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Scaling of non-Markovian Monte Carlo wave-function methods
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We demonstrate a scaling method for non-Markovian Monte Carlo wave-function simulations used to study
open quantum systems weakly coupled to their environments. We derive a scaling equation, from which the
result for the expectation values of arbitrary operators of interest can be calculated, all the quantities in the
equation being easily obtainable from the scaled Monte Carlo wave-function simulations. In the optimal case,
the scaling method can be used, within the weak coupling approximation, to reduce the size of the generated
Monte Carlo ensemble by several orders of magnitude. Thus, the developed method allows faster simulations
and makes it possible to solve the dynamics of the certain class of non-Markovian systems whose simulation
would be otherwise too tedious because of the requirement for large computational resources.

DOI: 10.1103/PhysRevE.71.056701 PACS numberssd: 02.70.Tt, 03.65.Yz, 02.60.Pn, 42.50.Lc

I. INTRODUCTION

The description of the dynamics of open quantum systems
has attracted increasing attention during the last few years
f1g. The major reason for this is the identification of the
phenomena of decoherence and dissipation, which character-
ize the dynamics of open quantum systems interacting with
their surroundingsf2g, as a main obstacle to the realization of
quantum computers and other quantum devicesf3g. Second,
recent experiments on the engineering of environmentsf4g
have paved the way for proposals aimed at creating entangle-
ment and superpositions of quantum states exploiting deco-
herence and dissipationf5,6g.

A common approach to the dynamics of open quantum
systems consists in deriving a master equation for the re-
duced density matrix which describes the temporal behavior
of the open system. The solution for the master equation can
then be searched by using analytical or simulation methods,
or the combination of both.

This paper concentrates on developing Monte Carlo simu-
lation methods for non-Markovian open quantum systems.
The general feature of the Monte Carlo methods is the gen-
eration of an ensemble of stochastic realizations of the state
vector trajectories. The density matrix and the properties of
the system of interest are then consequently calculated as an
appropriate average of the generated ensemble.

Some common variants of the Monte Carlo methods for
open systems include the Monte Carlo wave-function
sMCWFd methodf7,8g, the quantum state diffusionsQSDd
f9–11g, and the non-Markovian wave functionsNMWFd for-
mulation unraveling the master equation in an extended Hil-
bert spacef1,12,13g. The MCWF method has been very suc-
cessfully used to model the laser cooling of atoms. Actually,
three-dimensionals3Dd laser cooling has so far been de-
scribed only by MCWF simulationsf14g. QSD in turn has
been found to have a close connection to the decoherent
histories approach to quantum mechanicsf15g, and the
NMWF method has been recently applied to study the dy-
namics of quantum Brownian particlesf16,17g. The various
Monte Carlo methods and related topics have been reviewed,
e.g., in Refs.f8,18–20g

In general, simulating open quantum systems is a chal-
lenging task. It has been shown earlier that the methods men-
tioned above can solve a wide variety of problems. Never-
theless, sometimes there arise situations in which the
complexity of the studied system or the parameter region
under study makes the requirement for the computer re-
sources so large that the solution may become impossible in
practice, though not in principle. Thus, it is important to
assess the already existing methods from this point of view
and develop variants to improve their applicability. This is
the key point of this paper.

Here, we address the Monte Carlo simulation methods for
the short time evolution of non-Markovian systems which
are weakly coupled to their environments. In this case, the
dynamics of the system may exhibit rich features, whereas
the weak coupling may lead to extremely small quantum
jump probabilities, the consequence being an unpractically
large requirement for the size of the generated Monte Carlo
ensemble. To overcome this problem, we present below a
method which in general allows to reduce the ensemble size.

By studying the Hilbert space path integral for the propa-
gator of a piecewise deterministic processsPDPd f1g, we
show that part of the expectation value of an arbitrary opera-
tor A as a function of timet, kAlstd, has scaling properties
which can be exploited in Monte Carlo simulations to speed
up the generation of the ensemble, in the optimal case by
several orders of magnitude. We derive a scaling equation,
from which the result forkAlstd can be calculated, all the
quantities in the equation being easily obtainable from the
scaled Monte Carlo simulations.

We concentrate first on the Lindblad-type non-Markovian
case which can be solved by the standard MCWF method,
and then focus on the non-Lindblad-type case which requires
the use of the NMWF simulations in the doubled Hilbert
space.

