenarios for the second moments in different regimes
have been discussed in[39].

In summary, the exchanges of energy between system and
reservoir characterizing the non-Lindblad-type region
strongly influence the dynamics of the system. In general, if
the initial state of the oscillator possesses nonclassical prop-
erties(as squeezing or sub-Poissonian statistics), the interac-
tion with the environment tends to wash out such properties
in a time scale which is dependent, as one would guess, on
the reservoir parameters(spectral density and temperature).
In this section, we have considered a high-T engineered “out-
of-resonance”(i.e., with r !1) reservoir. In this case, the loss
of nonclassical properties appears in a time scale which is
smaller than or equal to the reservoir correlation timetR
=1/vc. Moreover, the effect of the virtual processes, which
is also important in this time scale, may cause oscillations
between classical and nonclassical states, as in the case
shown in Fig. 3(b). It is worth noting that, in the situation
considered here, the loss of nonclassical properties, as well
as the oscillations due to virtual processes, happen in a time
scale which is in general much shorter than the decoherence
time tdec=lT

2 / sd2a2d, with d the separation between the two
components of a quantum superposition andlT=" /Î2mkT
the de Broglie wavelength[40]. This is clearly related to the
high-temperature condition of interest here, which implies
tR@1/KT.

In order to give a more quantitative estimate, one should,
however, look at some specific physical system in order to
fix also the other quantities appearing in the definition of the
two time scales. To this aim, we consider the recent experi-
ment with trapped ions in which the decoherence of different
superpositions of the vibrational motion of the center of mass

of the ion was observed[9]. For this system, this experiment
has shown that decoherence of a superpositon of two Fock
states happens on a time scale of the order of 30ms. Very
recently, we have proposed an experiment[37] to observe
non-Markovian features of the heating function in the same
system and with the same setup used in[9]. According to our
calculations, by slightly modifying the experimental param-
eters used, one could observe oscillations in the heating
function in a time scale of the order of 3ms, which is one
order of magnitude less than the decoherence time measured
in that system for a superposition of Fock states.

In conclusion, the investigation carried out in this section
sheds light on the short-time dynamics of the damped har-
monic oscillator, focusing in particular on the high-T regime.
Further analysis of the squeezing, of the Mandel parameter,
and of the Wigner function may bring new insight into the
time scales governing the loss of nonclassical properties and
in their relationship with the decoherence and dissipation
time scales. We plan to explore this aspect further, paying
particular attention to the low-temperature case.

VI. CONCLUSIONS

In this paper, we have studied the short-time non-
Markovian dynamics of a quantum Brownian particle mov-
ing in a harmonic potential. The dynamics of this paradig-
matic open quantum system is described by a non-
Markovian master equation which is local in time. This
master equation cannot be recast in the Lindblad form. Nev-
ertheless, under certain conditions, the master equation for
quantum Brownian motion is of Lindblad-type, i.e., it has the
same operatorial form of the Lindblad master equation but
with time-dependent(instead of constant) positive coeffi-
cients.

In the weak-coupling limit, the relevant time-dependent
coefficients can be cast in a closed form. In this case, by
using the exact analytic solution in terms of the quantum
characteristic function, we have identified the parameters
governing the passage from a Lindblad-type to a non-
Lindblad-type master equation. These parameters are the res-
ervoir temperatureT and the ratior between the frequency
v0 of the system oscillator and the reservoir cutoff frequency
vc. It is worth stressing that the weak-coupling limit we con-
sider in the paper is of interest also in light of the engineer-
ing of reservoir experiments. In fact, in order to observe
experimentally the key features of the system-reservoir inter-
action, e.g., the role played by the entanglement between
system and reservoir in the decoherence process, the cou-
pling between system and reservoir does not have to be too
strong. The stronger the coupling is, the faster is the estab-
lishment of quantum correlations between the system and the
environment, and the more difficult is the experimental ob-
servability of their dynamics. For this reason, the techniques
of reservoir engineering, allowing to control both the cou-
pling constant and other reservoir parameters as its spectral
density, look very promising for investigating fundamental
issues such as the quantum-classical border.

Our analysis of the short-time non-Markovian region
shows that the Lindblad-type dynamics is characterized by a

FIG. 4. Contour plots of the Wigner function at different time
instants. Att=0, the initial state is the coherent state corresponding
to Refa0g=1, Imfa0g=0. The reservoir parameters area=10−2, r
=0.05, andrc=vc/2pKT=10−7.
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monotone increase of the heating function, and therefore of
the energy, of the open system. In the non-Lindblad-type
region, on the contrary, oscillations in the mean energy of the
system clearly indicate the occurrence of virtual exchanges
of energy between the system and the reservoir. Lowering
the reservoir temperature increases the probability that vir-
tual processes take place.

