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Scaling of non-Markovian Monte Carlo wave-function methods
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90123 Palermo, Italy
(Received 29 November 2004; published 10 May 2005

We demonstrate a scaling method for non-Markovian Monte Carlo wave-function simulations used to study
open quantum systems weakly coupled to their environments. We derive a scaling equation, from which the
result for the expectation values of arbitrary operators of interest can be calculated, all the quantities in the
equation being easily obtainable from the scaled Monte Carlo wave-function simulations. In the optimal case,
the scaling method can be used, within the weak coupling approximation, to reduce the size of the generated
Monte Carlo ensemble by several orders of magnitude. Thus, the developed method allows faster simulations
and makes it possible to solve the dynamics of the certain class of non-Markovian systems whose simulation
would be otherwise too tedious because of the requirement for large computational resources.
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I. INTRODUCTION In general, simulating open quantum systems is a chal-

The description of the dynamics of open quantum systemgenging task. It has been shown earlier that the methods men-

has attracted increasing attention during the last few year‘%oned above can solve a wide variety of problems. Never-

[1]. The major reason for this is the identification of the theless, sometimes there arise situations in which the
phenomena of decoherence and dissipation, which charactégomplexity of the studied system or the parameter region
ize the dynamics of open quantum systems interacting withinder study makes the requirement for the computer re-
their surrounding$2], as a main obstacle to the realization of sources so large that the solution may become impossible in
quantum computers and other quantum devj@sSecond, practice, though not in principle. Thus, it is important to
recent experiments on the engineering of environmgfits assess the already existing methods from this point of view
have paved the way for proposals aimed at creating entanglend develop variants to improve their applicability. This is
ment and superpositions of quantum states exploiting decdhe key point of this paper.
herence and dissipatids,6]. Here, we address the Monte Carlo simulation methods for
A common approach to the dynamics of open quantunmhe short time evolution of non-Markovian systems which
systems consists in deriving a master equation for the reare weakly coupled to their environments. In this case, the
duced density matrix which describes the temporal behaviogiynamics of the system may exhibit rich features, whereas
of the open system. The_ solution f_or the master equation cafhe weak coupling may lead to extremely small quantum
then be searched by using analytical or simulation methodgymp probabilities, the consequence being an unpractically
or the combination of both. _ _large requirement for the size of the generated Monte Carlo
This paper concentrates on developing Monte Carlo Simuznsemble. To overcome this problem, we present below a

I{_irt]ion methcl)(]ils 1t°or nofn;ﬁﬂamoviancoplen qﬂﬁ”g*m S%Stemsmethod which in general allows to reduce the ensemble size.
eraleti:‘):]rze %?r:n (ea?suerritc))le o?sto?:?lgstic(;a1 rr(garITi]z(?'slti(c))nsS (IJSf thg gg':_ By studying the Hilbert space path integral for the propa-
ator of a piecewise deterministic proce$DP [1], we

vector trajectories. The density matrix and the properties o ow that part of the expectation value of an arbitrary opera-
the system of interest are then consequently calculated as %H P P yop

appropriate average of the generated ensemble. or.A as a function 'of tima, (A)t), has §caling properties
Some common variants of the Monte Carlo methods foMvhich can be exploited in Monte Carlo simulations to speed
open systems include the Monte Carlo wave-functionuP the generation of the ensemble, in the optimal case by
(MCWF) method([7,8], the quantum state diffusiofQSD) several orders of magnitude. We derive a scaling equation,
[9-11], and the non-Markovian wave functigNMWF) for- from which the result foKA)(t) can be calculated, all the
mulation unraveling the master equation in an extended Hilguantities in the equation being easily obtainable from the
bert spac¢1,12,13. The MCWF method has been very suc- scaled Monte Carlo simulations.
cessfully used to model the laser cooling of atoms. Actually, We concentrate first on the Lindblad-type non-Markovian
three-dimensional3D) laser cooling has so far been de- case which can be solved by the standard MCWF method,
scribed only by MCWF simulationgl4]. QSD in turn has and then focus on the non-Lindblad-type case which requires
been found to have a close connection to the decohereiite use of the NMWF simulations in the doubled Hilbert
histories approach to quantum mechan[d$], and the space.
NMWF method has been recently applied to study the dy- The paper is structured as follows. Section Il introduces
namics of quantum Brownian particl€$6,17]. The various the master equation, the corresponding stochastic
Monte Carlo methods and related topics have been reviewe&chrédinger equation, and the appropriate simulation
e.g., in Refs[8,18-2(Q schemes for the Lindblad-type and non-Lindblad-type sys-
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tems. The Hilbert space path integral method is then used to H(t) = Hg(t) + Hpe(t), (4)
calculate the expectation value of an arbitrary operator set- _ , o
ting the scene for the scaling method which is presented ifhere Hs(t) is the reduced system's Hamiltonian and the
Sec. IIl. Section IV shows explicitly how the scaling can be "on-Hermitian partHped(t) includes the sum over the vari-
implemented and demonstrates the usability of the metho®us allowed decay channels
for the example of quantum Brownian motion. Finally Sec. i
V presents discussion and conclusions. Hpec(t) = - EE y(tLIL;, (5)