The paper is structured as follows. Section II introduces
the master equation, the corresponding stochastic
Schrödinger equation, and the appropriate simulation
schemes for the Lindblad-type and non-Lindblad-type sys-
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tems. The Hilbert space path integral method is then used to
calculate the expectation value of an arbitrary operator set-
ting the scene for the scaling method which is presented in
Sec. III. Section IV shows explicitly how the scaling can be
implemented and demonstrates the usability of the method,
for the example of quantum Brownian motion. Finally Sec.
V presents discussion and conclusions.

II. DYNAMICS OF NON-MARKOVIAN SYSTEMS

We describe first in Sec. II A the master equation for the
Lindblad-type systems and the corresponding standard
MCWF method. We then continue in Sec. II B with the de-
scription of the non-Lindblad-type case with the correspond-
ing stochastic Schrödinger equation and NMWF unraveling
in the doubled Hilbert space. Section II C presents the calcu-
lation of the expectation value of an arbitrary operatorA with
the Hilbert space path integral method which paves the way
for the scaling procedure.

We begin by considering master equations obtained from
the time-convolutionless projection operator technique
sTCLd of the form f1,12g

]

]t
rstd = Astdrstd + rstdB†std + o

i

CistdrstdDi
†std, s1d

with time-dependent linear operatorsAstd, Bstd, Cistd, and
Distd.

A. Lindblad-type case: Master equation and MCWF method

A specific case of the master Eq.s1d is the one of
Lindblad-typef21–23g

d

dt
rstd = − ifHS,rstdg + o

i

gistdHLirstdLi
†

−
1

2
Li

†Lirstd −
1

2
rstdLi

†LiJ , s2d

whereHS is the system Hamiltonian,gistd is the time depen-
dent decay rate to channeli, and Li is the corresponding
Lindblad operator.

We define this non-Markovian master equation to be of
Lindblad type when the time dependent decay coefficients
gistdù0 for all times t, and non-Lindblad type whengistd
acquire temporarily negative values during the time evolu-
tion f23g. The Lindblad-type case can be treated with the
standard MCWF method introduced in this subsectionf7g,
and the non-Lindblad case with the NMWF method in the
doubled Hilbert space presented in the following subsection
f1,12g.

The core idea of the standard MCWF method is to gener-
ate an ensemble of realizations for the state vectorcstd by
solving the time dependent Schrödinger equation

i"
]cstd

]t
= Hstdcstd, s3d

with the non-Hermitian HamiltonianHstd,

Hstd = HSstd + HDECstd, s4d

where HSstd is the reduced system’s Hamiltonian and the
non-Hermitian partHDECstd includes the sum over the vari-
ous allowed decay channelsi,

HDECstd = −
i"

2 o
i

gistdLi
†Li , s5d

where the jump operatorLi for channeli coincides with the
Lindblad operator appearing in the master Eq.s2d.

During a discrete time evolution step of lengthdt the
norm of the state vector may shrink due toHDEC. The
amount of shrinking gives the probability of a quantum jump
to occur during the short intervaldt. Based on a random
number one then decides whether a quantum jump occurred
or not. Before the next time step is taken, the state vector of
the system is renormalized. If and when a jump occurs, one
performs a rearrangement of the state vector components ac-
cording to the jump operatorLi, before renormalization ofc.

The jump probability corresponding to the decay channel
i for each of the time-evolution stepsdt is

Pistd = dtgistdkcuLi
†Liucl. s6d

The expectation value of an arbitrary operatorA is then the
ensemble average over the generated realizations

kAlstd =
1

N
o
i=1

N

kciuAucil, s7d

whereN is the number of realizations.

B. Non-Lindblad-type case: Stochastic Schrödinger equation
and NMWF method in the doubled Hilbert space

The solution of the general master Eq.s1d can be obtained
by using the NMWF unravelling in the doubled Hilbert space

H̃=HS% HS where HS is the Hilbert space of the system
f1,12g. The state of the system is described by a pair of
stochastic state vectors

ustd = Ffstd
cstd G , s8d

such thatustd becomes a stochastic process in the doubled

Hilbert spaceH̃. Denoting the corresponding probability

density functional byP̃fu ,tg, we can define the reduced den-
sity matrix as

rstd =E DuDu* uflkcuP̃fu,tg. s9d

The time evolution ofustd can be described as a PDP and
the corresponding stochastic Schrödinger equation readsf1g

dustd = − iGsu,tddt + o
i
F iustdi

iJistdustdi
Jistdustd − ustdGdNistd,

s10d

where the Poisson increments satisfy the equations
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dNistddNjstd = di jdNistd,

EfdNistdg =
iJistdustdi2

iustdi2 dt, s11d

and the nonlinear operatorGsu ,td is defined as

Gsu,td = FFstd +
1

2o
i

iJistdustdi2

iustdi2 Gustd, s12d

with the time-dependent operators

Fstd = FAstd 0

0 Bstd G ,

Jistd = FCistd 0

0 Distd
G , s13d

whereAstd, Bstd, Cistd, andDistd are the operators appearing
in Eq. s1d.