It is worth noting that whenever the master equation for
the system is of Lindblad type, it is possible to apply the
standard MC simulation schemes, and there exists a direct
correspondence between the MC simulation method and a
continuous measurement scheme[4,26,27]. For more general
non-Markovian Monte Carlo methods, e.g., the NMWF we
have used in this paper, an analogous correspondence would
be of interest. There are indications that the Lindblad–non-
Lindblad border might be identified with the border between
the existence and nonexistence of a measurement scheme
interpretation for non-Markovian stochastic methods. For
this reason, the study of the dependence of this border from
parameters such as the reservoir temperature and the ratior
might give some insight and useful hints as to the research
on this contemporary topic.

Finally, the last part of our paper deals with an analytic
description of the short-time dynamics of the quantum
Brownian particle when virtual processes dominate. We have
investigated in detail the temporal evolution by looking at
the squeezing properties, at the MandelQ parameter, and at
the Wigner function. We have found that, if the system ini-
tially possesses nonclassical properties such as squeezing in
one of the quadratures or non-Poissonian statistics, these

properties tend to be washed out due to the interaction with
the reservoir. However, oscillations between squeezing and
nonsqueezing as well as between sub-Poissonian and Poisso-
nian statistics appears in connection with the virtual ex-
changes of energy. A further sign of the virtual processes is
the breathing in the width of the Wigner function.

Summarizing, the main result of this paper is the detailed
analysis of the non-Markovian features characterizing the
dynamics of a quantum Brownian particle, with special at-
tention given to the appearance of virtual processes for cer-
tain ranges of reservoir temperature and cutoff frequency.
Due to the generality of the model studied here, we think that
our results can both contribute to fundamental research on
open quantum systems and, when applied to specific physical
contexts, shed light on their dynamics.
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APPENDIX A. DIFFUSION COEFFICIENT

In order to derive a closed analytic expression forDstd valid for all temperatures and for all values of the ratior, we
integrate Eq.(10) and use the series expansion of the hypergeometric function,

Dstd = a2v0
r2

1 + r2Hcothspr0d − cotsprcde−vctfr cossv0td − sinsv0tdg +
1

pr0
cossv0tdfF̄s− rc,td + F̄src,td − F̄sir 0,td − F̄s− ir 0,tdg

−
1

p
sinsv0tdF e−n1t

2r0s1 + r0
2d

fsr0 − idḠs− r0,td + sr0 + idḠsr0,tdg+
1

2rc
fF̄s− rc,td − F̄src,tdgGJ . sA1d

In this equation, we have used the notationsr0=v0/2pkT,
rc=vc/2pkT,

F̄sx,td ; 2F1sx,1,1 +x,e−n1td, sA2d

Ḡsx,td ; 2F1s2,1 +x,2 +x,e−n1td, sA3d

where2F1sa,b,c,zd is the hypergeometric function[41].

APPENDIX B: MARKOVIAN AND HIGH-TEMPERATURE
LIMITS

In the asymptotic long time limit, the time-dependent co-
efficientsgstd andDstd tend to their stationary value given by

DM ; Dst → `d = a2v0
r2

1 + r2 cothsv0/2kTd, sB1d
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gM ; gst → `d = a2v0
r2

1 + r2 , sB2d

and the master equation(12) becomes the well known Mar-
kovian master equation for a damped quantum harmonic os-
cillator,

drS

dt
= − Gfnsv0d + 1gfa†arS− 2arSa

† + rSa
†ag

− Gnsv0dfaa†rS− 2a†rSa + rSaa†g, sB3d

with G=a2v0r
2/ s1+r2d andnsv0d=sev0/kT−1d−1.

As far as the high-temperature limit is concerned, having
in mind the definitions ofr0 and rc, one sees immediately
that such an approximation amounts to takingr0,rc!1, that
is, x!1. Under this condition, one has[41]

F̄sx,td = 2F1sx,1,1 +x,e−n1td

. 2F1sx,1,1,e−n1td = s1 − e−n1td−a,

Ḡsx,td = 2F1s2,1 +x,2 +x,e−n1td

. 2F1s2,1,2,e−n1td = s1 − e−n1td−1.

Inserting these expressions in Eq.(A1) and using the ap-
proximations

cotsprcd .
1

prc
=

2kT

vc
,

cothspr0d . 1 +
1

pr0
.

2kT

v0

one gets the Caldeira-Leggett high-temperature expression
for Dstd [17],

DstdHT = 2a2kT
r2

1 + r2h1 − e−vctfcossv0td − s1/rdsinsv0tdgj.

sB4d

The other time-dependent coefficient,gstd, does not depend
on temperature on as one can easily see by Eq.(4). We stress
that, comparing Eq.(B4) with Eq. (13), one notics immedi-
ately that in the high-temperature,Dstd@gstd.
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