I

where the jump operatdy; for channeli coincides with the
Lindblad operator appearing in the master E).

We describe first in Sec. Il A the master equation for the During a discrete time evolution step of lengéh the
Lindblad-type systems and the corresponding standardorm of the state vector may shrink due kygc. The
MCWEF method. We then continue in Sec. Il B with the de- amount of shrinking gives the probability of a quantum jump
scription of the non-Lindblad-type case with the correspondto occur during the short intervaft. Based on a random
ing stochastic Schrodinger equation and NMWF unravelinghumber one then decides whether a quantum jump occurred
in the doubled Hilbert space. Section Il C presents the calcuer not. Before the next time step is taken, the state vector of
lation of the expectation value of an arbitrary operatavith  the system is renormalized. If and when a jump occurs, one
the Hilbert space path integral method which paves the waperforms a rearrangement of the state vector components ac-
for the scaling procedure. cording to the jump operatdyr;, before renormalization af.

We begin by considering master equations obtained from The jump probability corresponding to the decay channel
the time-convolutionless projection operator technique for each of the time-evolution steg is

(TCL) of the form[1,12] t
Pi(t) = Sty ()L Lil ). (6)

J
Ep(t) =A(t)p(t) + p(t)BT(t) + 2 Ci(t)p(t)DiT(t), (1) The expectation value of an arbitrary operf_aéo'rs then the
i ensemble average over the generated realizations

II. DYNAMICS OF NON-MARKOVIAN SYSTEMS

with time-dependent linear operatofgt), B(t), C;(t), and 1 N
Di(1). (PO = 2% (Wil (7)
i=1

A. Lindblad-type case: Master equation and MCWF method whereN is the number of realizations.

A specific case of the master El) is the one of ) . . .
Lindblad-type[21—23 B. Non-Lindblad-type case: Stochastic Schrédinger equation

and NMWF method in the doubled Hilbert space

Ep(t) =—i[Hgp(O]+ X '}’i(t){LiP(t)LiT The solution of the general master Efj) can be obtained
dt i by using the NMWF unravelling in the doubled Hilbert space
1. 1 . H=Hs® Hs Where Hg is the Hilbert space of the system
_ELi Lip(t)_ép(t)l-i Li(, (2)  [1,12). The state of the system is described by a pair of
stochastic state vectors
whereHg is the system Hamiltoniany(t) is the time depen-
dent decay rate to channgl and L; is the corresponding o(t) = {‘ﬁ(t) } (8)
Lindblad operator. P(t)
We define this non-Markovian master equation to be of

Lindblad type when the time dependent decay coefﬁcients?lJCh thaté(t) becomes a stochastic process in the doubled

y(t)=0 for all timest, and non-Lindblad type whem;(t) Hilbert space™. De~noting the corresponding probability
acquire temporarily negative values during the time evoludensity functional byP[ 6,t], we can define the reduced den-
tion [23]. The Lindblad-type case can be treated with thesity matrix as

standard MCWF method introduced in this subsecfidh

and the non-Lindblad case with the NMWF method in the p(t) :J DODG
doubled Hilbert space presented in the following subsection

[1,12].

