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Lindblad- and non-Lindblad-type dynamics of a quantum Brownian particle
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The dynamics of a typical open quantum system, namely a quantum Brownian particle in a harmonic
potential, is studied focusing on its non-Markovian regime. Both an analytic approach and a stochastic wave-
function approach are used to describe the exact time evolution of the system. The border between two very
different dynamical regimes, the Lindblad and non-Lindblad regimes, is identified and the relevant physical
variables governing the passage from one regime to the other are singled out. The non-Markovian short-time
dynamics is studied in detail by looking at the mean energy, the squeezing, the Mandel parameter, and the
Wigner function of the system.
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[. INTRODUCTION tion, thus ensuring the preservation of positivity of the den-
sity matrix during the time evolution. Moreover, it has been
'shown that numerical techniques such as the Monte Carlo

wave-function method can always, in principle, be applied to

cult task due to the complexity of the environment. An exact o description of the dynamics, provided that the master
approach would require us to take into account not only theequation is in the Lindblad forrfnj.

degrees of freedom of the system of interest, but also those |, many solid-state systems such as photonic band-gap

of the environment. One can, in principle, look for the Solu- e rals and quantum dots, the Markov approximation is,
tion pf the Liouville—von Neumann equation for. the den§|ty however, not justified5]. Similarly, the reservoir interacting
matrix of the total cIose(_j system. Even yvhen this is pos.s'blewith a single mode cavity in atom lasers is strongly non-
however, the total density matrix 00”“?"”5 much more Ir‘fqr'Markovic';\n [6]. These physical systems, therefore, necessi-
mation than Wh"."t we aCt“f”‘”V need, since one is usually Mtate non-Markovian analytical or numerical approaches to
terested in the time evolution of the reduced system only. their dynamics. Moreover, the non-Markovian features be-
P - . Mome of importance when one is interested in the initial tem-
systems consists in deriving a master equation for the rey . regime, even for Markovian systems, where the
duced density matrix describing the temporal behavior of th emory time,of the reservoirs is much smallér than the
open systenil]. This equation is in general obtained by system characteristic time scaig

tracing over the environmental variables, after performing a It is worth mentioning that during the past few years

series of approximations. Two (.)f the most common Ones argeregt in open quantum systems has increased mainly due
the rotating-wave .apprOX|ma_t|orQRWA) and the Bc_)rn- to three reasons. On the one hand, the phenomena of deco-
Markov approximation. The first one basically consists therence and dissipation, characterizing the dynamics of a
neglgcting in the microscopig system—reservoir_interactior‘hu(,mtum system interac:cing with its surroundings, are
Hamiltonian the counter-rotating terms responsible for the,,,qjqered” nowadays the major obstacles to the realization
virtual exchanges of energy between system and environs; quantum computers and other quantum devi@s On
ment. The second one neglects the correlations between SHfie other hand, recent experiments on engineering of envi-
tem and re_servoir gssuming that the changes in the rese_rv%nments[g] ha\,/e paved the way to new proposals aimed at
due to the !nteract|op with the system cannot feed back 'm%reating entanglement and superpositions of quantum states
the system’s dynamics. L exploiting decoherence and dissipatift0,11]. Moreover,

The Born-Markov approximation leads to a master equay;e emphasize that presently the fields of quantum informa-

E/lon which can be _casr: inLthbsloc—jc?lled Lindbrllad fo[m'd btion and open quantum systems actually merge in the ques-
aster equations In the Lindblad form are characterized b¥;,, of 1o what extent the entangling power of the system-

the fact t_hat the dynamical group of the system .sgt.|sf|es bqt servoir interaction is the responsible factor for decoherence
the semigroup property and the complete positivity Condl'[12,13, In order to understand deeply the origin, essence,
and effects of decoherence phenomena, it is of great impor-
tance to have the tools for an exact description of the open-

*Electronic address: maniscalco@ukzn.ac.za system dynamics.

The description of the dynamics of quantum systems in
teracting with their surroundings is, in general, a very diffi-
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In this paper, we focus on a ubiquitous model of thewith m, andw, masses and frequencies of the environmental
theory of open quantum systems, that is, the quantunoscillators, respectively.
Brownian motion model, which is also known as the damped We denote byp the density matrix of the total system.
harmonic oscillatof1,14—24. We consider the exact gener- Under the assumptions th@y att=0, the system and envi-
alized master equation obtained with the time-ronment are uncorrelated, that j#0)=p40)® pg(0), with
convolutionless projection operator techniqig We exploit  pg and pg density matrices of the system and the environ-
an analytic approach based on the algebraic properties of theent, respectively(ii) the environment is stationary, that is,
superoperators appearing in the master equgdh The [Hg,pg(0)]=0; and(iii) the expectation value of the environ-
knowledge of the explicit expression of the exact analyticmental operatoiE is zero, that is, Te{Epg(0)}=0 (as, for
solution of this equation allows us to study in a Comp|et6examp|e, in the case of a thermal reseryaine can derive
way the dynamics and, in particular, the short-time non-+he following master equatiof23]:
Markovian regime. The analytic results are in very good o) 1 _
agreement with the numerical simulations obtained by meansdps(t) _ S S\2 s_ 2\S
of the non-Markovian wave-functiotNMWF) method[25], dt EHOPS&) N {A(t)(x )? - THOXPS- Er(t)(x )
a variant of the Monte CarlgMC) methods[4,26—29. By
Iqoking at the dissipation and diffus_ion coefficients, we +iy(t)XSPE]pS(t). 2)
single out those parameters governing the passage from

Lindblad to non-Lindblad-type regimes. The dynamics of theWe indicate withxS® and PS® the commutatofanticom-

system in the Lindblad-type regime is governed by a tat it d t "
Lindblad-type master equation, whereas in the non-Lindblagi”u atoy position and momentum superoperators, respec-

type regime, the master equation cannot be cast in the Lin vely, and withHS the commutator superoperator relative to

blad form and the dynamics is dominated by virtual ex- he system Hamiltonian. It is not difficult to prove that such
changes of energy between the system and the environmeft. mast_er equatlc_m, . obtained by using the _tlme-
The paper is structured as follows. In Sec. Il, we recall theconvolutlonless projection operator techniqlie15,30, is

exact time-convolutionless master equation for quantu he styperfger_ell_tr?nal verts_lon of thbe HuI—Pa:jz-_Zhang m:ﬁter
Brownian motion and its superoperatorial solution. In Secfdua lon[18]. This equa lon can be solved In generality