The deterministic part of the PDP is obtained by solving
the following differential equation:

i
]

]t
ustd = Gsu,td, s14d

and the jumps of the PDP take the form

ustd → iustdi
iJistdustdiFCistdfstd

Distdcstd G . s15d

Once the ensemble of stochastic realizations has been gener-
ated, one can then calculate the density matrix of the reduced
system from Eq.s9d.

C. The Hilbert space path integral for the propagator of the
PDP and the expectation value of arbitrary operators

For simplicity, we present here the Hilbert space path in-
tegral for the Lindblad-type case. The derivation of the non-
Lindblad-type case follows closely the presentation below.

We assume that the initial state of the system is a pure
statec0. In this case the propagatorT of the PDPscondi-
tional transition probabilityd coincides with the probability
density functionalP of the stochastic processf1g

Pfc,tg = Tfc,tuc0,t0g. s16d

This quantity describes the probability of the system being in
the statec at time t when it was in the statec0 at some
earlier timet0. For short time non-Markovian evolutions and
weak couplings, we assume that the maximum number of
jumps per realization is one. Thus, the expansion of the
propagatorT in terms of number of jumps contains two
terms: deterministic evolution without jumpsTs0d and paths
with one jumpTs1d,

Tfc,tuc0,0g = Ts0dfc,tuc0,0g + Ts1dfc,tuc0,0g. s17d

With the assumptions above, the expectation value of an
arbitrary operatorA at time t can be calculated asf1g

kAlstd =E DcDc*kcuAuclTfc,tuc0,t0g

=E DcDc*kcuAuclhTs0dfc,tuc0,t0g + Ts1dfc,tuc0,t0gj.

s18d

By calculatingTs0d andTs1d, see Appendix A, we obtain for
kAlstd,

kAlstd =E DcDc*kcuAuclHF1 −E
0

t

dso
i

gissd

3iLigssc0di2Gd„c − gtsc0d…

+E
0

t

dsE Dc1Dc1
* E Dc2Dc2

*d„c − gtsc2d…o
i

gissd

3iLic1i2dS Lic1

iLic1i
− c2Dd„c1 − gssc0d…J . s19d

Here, terms of the formd(c−gtsc0d) are the functional
delta functions and the deterministic evolution ofc0 accord-
ing to the non-Hermitian HamiltonianH is given by

g
t
sc

0
d =

expF− iE
0

t

Hst8ddt8Gc
0

IexpF− iE
0

t

Hst8ddt8Gc
0I . s20d

The physical interpretation of Eq.s19d is straightforward.
The expectation value ofA is calculated with respect to all
possible paths ofc with appropriate weights. The first term
in the curly brackets is the no-jump evolution ofc multiplied
with the corresponding probability of no-jumps. The second
term includes the integration over all possible jump times
and jump routes with the appropriate transition rates for the
one jump realization.

III. SCALING

Denoting the expectation value ofA with respect to the
no-jump evolution as

kAl0std = kc = gtsc0duAuc = gtsc0dl, s21d

we obtain from Eq.s19d
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kAlstd − kAl0std =E DcDc*kcuAuclH− d„c − gtsc0d…E
0

t

dso
i

gissdiLigsscdi2 +E
0

t

dsE Dc1Dc1
* E Dc2Dc2

*d„c − gtsc2d…

3 o
i

gissdiLic1i2dS Lic1

iLic1i
− c2Dd„c1 − gssc0d…J . s22d

This equation leads to the first key observation of the paper.
We notice thatkAlstd−kAl0std fbut not kAlstd aloneg is di-
rectly proportional to the transition rates of the type

Wfc2uc1g = o
i

gistdiLic1i2dS Lic1

iLic1i
− c2D . s23d

In the corresponding Monte Carlo simulations for the case
we are considering, the required size of the generated en-
semble is related to the transition ratesW since the rate de-
fines the number of jumps. In more detail, if the totalscumu-
latived jump probability for the time evolution period of
interest isPc, we need on average to generate 1/Pc realiza-
tions to produce one realization which has a jump. To
achieve good statistical accuracy we need obviously a large
enough number of jumps and the minimum condition for the
required ensemble sizeN becomesN@1/Pc.