The core idea of the standard MCWF method is to generEheTgsrrt_gzeoi\:ﬁLunZ?ogﬁgg t;agcbh(arg;icg?zd SZ,[:)ED@ZS?
ate an ensemble of realizations for the state veg{or by P 9 ger eq

SN UPLOA. (9)

solving the time dependent Schroédinger equation ot
d P gereq de(t) = —iG(6,tydt+ >, {M\L(t) o(t) — 6(t) |[dN;(1),
#2% _ How @ T LIB®el
=g - A, (10)
with the non-Hermitian Hamiltoniahi(t), where the Poisson increments satisfy the equations

056701-2
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dN(DAN;(D) = &;dNi(D), TLotl90,01 = TOLytl g, 01 + TH |, 0. (17)
, With the assumptio_ns above, the expectation value of an
E[dN (1] = ||Ji(t)0(t2)|| dat. 1) arbitrary operatoA at timet can be calculated d4]
o)
and the nonlinear operat@®(,t) is defined as (A1) =f Dy (WA TLt o, to]
1w i e)|? .
Gl = lF(t) 3 %] o, (12 = [ DDy ATt + T o )
(18)
with the time-dependent operators
By calculatingT® and T, see Appendix A, we obtain for
At) O
F(t) = [ o B } (A1),

t
<A>(t)=f D¢D¢*<¢|A|¢>H1—f ds>, ¥(s)
0 i

3= {Ci(t) ° } (13)
Lo bl
2 -
whereA(t), B(t), Ci(t), andD;(t) are the operators appearing X[Ligs(vol ]50# 9(#0))
in Eq. (2). .
The deterministic part of the PDP is obtained by solving * X .
the following differential equation: " fo dsf D"leD"//lJ DyD (s g‘(%))zi (s
PR x|IL; 25<M— )5 -0 . 19
-6 =G(a, (14) L T i | (Y = 9s(1h)) (19

Here, terms of the formS(¢—g.(#)) are the functional
delta functions and the deterministic evolutionygfaccord-
6| {C-(t)qb(t)] ing to the non-Hermitian HamiltoniaH is given by
|

(15

19:(®) 6(0)|| L Di (1) ) t
—i| H(t)Hdt

Once the ensemble of stochastic realizations has been gener- *XB Ifo ®) Y

ated, one can then calculate the density matrix of the reduced _ - - 20
system from Eq(9). 9(¢)= - —- (20

t
exp —iJ H(t)dt' |y
0

and the jumps of the PDP take the form

ot) —

C. The Hilbert space path integral for the propagator of the
PDP and the expectation value of arbitrary operators

For simplicity, we present here the Hilbert space path in-The physical interpretation of Eq19) is straightforward.

tegral for the Lindblad-type case. The derivation of the non-The expectation value oA is calculated with respect to all
Lindblad-type case follows closely the presentation below. POssible paths ofy with appropriate weights. The first term

We assume that the initial state of the system is a purd the curly brackets is the no-jump evolutiongimultiplied

state . In this case the propagatdr of the PDP(condi-  With the corresponding probability of no-jumps. The second

tional transition probability coincides with the probability t€rm includes the integration over all possible jump times

density functionaP of the stochastic proce$] and jump routes with the appropriate transition rates for the
one jump realization.

Pl t]= Tl t o, tol - (16)
. . . - L I1l. SCALING

This quantity describes the probability of the system being in

the statey at time t when it was in the state, at some Denoting the expectation value @f with respect to the

earlier timet,. For short time non-Markovian evolutions and po-jump evolution as

weak couplings, we assume that the maximum number of

jumps per realization is one. Thus, the expansion of the

propagatorT in terms of number of jumps contains two (Aolt) = (4= g |Al ¢ = gu(h)), (21

terms: deterministic evolution without jumag® and paths

with one jumpT®, we obtain from Eq(19)

056701-3
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t t
(A~ (Af) = f D¢D¢*<¢|A|«/f>{— 8- a0 f 453 (Lo + j ds j DYDY, J DD - 61)
i 0