[ll, we apply the non-Markovian wave-function method to [14’18_.21' although the tlme-(jependent coefficients have
the system under scrutiny. Sections IV and V contain thd© obvious clos_ed form. F_or this reason, the exact study of
main results of the paper. In Sec. IV, we study the bordth.e non-Markovian behavior of the system for strong cou-
between Lindblad and non-Lindblad regions, and in Sec. \pllngs may be .performed only by means of nqmencal_meth-
we focus on the non-Lindblad-type dynamics looking at theOds' Also in this c_ase,_howgver, one need.s, first, to f_|nd out
temporal evolution of the squeezing, of the Mandel param-the parameter regime in which a perturbation expansion to a

eter, and of the Wigner function. Finally, Sec. VI Concludesgiven order yields reliable numerical results. This is in gen-
the ’paper ' ' eral a very difficult task. In the following, we will focus on

the dynamics of the system in the weak-coupling limit, and
in particular we will consider the case in which a truncation
Il. EXACT DYNAMICS OF QUANTUM of the expansion in the coupling strengthto the second
BROWNIAN PARTICLE order is physically meaningful. Under this condition, the
dtime-dependent coefficients appearing in the master equation

In this section, we first recall the microscopic model an .
gan be written as follows:

the exact master equation for the reduced density matrix of

guantum Brownian particle. Then we briefly sketch an ana- t
lytic approach to derive an exact solution for the master A(t) = f k(7)coq wyT)dr, (3)
equation. 0

Let us consider a harmonic oscillator of frequeney

surrounded by a generic bosonic environment. The Hamil- t _
tonianH of the total system can be written as follows: y) = | w(n)sin(wer)dr, (4)
0
H =Hg+ Hg + aXE, (1)
t
V\{hereHO:wo(Pz:+X2)/2_, He, anq aX!E are the sy;tem, en- II(t) :f K(7)sin(wer)d7, (5)
vironment, and interaction Hamiltonians, respectively, and 0

is the dimensionless coupling constant. The interaction
Hamiltonian considered here has a simple bilinear form with t
the position of the oscillatoX and the position environmen- r(t) = zf
tal operatole=2, kX, wherex, are the position operators

of the environmental oscillators. For the sake of simplicity,

we have written the previous expressions in terms of dimen\-’vhere
sionless position and momentum operators for the system x(7) = AUE(7),E(0)}), 7)
oscillator. The key quantity governing the nature of the cou-

pling is the spectral densitY(w) =2, k,dw—w,)/(2Mw,), and

u(7)cogwoT)d, (6)
0

032113-2
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w(7) =ia[E(7),E(0)]) (8 dp A + (1)
d_ts =- T[aTaps— 2aps’ + psa'al
are the noise and dissipation kernels, respectively. For the A(t) = (1)
case of an Ohmic reservoir spectral density with Lorentz- - —y[aanS—2ansa+ pad], (12
Drude cutoff[1] 2

20 o where we have introduced the bosonic annihilation and cre-
Jw) = 2t o 9 ation operatora=(X+iP)/2 anda’=(X-iP)/\2. The form
¢ of EqQ. (12) is similar to the Lindblad form, with the only
difference that the coefficients appearing in the master equa-
tion are time-dependent. We say that this master equation is
of Lindblad-type when the coefficients(t)+ y(t) are posi-

the noise and dissipation kernels assume the form

5 - W€ YT — ,,ne—\vn\f tive at all timeg24]. Note, however, that Lindblad-type mas-
k(1) = 4a’KTw; > T 22 (10) ter equations, contrary to master equations of Lindblad form,
n=-o C n

in general do not satisfy the semigroup property.

In what follows, we focus on the secular master equation
2 2w given by Eq.(12). Let us stress that the secular approxima-

(1) = 20 wie (1) tion invoked here does not coincide with the RWA com-
monly used to describe quantum optical systems. Indeed, as

where w, is the cutoff frequency and,=2mnkT denote the shown in Ref[23], differences in what we may call tHRWA
Matsubara frequencies. performed before or after tracing over the environmelot

It is worth noting that, as shown in RgfL5], it is possible  exist, and they are in principle measurable. The RWA per-
to estimate in an easy way the order of magnitude of thdormed before tracing over the environment consists in ne-
error associated with the truncated expression of the coeffglecting the counter-rotating terms in the microscopic Hamil-
cients. This allows us to check the range of validity of thetonian describing the coupling between system and
weak-coupling approximation. The errors of the time-environment. The RWA performed after tracing over the en-
dependent coefficients, up to the fourth order in the couplingyironment is more precisely a secular approximation, con-
constant, are studied in Ref4.,15). sisting in an average over rapidly oscillating terms, but does

As we will see in the following, truncating the perturba- not wash out the effect of the counter-rotating terms present
tion expansion to the second order, it is possible to find an the coupling Hamiltoniarisee also Ref{24]).
closed analytic form for two time-dependent coefficients It is worth noting that there exists a class of observables
playing a special role in the dynamics: the diffusion coeffi-not influenced by the secular approximati@i,32. The ex-
cientA(t) and the dissipation coefficien(t). Dealing with a  act time evolution of the operators belonging to such a class
closed analytic expression of these parameters allows us &&n be obtained by solving E(L2). Examples of such ob-
gain new insight into the dynamics of the open system. Irservables are the mean value of the quantum number opera-
fact, the possibility of studying analytically the border be- tor (n(t)), hereafter called the heating function, and the Man-
tween Lindblad- and non-Lindblad-type dynamics stemsdel parameteQ.
from the availability of a closed expression for these time- For the Ohmic spectral density introduced in [E9), the
dependent parameters. analytic expression for the dissipation coefficieft), to sec-

Let us now look in more detail at the form of the masterond order in the coupling constant, is
equation(2). First of all, we note that this master equation is
local in time, even if non-Markovian. This feature is typical 5 o

f all the generalized master equations derived by using the _ aTwof - —od

0 gene iSter eq d by 9 ) = ———[1-e" codwgt) - re™e sin(wot)],
time-convolutionless projection operator technig@g5 or r<+1
equivalent approaches such as the superoperatorial one (13)
[23,31.