This leads us to the following observation which can be
used to optimize the ensemble size of the Monte Carlo simu-
lations swithin the approximations we used. We can artifi-
cially increase the number of jumps by scaling up the tran-
sition rateW by a factor ofb. At the same time we must
leave the non-Hermitian HamiltonianH unscaled since the
ensemble average contribution given by realizations withH
only sno jumpsd appears on the left-hand sideslhsd of Eq.
s22d. In other words, we are not allowed to scale the deter-
ministic evolution of the state vectorswhich includes also the
rotation of the state vector towards the state with the smallest
decay rategid but only increase the number of jumps by
scaling up the transition rates by a factor ofb. In the simu-
lation this can be done easily multiplying the jump probabili-
ties for various decay channels by a same factorb. An ex-
plicit example how to do this for both of the cases we are
considering, Lindblad type and non-Lindblad type, is shown
in the next section.

The question is now how we can calculate from the scaled
simulations the result we are looking for, namely, the expec-
tation value for arbitrary operatorA as a function of time
kAlstd. It can be shown, see Appendix B, that the final result
for kAlstd starting from Eq.s22d can be obtained as

kAlstd = F1 −
Ptotstd

b
−

1

b

N − Njstd
N

GkAl0std +
1

b
kĀltotstd.

s24d

This equation is the main result of the paper. It shows that
the ensemble average of the scaled simulations can be used
to calculate the result for the original problem we are inter-
ested in. In this equation,Ptotstd is the total transition rate

ssee Appendix Bd, N is the size of the ensemble,Njstd is the
number of jumps in the simulations as a function of time,b
is the scaling factor,kAl0std is the expectation value with
respect the deterministic time evolutionfsee Eq.s21dg, and
kĀltotstd is the ensemble average from the modified simula-
tions where the scaling has been usedssee the discussion
aboved. All of the quantities on the right-hand sidesrhsd can
be easily calculated in the simulation. Actually, from a tech-
nical point of view, the only difference between the scaled
and unscaled simulations is that in the former one we have to
keep track of the number of jumps as a function of time. A
task which can be easily done in the simulations. We also
note that at time t=0, Ptots0d=0, Njs0d=0, kĀltots0d
=kAl0s0d, and we obtain correctly for timet=0: kAls0d
=kAl0s0d.

Thus, we can optimize the ensemble size by using the
following procedure in the Monte Carlo simulations:sid
Scale up jump probabilities by suitable factorb. sii d Leave
decay ratesgistd untouched in the non-Hermitian Hamil-
tonianH. siii d Calculate the result forkAlstd from Eq. s24d.

It is worth it to emphasize here a common feature of
Monte Carlo wave-function simulations. The deterministic
evolution caused by the non-Hermitian HamiltonianH
changes the relative weights of the occupied states due to the
different decay rates of the various states. The scaling proce-
dure incorporates this rotation by adding to the scaled en-
semble average resultfthe second term on the rhs of Eq.
s24dg contribution from the deterministic evolution calcu-
lated with the appropriate weightsthe first termd.

Since the reduction in the required ensemble size is di-
rectly proportional to the used scaling factorb, the issue is
now how large scaling factor we can use to optimize the
simulations. The scaling method that we have developed is
valid when there is maximally one jump per realization. This
condition has to hold also for the scaled simulations as well.
As soon as the scaling factor is so large that realizations with
two or more jumps begin to occur, an additional errorswith
respect to the normal statistical error of Monte Carlo simu-
lationsd starts to appear. In other words, the probability of
having two jumps per realization has to be much smaller
than the one jump probability. If the total probability for one
jump isPc ssee the discussion aboved, the probability for two
jumps equalsPc

2 and the estimate for additional error is sim-
ply given byPc

2/Pc=Pc. Thus we can use the scaling factor
which increases the jump probabilities, e.g., to the order of
0.01 introducing a manageable 1% error in addition to the
normal statistical error of the Monte Carlo simulations.

For the standard Monte Carlo simulations there exists a
corresponding measurement scheme interpretation based on
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the continuous monitoring of the environment of the system.
The scaling technique modifies the Monte Carlo simulation
method in such a way that the measurement scheme interpre-
tation is lost.

The scaled simulations correspond to a stochastic
Schrödinger equation where the deterministic part generated
by G, see Eq.s10d, remains the same but the jump part is
scaled withb, i.e., the expectation value of the Poisson in-
crement becomes

EfdNistdg = bgistdiLici2dt. s25d

Thus the stochastic Schrödinger equation does not have a
corresponding master equation, and actually does not need to
have one for the scaling to work. This is because we are not
looking for two master equations whose results are scalable
from each other. Rather the key point is to modify in a suit-
able way the equations for the simulations in order to make
them faster and more efficient.