The time-dependent coefficients appearing in @gcon-
tain all the information about the short-time system-reservoiwith r=w./ wq.
correlation. The coefficientr(t) gives rise to a time- As for the diffusion coefficieni(t), defined in Eq(3), a
dependent renormalization of the frequency of the oscillatorsimple analytic expression is obtained only in the high- and
In the weak-coupling limit, one can show thdt) gives a  low-temperature regimes. In Appendix A, we give the ex-
negligible contribution as far as the reservoir cutoff fre-pression forA(t) for genericT and in Appendix B its highF
quency remains finit¢l]. The term proportional ta(t) isa  and Markovian approximations.
classical damping term while the coefficiert¢t) and I1(t) The master equatio(2) can be exactly solved by using
are diffusive terms. Averaging over the rapidly oscillating specific algebraic properties of the superoperaf@i$. The
terms appearing in the time-dependent coefficients of Egsolution for the density matrix of the system is derived in
(2), one gets the following secular approximated masteterms of the quantum characteristic functi@CP x,(x,p)
equation: at timet, defined through the relatioi33]

032113-3
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1 _ ing of the master equation in the doubled Hilbert space
ps(t) = o f xi(x,p)e” P**Pdxdp. (14 [1,25. We use Monte CarlgMC) methods both to confirm
the validity of the involved analytical solution and to dem-
It is worth noting that one of the advantages of this approaclonstrate that these methods can be used to study the heating
is the relative ease in calculating the analytic expressions falynamics of a quantum Brownian particle in very general
the mean values of observables of interest by means of theonditions. One might think that it is straightforward to ap-

relations ply MC methods, e.g., the NMWF method, once the master
N equation of the system and the corresponding jump operators

(XM = (- i)”(ﬁ—x(x, p)) , are known. However, there exist situations in which the MC

ap" x,p=0 simulations become exceedingly heavy from the computer

resource point of view34,35. In the following, we show
) N that, in our case, MC methods can be used conveniently to
<Pn>:(|)n<ﬁx(xyp)> (15 study numerically the system dynamics also in the non-
Xp=0 Lindblad regime where the time-dependent decay coeffi-

In the secular approximation, the QCF is found to[B#&] cientsA(t) £ y(t) may acquire temporarily negative values.
— A ApOC+pA)2 Tty T3
xi(x,p) = e SR (e X, e V), (16) A General form of the non-Markovian wave-function method
whereyy is the QCF of the initial state of the system, and we in the doubled Hilbert space
defined The most general form of the master equation obtained
from the time-convolutionless projection operator technique

X = coq wpt)X + sin(wet)p, reads[1 25

P=-sin(wgt)x + cogwgt)p. 17

The quantitiesAr(t) and I'(t) appearing in Eq(16) are de-

fined in terms of the diffusion and dissipation coefficients,,in time-dependent linear operatofgt), B(t), Ci(t), and
A(t) and (1), respectivelyfsee Eqs(13) and(AL)], as fol- b () The unraveling of the master equation can be imple-

Zp(t) = AWp() + p(OB'(D + S COHOD](V, (20

lows: mented by using the method of stochastic unraveling in the
t doubled Hilbert spacfl] H=Hs® Hs, Where the state of the
It=2 . Ytydt, (18 system is described by a pair of stochastic state vectors
t
t o(t) = (ﬁt)) ) : (21)
Ap(t)=eT® f e WA(t))dt,. (19)
0

The time evolution of(t) can be described as a piecewise

Equation(16) shows that the QCF is the product of an ex- deterministic proces$>DP) [1]. The deterministic part of the
ponential factor, depending on both the diffusiaft) and I?DP is obtained by solving the following differential equa-

the dissipationy(t) coefficients, and a transformed initial 1ON:

QCF. The exponential term is responsible for energy dissipa- 9 1w 36>
tion and it is independent of the initial state of the system. —tﬁ(t) =|F@O+ 52 Tl o), (22
Information on the initial state is given by the second term of i ®

the product, the transformed initial QCF. In the weak-ith
coupling limit considered here, the asymptotic values of the

diffusion and dissipation coefficients coincide with the Mar- At) O
i : i F() = (23
kovian ones (see Appendix B In this case, 0 B()
xole "%, eTWp]—1 for long times, and the system ap-
proaches, as one would expect, a thermal state at reserv@pd
temperature, whatever the initial state was. In general, how- c@ o
ever, for strongly coupled systems, the steady state could be Jt) = ( ' ) (24)
very different from the thermal state. For example, in Ref. 0 DiH

[1] (see pp. 481-483t is shown that, already fow=0.25,  \hereA(t), B(t), C(t), andD;(t) are the operators appearing
the steady-state solution in the low-temperature regimg, gq. (20).

shows squeezing in position. The stochastic part of the PDP is described in terms of
jumps inducing transitions of the form

[EQ] (Ci(t)¢(t)>

In this section, we describe how to implement the non- ot) — =
Markovian wave-functiofNMWF) method for the study of S 6OIAD; (B ¢t)
quantum Brownian motion by using the stochastic unravelThe jump rate for channelis given by

III. NON-MARKOVIAN WAVE-FUNCTION SIMULATIONS
(25

032113-4
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3,0 60)|?