Summarizing, we have demonstrated above how the scal-
ing works for the Lindblad-type master equation with time
dependent but always positive decay coefficientsgistd. For
this the standard Monte Carlo wave-function method can be
usedf7,20g. In a similar way, it can be shown that the scaling
works also for the non-Lindblad-type case wheregistd may
acquire temporarily negative values. In this case one needs to
use the doubled Hilbert space unravelingf1g. We show ex-
amples of the scaling for both of these cases in the next
section.

IV. EXAMPLES FOR SCALING

The discussion above shows how it is possible to reduce
the size of the generated ensemble in the Monte Carlo simu-
lations for non-Markovian systems. It is worth noting that for
the Markovian case the scaling is not needed because the
jump probabilities can be increased trivially by increasing,
e.g., the time step sizedt in the simulations. For the non-
Markovian case this does not work because the main features
of the open system dynamics may be given by the time de-
pendence of the decay rates, anddt has to be kept small
compared to the temporal variations of the decay coeffi-
cients.

We show below two examples for the scaling. In these
examples we use the scaling factorsb=104 and 105 while the
generated ensembles have the sizes of the order of 105. In
other words, without the scaling, the solution of the pre-
sented problems would require at least 109 ensemble mem-
bers.

To demonstrate the scaling, we perform the simulations
for the short time non-Markovian dynamics of a quantum
Brownian particlesdamped harmonic oscillatord f16,17g. We
demonstrate both the Lindblad-type and non-Lindblad-type
cases.

The dynamics of a harmonic oscillator linearly coupled to
a quantized reservoir, modeled as an infinite chain of quan-
tum harmonic oscillators, is described, in the secular ap-
proximation, by means of the following generalized master
equationf23,24g:

drstd
dt

=
Dstd + Gstd

2
f2arstda† − a†arstd − rstda†ag

+
Dstd − Gstd

2
f2a†rstda − aa†rstd − rstdaa†g.

s26d

In the previous equation,a and a† are the annihilation and
creation operators andrstd is the density matrix of the sys-
tem harmonic oscillator. The time dependent coefficients
Dstd andGstd appearing in the master equation are known as
diffusion and dissipation coefficients, respectivelyf16,24g.

For an Ohmic reservoir spectral density with Lorentz-
Drude cutoff, the expression forDstd is f16,25g

Dstd = 2a2kT
r2

1 + r2h1 − e−vctfcossv0td − s1/rdsinsv0tdgj,

s27d

where the assumption of the high temperature reservoir has
been used. The dissipation coefficientGstd can be written

Gstd =
a2v0r

2

r2 + 1
f1 − e−vct cossv0td − re−vct sinsv0tdg. s28d

Here, r =vc/v0 is the ratio between the environment cutoff
frequencyvc and the oscillator frequencyv0, a is the dimen-
sionless coupling constant,k is the Boltzmann constant, and
T is the temperature. Whenr .1, the decay coefficients
Dstd±Gstd.0 for all times, and the master equation is of
Lindblad type. Whenr ,1, the decay coefficientsDstd±Gstd
acquire temporarily negative values and the master equation
is of non-Lindblad typef16g. For Lindblad-type master equa-
tion, one can apply the standard MCWF methodsSec. IV Ad
where as the non-Lindblad-type case requires the application
of the NMWF method in the doubled Hilbert spacesSec.
IV B d

To demonstrate that the scaling workssin addition to the
rigorous proof presented aboved, we compare below the re-
sults obtained from the simulations to the exact analytical
resultsf16,26g.

A. Lindblad-type master equation and MCWF simulations

For the Lindblad-type case we choose parameters
2a2kT/vc=1.2310−6, r =10, a2v0/vc=0.5310−8, and the
scaling factorb=104. The initial state of the system is cho-
sen to be a coherent stateuj=Î2l such that, att=0, knl
= uju2=2. We emphasize that the present paper generalizes the
scaling method we have used in Ref.f16g for initial Fock
states to arbitrary system Hamiltonians and arbitrary initial
states.

The non-Hermitian part of the Hamiltonian is now given
by fsee Eqs.s2d, s4d, ands26dg

HDEC = −
i"

2
hfDstd − Gstdgaa† + fDstd + Gstdga†aj. s29d

The jump probabilities for each time stepdt and decay chan-
nel i are now modified so that the jump probability for chan-
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nel 1 sjump up, absorption of one quantum of energy from
the environmentd is

P1std = bdtfDstd − Gstdgkcuaa†ucl, s30d

and for channel 2sjump down, emission of one quantum of
energy into the environmentd

P2std = bdtfDstd + Gstdgkcua†aucl. s31d

The ensemble average is then calculated in the usual Monte
Carlo way, as presented in Sec. II A and the simulation re-
sults plugged into Eq.s24d to get the final result.