PO = oo

(32

72 Pi(s)ds],

0i=1,2

(26) Fun=1- ex;{—

Fina”y, the solution for the reduced denSity matrix is Ob'Where for channel gump up, the System absorbs a quantum

tained as of energy from the environment
0= [ D000 @9 Py(t)= %2 (n+ DIoOF + 40, (39
n=0

Where’ﬁ’[ﬁ,t] denotes the prObab”lty denSity functional and and for channel Zjump down, the System emits a quantum
the integration is carried out over the doubled Hilbert spacef energy into the environment
H [1,25. | | .

A + A1)
Py(t) = ———>—> |y 0> +|n®?]. (39

B. Implementation of the method for QBM 2 ||49(t)||2 go Hd’n | Wn | ]

The_ double_d Hilbert space state vector for the quantumphen the jump occurs, the choice of the decay channel is
Brownian particle reads made according to the factoR(t) and P,(t). The times at
which the jumps occur are obtained from E&2) by using

D So(B)]N) the method of inversiof].
&(t) =0 For very low temperatures, the non-Markovian behavior
ﬁ(t):< A , (28)  of the heating function of the quantum Brownian particle
(v s (0[N may occur wher(n) is of the order of 10'°, see Fig. 1. To
n=0 reach such an accuracy, a MC simulation for the estimation

of (ny would require more than #®realizations to be gen-
where ¢q(t) and ¢;,(t) are the probability amplitudes in the erated. This problem may be circumvented by an appropriate
Fock state basis. scaling of the time-dependent coefficiertét)+ () of the
By comparing Eq(20) with the master equatiofi2), the  master equation. The method is based upon the following

operatorsA(t) andB(t) in Eg. (23) have to be chosen as

At)=B(t) = -iwga'a- %{[A(t) +y(t)]a'a

+HA(t) - ¢(t)]aa'}. (29)

Accordingly, the operator€; andD; are

C4(t) =D4(t) = V|A(R) = y(D)[aT,

Ca(t) = Da(t) = VIA(D) + ¢b)]a (30)

and the corresponding operatals given by Eq.(24), be-
come

At) - t o
Jl(t):\/m(sgr{ (t)o nbla aT),

sgriA(t) + y(t)Ja 0

Jo(t) =V[A(D) + 7(t)|( 0 a)- (31)

considerations. Let us look at the properties of the Hilbert
space path integral solution of the stochastic process corre-
sponding to the unraveling of E@20). The Hilbert space
path integral representation is essentially the expansion of
the propagator of the stochastic proca$s,t|6y,t,] in the
number of quantum jumpil],

6,1 60,t0] = > TNV 6,160t
N=0

(35

whereN denotes the number of jumps, afit are theN
jump contributions to the propagator. As long as in the time
evolution period of interest there is maximally one jump per
realization, it can be shown that, in the weak-coupling limit
and for the initial conditions used here, the relevant contri-
bution to the propagator is given by the first two term$,

T™. In this case, the expectation value of an arbitrary opera-
tor O is given by

(O)(1) = f DOD G ((1)|O]yt))

X{TOT 6,t6p,t0] + TY[ 6,160,101}, (36)

When the system dynamics and occupation of the states are

restricted to the two lowest Fock states, the equations rerhe contribution fromir® gives the initial expectation value

semble closely the ones used for the study of the Jaynego)(0) plus a term which is directly proportional to the decay

Cummings model with detuninf25]. , _ coefficientsA+y. SinceT is also directly proportional to
The statistics of the quantum jumps is described by thgne gecay coefficients, we get as a result that the change in

waiting time distribution functionF,,(7), which represents o expectation value is also proportional to the decay coef-
the probability that the next jump occurs within the time ficients
interval [t,t+7). F,(7), derived from the properties of the
stochastic process, reads

(O)(H) = (0)(0) x A% y. (37

032113-5
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x10%  LowT, r=20. x10%  MedT, r=20. x10°  High T, r=20.
2 2 1
a) b) c)
15 1.5
A 1 05
v
05 0.5
o —~0 o —#0 0 —#0
0 0.02 0.04 0 0.02 0.04 0 0.02 0.04
x 10° Low T, r=1. x10° Med T, r=1. x107 High T, r=1.
3 1
d e f)
1.5
2
g 05
\
1
0.5
o —~0 0 —~0 o —#0
0 05 1 0 05 1 0 0.5 1
x10"° LowT,r=0.1. x10™® MedT,r=0.1. x10° HighT, r=0.1.
1.5 2
9) L) i)
1.5
1
& 1
v 05 2
0.5
—~0 —~0 —z0
0 0 0
0 5 10 0 5 10 0 5 10
t (us) t (us) t (us)

FIG. 1. Dynamics of the heating functign(t)) in the short-time non-Markovian regime. For the higtgraphicgc),(f),(i), we have used
ro=wo/ KT=0.1; for the intermediatd, graphics(b),(e),(h), we have usedy=wy/KT=1; for low T, graphics(a),(d),(g), we have used,
=wo/ KT=100. We indicate with a solid line the analytic solution and with circles the simulations performed using the NMWF method. In
the lower right corner of all graphics, we indicate whether the asymptotic long-time value of the heating functior{zenodilreservoiy
or not.

Thus, to simplify the numerics and still to obtain the cor- of the heating functioqn(t)). In the following section, we
rect result, it is possible to speed up the decay by multiplyingwill further investigate the non-Markovian time evolution by
the coefficientsA + y with some suitable factog, and to do  |ooking at the Mandel parameter, at the squeezing properties,
the corresponding scaling down by dividing the calculatedand at the Wigner function of the system.
ensemble average by the same factor at the end of the simu- Having in mind Eq.(16) and using Eq(15), one gets the
lation. For the heating function, the validity of the scaling following expression for the heating function:
can be seen directly from the analytic solutimee Eq(40) .
of the following sectiof The scaling allows us to reduce the — T ST
ensemble size for the estimation of the heating function from (n(®) =& n(0p + 2(e D+ Ar (), (38)

the unpractical 1% to the more practical ¥g-1CP. with AL(t) andT(0) defined by Eqs(18) and (19,
IV. THE LINDBLAD-NON-LINDBLAD BORDER The asymptotic long-time behavior of the heating func-
This section contains the main results of the paper Stimut—?on’ for timest' much 'bigger 'than the rgservoir correlat.ion