Figure 1 shows the excellent match between the analytical
curve and the simulations using the scaling. For the discus-
sion of the analytical solution, see Ref.f16g. The results
confirm once more the validity of the scaling procedure and
show the short time quadratic non-Markovian behavior of
the average quantum numberknl=ka†al of the oscillator.
Moreover, for the parameters used here, the scaling reduces
the required ensemble size by a factor of 104. The simulation
here contains 63105 realizations.

B. Non-Lindblad-type unraveling in the doubled Hilbert space

For the non-Lindblad-type case we choose the following
parameters 2a2kT/vc=2.4310−6, r =0.1, a2v0/vc=0.5
310−8, and the scaling factorb=105. As initial state we
choose a superposition of Fock statesc=su0l+ u1ld /Î2.

The doubled Hilbert space state vector for the harmonic
oscillator reads

ustd = Ffstd
cstd G = FSn=0

` fnstdunl
Sn=0

` cnstdunl
G , s32d

wherefnstd and cnstd are the probability amplitudes in the
Fock state basis.

By comparing Eq.s26d with the master Eq.s1d, the op-
eratorsAstd andBstd have to be chosen as

Astd = Bstd

= − iv0a
†a − 1

2hfDstd + Gstdga†a + fDstd − Gstdgaa†j.

s33d

Accordingly, the operatorsCi andDi are

C1std = D1std = ÎuDstd − Gstdua†,

C2std = D2std = ÎuDstd + Gstdua s34d

and the corresponding operatorsJi, become

J1std = ÎuDstd − GstduHsgnfDstd − Gstdga† 0

0 a†J ,

J2std = ÎuDstd + GstduHsgnfDstd + Gstdga 0

0 a
J . s35d

The statistics of the quantum jumps is described by the
waiting time distribution functionFwstd which represents the
probability that the next jump occurs within the time interval
ft ,t+td. Fwstd, derived from the properties of the stochastic
process, reads

Fwstd = 1 − expF−E
0

t

o
i=1,2

PissddsG , s36d

where for channel 1sjump up, the system absorbs a quantum
of energy from the environmentd

P1std = b
uDstd − Gstdu

iustdi2 o
n=0

`

sn + 1dfufnstdu2 + ucnstdu2g,

s37d

and for channel 2sjump down, the system emits a quantum
of energy into the environmentd

P2std = b
uDstd + Gstdu

iustdi2 o
n=0

`

nfufnstdu2 + ucnstdu2g. s38d

Here, the probabilities are scaled with a factor ofb according
to the scaling scheme presented above. When the jump oc-
curs, the choice of the decay channel is made according to
the factorsP1std and P2std. The times at which the jumps
occur are obtained from Eq.s36d by using the method of
inversionf1g.

Figure 2 displays the short time oscillatory non-
Markovian behavior of the average quantum numberknl.
This type of behavior is studied in detail in Ref.f16g. The
results show the excellent match between the exact analytical
solution and the simulation results using the scaling with 6
3105 realizations. Again, the results confirm the validity of
the scaling procedure. Moreover, the inset shows a very poor
match between the non-scaled simulations with 63108 real-
izationsf27g and justifies the claim that the reduction in the
ensemble size is at least on the order of 104 when the scaling
procedure is used.

FIG. 1. Comparison between analyticalssolid lined and scaled
simulation resultsscirclesd with the bars of the standard error for the
Lindblad-type case. The figure shows the behavior of the expecta-
tion value of the quantum numberknl as a function of time. The
initial state of the system is a coherent stateuj=Î2l. For the param-
eters used here, the scaling reduces the required ensemble size by a
factor on the order of 104. The simulation here contains 63105

realizations.
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The reduction of the ensemble size can be estimated also
by calculating the maximum jump probability of a single
realization. In the example considered here, the maximum
probability is of the order of 10−7, in other words on average
an ensemble size of 107 produces one jump event in the
unscaled simulations. We estimate that one needs several
hundreds jumps in the simulations to produce accurately the
rich dynamical features of the heating function displayed in
Fig. 2, and consequently the requirement for the ensemble
size is at least 109 without the scaling. Thus, the reduction in
the ensemble size by the scaling method is again found to be
at least on the order of 104.