¥ time 1r=1/w,, is readily obtained by using the Markovian

lated by the recent achievement in reservoir engineering,_.: :
techniques, we look at the dynamics of a quantum Browniagggonary values foA(t) and (1), as given by EqsB1) and

particle for different classes of reservoirs. We single out two
reservoir parameters pI_aying a key role in the dynamics of (n(t)) = eTn(0)) + n(wp) (L -, (39)
the open system, i.e., its temperatureand the frequency
cutoff w, of its spectral density. As we will see in this sec- With n(wp)=(e"“/"T-1)"L This equation gives evidence for
tion, by varying these two parameters, the time evolution oft second characteristic time of the dynamics, namely the
the system oscillator varies from Lindblad-type to non-thermalization timerr=1/T", with I'=a?wor?/(r?+1). The
Lindblad-type. thermalization time depends both on the coupling strength
) ) and on the ratia =w./ wg between the reservoir cutoff fre-
A. Heating function quency and the system oscillator frequency. Usually, when
In order to illustrate the changes in the dynamics of thestudying QBM, one assumes tha# 1, corresponding to a
system, we will focus, first of all, on the temporal behavior natural Markovian reservoir witlw.— . In this case, the
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TABLE I. Various time scales. for some time intervalg(t) - y(t) <0, it is a non-Lindblad-
type master equation.
Time scale name Symbol Explanation
B. Lindblad and non-Lindblad regions

reservoir correlation mr=1/w; w. is the environment cutoff To better understand such a behavior, we study in more
thermalization =11 T'=awor?/ (rP+1) detail the dynamics for three different regimes of the ratio
system oscillator period 7s=1/wq wy is the oscillator frequency  between the reservoir cutoff frequency and the system oscil-
thermal 7w=1/v, vy is the Matsubara frequency lator frequencyr>1,r=1, andr<1. The first case corre-
reservoir memory Toon= T for high T sponds to the assumption commonly done when dealing with

: a natural reservoir, while the last case corresponds to an en-
Teorr™ Tin for mediumT gineered “out-of-resonance” reservoir.

Teon™= Ts for low T By using Egs.(13) and (Al), a straightforward but
lengthy calculation shows that, foe>1, A(t) > y(t)>0. In
this case, the master equati¢t?) is always of Lindblad-
thermalization time is simply inversely proportional to the type and the heating function is a monotonically growing
coupling strength. For an “out-of-resonance” engineered resunction. The three upper graphics of Fig. 1 show the time
ervoir with r<1, =1 is notably increased and therefore the evolution of the heating function far=20 in the case of low
thermalization process is slowed down. (a), intermediateb), and high(c) temperatures.

As we will see in the following, there exist other two  In the case of an engineered “out-of-resonance” reservoir,
characteristic time scales ruling the heating process: the péhat is, whenr <1, the sign of the diffusion coefficient is
riod of the system oscillators=1/w, and the thermal time positive in the low-temperature regime while for intermedi-
min=1/v,=1/27kT defined as the inverse of the smallestate and high temperatures it assumes negative values for
positive Matsubara frequency. In Table I, we summarize th&éome time intervals. However, for intermediate and low tem-
definitions of the four time scales we have introduced up tdPeratures, there exist intervals of time in correspondence of
now. In general, the open-system dynamics depends strongyhich A(t) = ¥(t) <0. WheneverA(t)- () is negative, the
on the relative value of these four characteristic time scale§eating function decreases, so the overall heating process is
(see alsd36)). characterized by oscillations as shown in Figég)21(i),

Let us consider now the dynamics of the heating functionvhere the dynamics dh(t)) for low, intermediate, and high
for times t< 7. For simplicity, we consider as the initial T, respectively, and =0.1 is plotted for G<wt<10. The
condition the ground state of the system oscillator. The gendecrease in the population of the ground state of the system
eralization to a generic initial state is, however, direct andoscillator, after an initial increase due to the interaction with
similar conclusions hold. For times much smaller than thethe reservoir, is due to the emission and subsequent reabsorb-
thermalization time, Eq(38) can be approximated as fol- tion of the same quantum of energy. Such an event is pos-

lows: sible since the reservoir correlation timg=1/w. is now
. much longer than the period of oscillatiog=1/wy. We un-
- derline that, although the master equation in this case is not
n(t)) = A(ty) — y(ty)]dty, 40 . - g
{nt? fo [Alty) = 7ty Jdy (40 of Lindblad type, it conserves the positivity of the reduced

_ ) density matrix. This of course does not contradict the Lind-
where Eq.(18) has been used. This equation shows that thgyad theorem, since the semigroup property is clearly vio-
initial dynamics of the heating function depends strongly onjateq for the reduced system dynamij3.
the sign of one of the time-dependent coefficients of the Fingjly, for r=1, one can show numerically tha(t) >0
secular master equatiofi2). The reason for the heating 5 g times whatever the reservoir temperatlires. None-
function to depend only on the coefficieAtt) - y(t) and not  (heless, for intermediate and low temperatures, the time-
on A(t)+ (1) is simply related to the initial condition we dependent coefficient(t)- () assumes negative values for
have assumed. Indeed, when the initial state is the groungome intervals of times. Such a situation leads again to an
state of the oscillator, for times< 7, the probability of a  scillatory behavior of the heating function as shown in Figs.
jump up [absorbtion of a quantum of energy from the reser-1(q) and je).
voir, see Eq(33)] dominates over the probability of a jump ¢ js worth stressing that the non-Markovian features of
down [emission of a quantum of energy into the reservoirthe heating function discussed here do not depend on the
see Eq(34)]. This second process, which is the signature ofsecylar approximation. Indeed, as we have mentioned in Sec.
the quantized nature of the reservoir, ensures the thermalizg- Eq. (38) coincides with the expression derived from the
tion. ) o _ exact solution. Stated in another way, the appearance of vir-