It is interesting to compare the various terms in the scal-
ing Eq. s24d in the non-Lindblad case. Figure 3 shows the
four terms of the scaling Eq.s24d. One can notice that two of
the terms practically cancel each other and the final result is
mostly given by the two terms presented in Figs. 3sad and
3sdd.

V. DISCUSSION AND CONCLUSIONS

We have demonstrated a scaling method for Monte Carlo
wave-function simulations which can reduce the size of the
generated ensemble by several orders of magnitude espe-
cially for weakly coupled non-Markovian systems. The scal-
ing is based on the notion that once in the simulations the
jump probabilities are scaled, and the deterministic evolution
given by the non-Hermitian Hamiltonian left untouched, one
can obtain the time evolution of the observables of interest
from the scaling Eq.s24d.

The scaling has been used in a restricted form, for a spe-
cific physical system, in Ref.f16g. In that case the initial

state of the system was a Fock state. Here, we present a
generalized scaling scheme which is able to treat arbitrary
initial states of the system and arbitrary Hamiltonians. We
emphasize that the scaling method works very well for solv-
ing the short time dynamics of non-Markovian, systems,
which bear importance, e.g., for the decoherence studies for
quantum information processingf28g.

In general, non-Markovian systems, even when they are
weakly coupled to their environments, can posses rich dy-
namical features despite of the fact that the quantum jump
probability per stochastic realization is small during the time
evolution period of interestssee the examples aboved. This is
the key area where the scaling method we have presented is
useful. The small jump probabilities due to the weak cou-
pling can lead to the situations where the requirement for the
size of the generated ensemble in the Monte Carlo wave
function simulations is unconveniently large. In these cases,
the scaling method can be used to reduce and optimize the
generated ensemble size for efficient numerical simulation of
weakly coupled non-Markovian systems.

The scaling method presented here can be used when the
master equation of the open quantum system can be ex-
pressed in the general form of Eq.s1d obtained by the time-
convolutionless projection operator techniquessthe one-jump
restriction still applies, see belowd. To compare our method
to the other simulation methods for non-Markovian systems
one should actually compare the validity of the TCL with
respect to the methods presented, e.g., in Refs.f29–31g.
Thus, making a rigorous comparison is an involved task and
is left for future studies. We initially note here that our
method is not restricted with respect to the temperature of
the environmentswhile method presented in Ref.f31g is
valid for the zero-temperature bathd and is valid, at least in
principle, to the order used in the TCL expansion of master
equation to be unravelledswhile method presented in Ref.
f30g is post-Markovian, i.e., first order correction to Markov-

FIG. 2. Comparison between analyticalssolid lined and scaled
simulation resultsscirclesd with the bars of the standard error for the
non-Lindblad-type case. The figure shows the behavior of the ex-
pectation value of the quantum numberknl as a function of time.
The initial state of the system is the superposition of Fock states
su0l+ u1ld /Î2. For the parameters used here, the scaling reduces the
required ensemble size atleast by a factor of 104. The simulation
contains 63105 realizations. The inset showssin the same scale as
the main plotd the poor match between the analytical resultssolid
lined and the simulation result without the scalingscirclesd with 6
3108 realizations which is three orders of magnitude larger than
used in the scalingssee textd.

FIG. 3. Contribution from the various terms of the scaling Eq.
s24d. sad TA=kAl0std, sbd TB=−PtotstdkAl0std /b, scd TC=−hfN
−Njstdg / sbNdjkAl0std, andsdd TD=kĀltotstd /b. The terms have been
shifted to start from the same initial value for easier comparison.
HereA is the number operatorA=a†a. The final result presented in
Fig. 2. is mostly given as a sum of the terms displayed insad and
sdd.
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ian dynamicsd. However, it is worth mentioning that the va-
lidity of the TCL expansion is crucially related to the exis-
tence of the TCL generatorssee, e.g., page 447 of Ref.f1gd.

The scaling method is limited to the cases where there is
maximally one jump per realization in the generated Monte
Carlo ensemble. Moreover, it is also important to note that
the same restriction applies also for the scaled simulations.
These limits can be easily checked by calculating the jump
probabilities from Eqs.s6d and s36d for the time period of
interest or by monitoring the number of jumps in the simu-
lations. As soon as more than one jump per realization in the
scaled simulations begin to occur, one can estimate the error
by calculating the ratio between the two-jump and the one-
jump probabilities per realization. In the examples we have
described, we have not used very aggressive optimization of
the ensemble sizesthough the ensemble size reduction is on
the order of 104d, and no error has been introduced. This has
been confirmed by monitoring the jumps in the simulations:
no two-jump realizations was generated. Thus, the error bars
displayed in the Figs. 1 and 2 correspond to the usual statis-
tical errorsstandard deviationd of the Monte Carlo ensemble.