Equation(40) shows us that the coefficieni(t)~(t) is  tyal exchanges of energy between system and reservoir, char-
the time derivative of the heating function. Therefore, if acterizing the non-Lindblad region, is a general feature of the
A(®)> (1) for all timest<r, the heating function grows non-Markovian dynamics of the system and it is not con-
monotonically, whereas if there exist intervals of time in cor-nected with the secular approximation.
respondence of whick(t) < (t), the heating function de-
creases and eventually oscillates. We remind the reader that, C. The key parametersr and T
for the case considered here, wheneién - y(t) >0 at all The border between the Lindblad and non-Lindblad re-
times, the master equatigt?) is of Lindblad-type, while if  gions depends on two relevant reservoir parameters, namely
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FIG. 2. Contour plots oA(r,t)=A(r,t)/2a?KT for high T (@), and of the coefficient(r,t)— y(r,t)=[A(r,t) = ¢(r,1)]/ & for low T (b).
In (b) we have chosen2 =% w./KT=10. In both(a) and(b) the contour line corresponding &(r,t)=0 (a) and A(r,t)—y(r,t)=0 (b) is
indicated by a thick solid line.

its temperaturd and the ratia between its cutoff frequency V. NON-MARKOVIAN DYNAMICS
and the system oscillator frequency. For high reservoir tem- OF NON-LINDBLAD-TYPE
peratures, the quantity effectively ruling the dynamics is the
diffusion coefficientA(t), sinceA(t)> y(t). In other words,
for short times and higft, diffusion is always dominant with
respect to dissipation. Oscillatory dynamics of the heatin
function appears for <1 since A(t) oscillates assuming

In this section, we focus on the dynamics of a quantum
Brownian particle in the case of interaction with an engi-
eered out-of-resonance reservoir, i.e., fe€1l. By using

he techniques for reservoir engineering typical of trapped

negative values. Figure(@® shows a contour plot oA(r 1) ion systems, such a region of the parameter space is already

: ; : _ in the grasp of the experimentalists. Indeed, by slightly

for high T. The curve defined by the equatiarr,t)=0 for ' "€ . A .
high T, with A(r,t) given by Eq.(B4), defines the Lindblad— moc_ilfylng the experlmgntal condl_tlons used in Rm]' the_
non-Lindblad border. From Fig.(8), one can see that the oscillatory non-Markovian dynamics of the heating function
largest value off in correspondence of which the system can be measuregd7]. .
exhibits non-Lindblad oscillatory heating is=0.27. In order to characterize completely the dynamics of the

For decreasing temperatures, the amplitudeA@) be- quantum Brownian particle in the non-Lindblad region, we
comes smaller and smaller. Thus, also in the presence of 4A°k at the dynamics of the squeezing, of the Mandel param-
oscillatory behavior of\(t), that is, wherr <1, for low tem- eter, and of the_ ngner function _for some exemp_lary_ |n|t|al.
peratures the diffusion coefficient remains always positiveStates. We begin with an analysis of the squeezing in posi-
In this case, however, dissipation is not negligible with re-tion. By using Eq(15), it is possible to derive the following
spect to diffusion anymore and their combined action is suctgxpression for the variance of the dimensionless position op-
that, for intermediate and low temperatures, the noneratorX:

Lindblad dynamics appears already for 1 [see Fig. 2b)]. AX)2 = e TONAX)2 coL(wrt) + (AP)2 Siré(wnt

Stated in another way, decreasing the temperature, the oscil-( ) [(. o (o) + (APYo SiN (o)

latory behavior of the heating function appears for higher +Co Sin(2wgt) ] + Ar(t) = € TO(AX) (1) + Ap(1),
values of the ratior, which means that the non-Lindblad (41)

region becomes larger. Figure 2 shows clearly that this re-
gion’ Corresponding to negative Va|uewt)—;y(t) [A(t) for where (AX)S and (AP)S are the initial variances of position
high T], is notably wider for lowT (b) than for highT (. ~ and momentum operators, respectively, a@g=((X,Po
While in this section we have investigated the border be=+PoXo)—(Xo)X(Pg)) is the initial position-momentum correla-
tween the Lindblad- and non-Lindblad-type regions, in thetion function. In the last line of Eq41), we have defined the
following section we will concentrate on the non-Lindblad- function (AX)s(t) describing the time evolution of the vari-
type dynamics for two reasons. The first reason is that, irance of a quantum harmonic oscillator in the absence of in-
general, due to difficulties in dealing with non-Lindblad-type teraction with the environment. In the high-temperature
master equations, only a few studies have been carried out limit, it is not difficult to prove that the interaction with the
this regime. Secondly, we have shown elsewhere that typicanvironment generally causes an increase in the variance of
non-Lindblad dynamical features may be experimentally rethe position operator with respect to its free dynamics. In-
vealed in the trapped ion context with currently availabledeed, for times much smaller than the thermalization time
technology[37]. <7, EQ. (41) may be approximated as follows:
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@ ®)

FIG. 3. (a) Time evolution of the position variance for an initial squeezed state having squeezing paranfeter The reservoir
parameters are=1072, r=0.05, andr,=w./2mKT=0.2X 10°5. The dotted line shows the variance of the free harmonic oscillator in the
absence of coupling to the environment. The system exhibits squeezing whenegéft) <0.5. (b) Time evolution of the Mandel
parameter for an initial Fock stafe=3). The reservoir parameters are the same gg)in

5 t Eq. (15), we have derived the time evolution of the Mandel
(AX); = (AX)s(t) + f Aty = 2(AX)s(t)¥(t), (42)  parameter as follows:

0
(n(t))?+e2'%(n(0))[Q(0) - (n(0))]

where Eqs(18) and (19) have been used. Having in mind QM) = (n(t)) SENC
that for high temperatures the conditid(t)> y(t) holds, _ _ _
one realizes that, provided th@tX);(t) is not too big(cor-  In Fig. 3b), we show the time evolution of the Mandel pa-

responding to either a very high initial squeezing in position/ameter for an initial Fock state=3). Due to the interaction
momentum or a very high initial position-momentum corre-With the a}rtlf|C|aI reservoir, the initial temporal evolut!on is
lation or a mixture of these cageshe integral appearing in characterized by oscillations between sub-Possonian and
Eq. (42) gives always a positive contribution. In the short- Poissonian statistics of the_quantlzed mode. This behavior
time non-Markovian regime, for low reservoir temperatures, May be traced back to the virtual photon exchanges between
situations in which the system-environment correlations leadh® System and the reservoir and therefore is typical of the
to a decrease in the squeezing in position, compared to it30N-Markovian non-Lindblad-type region. Looking at Eq.
free time evolution, may, in principle, occur. Such a situation(44), and remembering that’(t)>0, and that (n(t))
would be of interest since it could be exploited to generate=(n(0)), it is easy to convince ourselves that, if the initial
squeezing through the interaction with an artificial low- state is Poissonian or super-Poissonian, Qe=0, the Man-
temperature reservoir. We plan to investigate this point furdel parameter will remain positive at all times. In other
ther in the future. words, the interaction with the environment never creates
In Fig. 3@), we plot the short-time behavior ¢AX)2(t)  sub-Poissonian statistics from an initial Poissonian or super-
for an initial squeezed state with squeezing fasto.4, that  Poissonian statistics. This conclusion is valid for generic
is, with (Ax)gzs/zzo_z and(AP)ézl/(Zs):l.ZS. We re- temperatured, provided that the weak-coupling assumption
mind the reader thaX and P are dimensionless, therefore is satisfied.
squeezing in position corresponds(toX)2<0.5. In the fig- We now look at the the system dynamics in the non-
ure, we compare the time evolution of the position variancd-indblad regime, considering the time evolution of the
for the damped harmonic oscillator with the case of the isoWVigner function of an initial coherent stafeg). Having in
lated harmonic oscillator. From the figure one sees clearlyind Eq.(16) and recalling that the Wigner function is sim-
the effect of the virtual processes which tend to decrease th@ly the Fourier transform of the quantum characteristic func-
position variance and to bring it back to its initial value. The tion,
overall effect of the environment tends, however, to wash out

the initial squeezing. W(e) = if dPex()er ¢, (45)
Let us now consider the time evolution of the Mandel ).
parametef38],
one gets
(P(1)) = {n(H))® 1 o TO2griogt _ 2
Qt)y=—————-1. (43) W(a) = ex [ o
(n(t)) m Ap(t) + 1/2] Ap(t) +1/2

This quantity gives an indication of the statistics of the quan- (46)

tized mode described by the system oscillator. For a Foclkrom this equation and from Fig. 4, one can see clearly that
state,Q takes its lowest valu®=-1, while for a coherent the system-reservoir interaction spreads the initial Wigner
stateQ is equal to 0. Therefore, values <0 indicate function. Breathing of the Wigner function, that is, the oscil-
sub-Poissonian statistics, whil@=0 characterizes Poisso- lation in its spread, appears in correspondence of the virtual
nian statistics and)>0 super-Poissonian statistics. Using processes. This is a new dynamical feature which is absent
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ot=0

of the ion was observe®]. For this system, this experiment
has shown that decoherence of a superpositon of two Fock
states happens on a time scale of the order oft80Very
recently, we have proposed an experimg3if] to observe
non-Markovian features of the heating function in the same
system and with the same setup usefBinAccording to our
calculations, by slightly modifying the experimental param-
eters used, one could observe oscillations in the heating
ot =024 ot =0.32 ot =04 function in a time scale of the order of s, which is one
order of magnitude less than the decoherence time measured
in that system for a superposition of Fock states.

In conclusion, the investigation carried out in this section
sheds light on the short-time dynamics of the damped har-
monic oscillator, focusing in particular on the highregime.
Further analysis of the squeezing, of the Mandel parameter,
and of the Wigner function may bring new insight into the

FIG. 4. Contour plots of the Wigner function at different time time scales governing the loss of nonclassical properties and
instants. Atr=0, the initial state is the coherent state correspondingn their relationship with the decoherence and dissipation
to Rdag]=1, Imlag]=0. The reservoir parameters ate=1072, r time scales. We plan to explore this aspect further, paying
=0.05, andr = wc/27KT=10". particular attention to the low-temperature case.
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both in the Markovian dynamics of the damped harmonic
oscillator and in the Lindblad-type non-Markovian dynam-
ics. Indeed, in both of the previous regimes, the spread inthe In this paper, we have studied the short-time non-
Wigner function simply increases, linearly in time in the Markovian dynamics of a quantum Brownian particle mov-
Markovian case and quadratically in time in the non-ing in a harmonic potential. The dynamics of this paradig-
Markovian Lindblad-type case. We note that different breathmatic open quantum system is described by a non-
ing scenarios for the second moments in different regimesarkovian master equation which is local in time. This
have been discussed [B9]. master equation cannot be recast in the Lindblad form. Nev-
In summary, the exchanges of energy between system angttheless, under certain conditions, the master equation for
reservoir characterizing the non-Lindblad-type regionquantum Brownian motion is of Lindblad-type, i.e., it has the
strongly influence the dynamics of the system. In general, ikame operatorial form of the Lindblad master equation but
the initial state of the oscillator possesses nonclassical progvith time-dependen{instead of constantpositive coeffi-
erties(as squeezing or sub-Poissonian statigtite interac-  cients.
tion with the environment tends to wash out such properties In the weak-coupling limit, the relevant time-dependent
in a time scale which is dependent, as one would guess, agbefficients can be cast in a closed form. In this case, by
the reservoir paramete(spectral density and temperature using the exact analytic solution in terms of the quantum
In this section, we have considered a hilengineered “out-  characteristic function, we have identified the parameters
of-resonanceli.e., withr < 1) reservoir. In this case, the loss governing the passage from a Lindblad-type to a non-
of nonclassical properties appears in a time scale which igindblad-type master equation. These parameters are the res-
smaller than or equal to the reservoir correlation time  ervoir temperaturd and the ratior between the frequency
=1/w.. Moreover, the effect of the virtual processes, which, of the system oscillator and the reservoir cutoff frequency
is also important in this time scale, may cause oscillationsy,. It is worth stressing that the weak-coupling limit we con-
between classical and nonclassical states, as in the casgler in the paper is of interest also in light of the engineer-
shown in Fig. 8b). It is worth noting that, in the situation ing of reservoir experiments. In fact, in order to observe
considered here, the loss of nonclassical properties, as wedkperimentally the key features of the system-reservoir inter-
as the oscillations due to virtual processes, happen in a timgction, e.g., the role played by the entanglement between
scale which is in general much shorter than the decoherenggstem and reservoir in the decoherence process, the cou-
time 74ec=\%/(d?a?), with d the separation between the two pling between system and reservoir does not have to be too
components of a quantum superposition ang#/y2mkT  strong. The stronger the coupling is, the faster is the estab-
the de Broglie wavelengtf®0]. This is clearly related to the lishment of quantum correlations between the system and the
high-temperature condition of interest here, which impliesenvironment, and the more difficult is the experimental ob-
7r>1/KT. servability of their dynamics. For this reason, the techniques
In order to give a more quantitative estimate, one shouldof reservoir engineering, allowing to control both the cou-
however, look at some specific physical system in order tgling constant and other reservoir parameters as its spectral
fix also the other quantities appearing in the definition of thedensity, look very promising for investigating fundamental
two time scales. To this aim, we consider the recent experiissues such as the quantum-classical border.
ment with trapped ions in which the decoherence of different Our analysis of the short-time non-Markovian region
superpositions of the vibrational motion of the center of masshows that the Lindblad-type dynamics is characterized by a