In conclusion, the scaling method has limitationssone
jump per realizationd but it is interesting to note that in the
region where the method can not be appliedsmore than one
jump per realizationd, it is not needed. This is because in this
region there already occurs large enough number of jumps
enhancing the statistical accuracy of the simulations. In other
words, the problem which the scaling solves appears only
within the region of validity of the method.
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APPENDIX A: HILBERT SPACE PATH INTEGRAL

Expanding the exponential waiting time distributionF
and taking into account the terms corresponding to maxi-
mum one jump per realization for short times and weak cou-
plings, the contribution to the propagator from the path with-
out the jumps isf1g

Ts0dfc,tuc0,0g = s1 − Ffc0,tgdd„c − gtsc0d…

= F1 −E
0

t

dso
i

gissdiLigssc0di2G
3 d„c − gtsc0d…, sA1d

where d(c−gtsc0d) is the functional delta-function and the
deterministic evolution according to the non-Hermitian
HamiltonianH is given by

g
t
sc

0
d =

expF− iE
0

t

Hst8ddt8Gc
0

IexpF− iE
0

t

Hst8ddt8Gc
0I , sA2d

where

H = HS−
i"

2 o
i

gistdLi
†Li . sA3d

By using the recursion relation for the propagatorT f1g
and neglecting the terms of the order ofgistd2 or higher, one
can now calculate the contribution of the one jump path to
the propagator as

Ts1dfc,tuc0,0g =E
0

t

dsE Dc1Dc1
* E Dc2Dc2

* ,

d„c − gtsc2d…o
i

gissdiLic1i2dS Lic1

iLic1i
− c2D ,

d„c1 − gssc0d…, sA4d

where the transition rate summed over the decay channels is

Wfc2uc1g = o
i

gissdiLic1i2dS Lic1

iLic1i
− c2D . sA5d

The physical interpretation of Eq.sA4d is straightforward.
The integrations sums over the various one jump routes and
over all the possible jump times.

APPENDIX B: EXPECTATION VALUE

In the simulations we scale up the jump probabilities by a
factor b, and leave the non-Hermitian Hamiltonian as it is
fincludes alsogistdg, we get the corresponding equation for
Eq. s22d as

bfkAlstd − kAl0stdg =E DcDc*kcuAuclF− d„c

− gtsc0d…E
0

t

dso
i

bgissdiLigsscdi2

+E
0

t

dsE Dc1Dc1
* E Dc2Dc2

*d„c

− gtsc2d…o
i

bgissdiLic1i2dS Lic1

iLic1i

− c2Dd„c1 − gssc0d…G . sB1d

For scaling to work, we have to be able to extract from the
simulations the information on the rhs of this equation.

This can be done as follows. We note the first term on the
rhs of Eq.sB1d as
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kĀl0std = PtotstdkAl0std, sB2d

wherePtotstd is the total transition rate

Ptotstd =E
0

t

dso
i

bgissdiLigsscdi2. sB3d

Furthermore, we denote bykĀl1 the second term on the
rhs of Eq.sB1d as

kAl1std =E DcDc*kcuAucl

3FE
0

t

dsE Dc1Dc1
* E Dc2Dc2

*d„c − gtsc2d…

3 o
i

bgissdiLic1i2dS Lic1

iLic1i
− c2Dd„c1 − gssc0d…G

=
Njstd

N
o
i=1

Njstd

kcistduAucistdl/Njstd, sB4d

whereNjstd is number of jumps andN is the total number of
realizations. Here, the second part is the one jump contribu-
tion to the expectation value, expressed formally, and the

summation is carried over those realizations that have
jumped until timet. The corresponding simulation presenta-
tion ssimulation averaged is given in the last part.

Now the ensemble average of all realizationskĀltotstd, the
quantity which we can easily calculate in the simulation, is
given by as a sum of 0 and 1 jump realization contributions

kĀltotstd =
N − Njstd

N
kAl0std + kAl1std. sB5d

EquationsB1d, which includes the quantity we are inter-
ested in, can now be written as

bfkAlstd − kAl0stdg = − kĀl0std + kĀl1std = − PtotkAl0std

−
N − Nj

N
kAl0std + kĀltotstd. sB6d

From this equation we easily obtain the final result for the
expectation value of arbitrary operatorA in compact form as

kAlstd = F1 −
Ptotstd

b
−

1

b

N − Njstd
N

GkAl0std +
1

b
kĀltotstd.

sB7d
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