VI. CONCLUSIONS
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monotone increase of the heating function, and therefore gfroperties tend to be washed out due to the interaction with
the energy, of the open system. In the non-Lindblad-typehe reservoir. However, oscillations between squeezing and
region, on the contrary, oscillations in the mean energy of theionsqueezing as well as between sub-Poissonian and Poisso-
system clearly indicate the occurrence of virtual exchangegian statistics appears in connection with the virtual ex-
of energy between the system and the reservoir. Loweringhanges of energy. A further sign of the virtual processes is
the reservoir temperature increases the probability that virthe preathing in the width of the Wigner function.
tual processes take place. _ Summarizing, the main result of this paper is the detailed
It is worth noting that whenever the master equation forynaivsis of the non-Markovian features characterizing the
the system is of Lindblad type, it is possible to apply theqynamics of a quantum Brownian particle, with special at-
standard MC simulation schemes, and there exists a direglpiqn given to the appearance of virtual processes for cer-
correspondence between the MC simulation method and in ranges of reservoir temperature and cutoff frequency.

continuous measurement schejag6,27. For more general . . ;
non-Markovian Monte Carlo methods, e.g., the NMWE WeDue to the generality of the model studied here, we think that

have used in this paper, an analogous correspondence wo L@gr results can both contribute to fundamental research on
be of interest. There are indications that the Lindblad—non—rc" quantum systems and, when applied to specific physical

Lindblad border might be identified with the border bet\NeencontEXtS’ shed light on their dynamics.

the existence and nonexistence of a measurement scheme
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APPENDIX A. DIFFUSION COEFFICIENT

In order to derive a closed analytic expression Adt) valid for all temperatures and for all values of the ratjiowe
integrate Eq(10) and use the series expansion of the hypergeometric function,

2

A(t) = azwol N r2{cotr(qrro) - cot{ 7 )&~ “{r coq wgt) — sin(wgt)] + ir cos(wot)[E(— rot) + E(rc,t) —E(iro,t) —E(— irg,t)]
o

—Vlt

1 — — 1 — —
g Sin(wot){m[(ro —1)G(=ro,t) + (rg +1)G(ro,t) I+ 2_rC[F(_ ret) = F(rc,t)]] } : (A1)

In this equation, we have used the notatiogs wy/ 27KT, APPENDIX B: MARKOVIAN AND HIGH-TEMPERATURE

o= we/ 27KT, LIMITS
F(x,t) = JF(%,1,1 +x,e71), (A2 In the asymptotic long time limit, the time-dependent co-
efficientsy(t) andA(t) tend to their stationary value given by
G(x,1) = ,F;(2,1+x,2 +x,671Y), (A3) /2
. ) ) Ay = At — ») = aPwy 5 Coth(wy/2kT),  (B1)
where,F,(a,b,c,2) is the hypergeometric functiof1]. 1+r
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= Yt — ®) = a?wy (B2)

1+r%

and the master equatigt2) becomes the well known Mar-

PHYSICAL REVIEW A 70, 032113(2004

G(x,t) = SF1(2,1+x,2 +x,e71)
= 2F1(21 1123_V1t) = (1 - e_V1t)_l'

Inserting these expressions in H@1l) and using the ap-

kovian master equation for a damped quantum harmonic ogfoximations

cillator,

dps

g =~ Tn(eo) + 1][a'aps - 2apsa’ + psa'al

1 2kT
cotre) = =
Cc C

1 2kT
cothimrg) =1+—=——

- I'n(wp)[aa’ps— 2apsa + psaa'], (B3) Mo @o
one gets the Caldeira-Leggett high-temperature expression
with I'=a?wor?/(1+r?) andn(wg) =(e*’*T-1)71, for A(t) [17],
As far as the high-temperature limit is concerned, having r2

in mind the definitions of, andr., one sees immediately
that such an approximation amounts to takigg .<<1, that
is, x<<1. Under this condition, one h441]

FxD) = 5F;(x,1,1+x,671)
= 2F1(Xl 11 11e_V1t) = (1 - e_ylt)_ai

A@W)HT = 2a2kT {1 —e [ cod wgt) — (1/r)sin(wt) ]}

(B4)

The other time-dependent coefficientt), does not depend
on temperature on as one can easily see by4BqWe stress
that, comparing Eq(B4) with Eq. (13), one notics immedi-
ately that in the high-temperatur&(t) > (t).
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