Lign

— i | Sy — g . 22

X 2 7i(5)|||-i¢/f1||25<

This equation leads to the first key observation of the papefsee Appendix B N is the size of the ensembll(t) is the
We notice that(A)(t)—(A),(t) [but not (A)(t) along is di- number of jumps in the simulations as a function of tinge,

rectly proportional to the transition rates of the type is the scaling factor{A)y(t) is the expectation value with
respect the deterministic time evolutipsee Eq.(21)], and

W] = D yi(t)||Li¢1||25<M _ zpz). (23) <A>t0t(t) is the ensemple average from the modified simula—
i (1Ll tions where the scaling has been ugede the discussion
above. All of the quantities on the right-hand sidens) can
In the corresponding Monte Carlo simulations for the casee easily calculated in the simulation. Actually, from a tech-
we are considering, the required size of the generated emical point of view, the only difference between the scaled
semble is related to the transition ratéssince the rate de- and unscaled simulations is that in the former one we have to
fines the number of jumps. In more detail, if the td@imu-  keep track of the number of jumps as a function of time. A
lative) jump probability for the time evolution period of task which can be easily done in the simulations. We also
interest isP;, we need on average to generatd®drealiza- note that at timet=0, P, (0)=0, N;(0)=0, (A)e(0)
tions to produce one realization which has a jump. To=(a),(0), and we obtain correctly for time=0: (A)0)
achieve good statistical accuracy we need obviously a Iarg§<A>0(0)_
enou_gh number ofju_mps and the minimum condition for the Thus, we can optimize the ensemble size by using the
required ensemble si¢ becomedN>1/P.. _ following procedure in the Monte Carlo simulation§)
This leads us to the following observation which can bescale up jump probabilities by suitable factgr (i) Leave
used to Optimize the ensemble size of the Monte Carlo Simudecay rates‘yi(t) untouched in the non-Hermitian Hamil-
lations (within the approximations we useWe can artifi-  onjanH. (iii) Calculate the result fofA)(t) from Eq. (24).
cially increase the number of jumps by scaling up the tran- i \worth it to emphasize here a common feature of
sition rateW by a factor of 8. At the same time we must yiante Carlo wave-function simulations. The deterministic
leave the non-Hermitian Hamiltoniad unscaled since the o, iution caused by the non-Hermitian Hamiltoniah
ensemble average contribution given by realizations With panges the relative weights of the occupied states due to the
only (no jumps appears on the left-hand sidis) of Ed. tterent decay rates of the various states. The scaling proce-
(22). In other words, we are not allowed to scale the deterq e jncorporates this rotation by adding to the scaled en-
ministic evolution of the state vect@which includes also the  gomple average restithe second term on the rhs of Eq.
rotation of the state vector towards the state with the smaIIe§t24)] contribution from the deterministic evolution calcu-
decay ratey;) but only increase the number of jumps by |ted with the appropriate weigfithe first term.
scaling up the transition rates by a factorffin the simu- Since the reduction in the required ensemble size is di-
Igtion this can be done easily multiplying the jump probabili- rectly proportional to the used scaling facigr the issue is
ties for various decay channels by a same fa@loAn ex- o how large scaling factor we can use to optimize the
plicit example how to do this for both of the cases we aregjmjations. The scaling method that we have developed is
considering, Lindblad type and non-Lindblad type, is shown4jiq when there is maximally one jump per realization. This
in the next section. condition has to hold also for the scaled simulations as well.
_ The question is now how we can calculate from the scaleg\g so0n as the scaling factor is so large that realizations with
simulations the result we are looking for, namely, the expect,q or more jumps begin to occur, an additional erfwith
tation value for arbitrary operatok as a function of time  egpect 1o the normal statistical error of Monte Carlo simu-
(A)(®). It can be shown, see Appendix B, that the final resultizsiong starts to appear. In other words, the probability of

for (A)(t) starting from Eq/(22) can be obtained as having two jumps per realization has to be much smaller
than the one jump probability. If the total probability for one
At =|1- P _ IN=N;(® (A)g(t) + E<K>tot(t)' jump is P; (see the discussion abgyéhe probability for two
B B N jumps equald? and the estimate for additional error is sim-

(24) ply given by Pgl P.=P.. Thus we can use the scaling factor

which increases the jump probabilities, e.g., to the order of
This equation is the main result of the paper. It shows tha0.01 introducing a manageable 1% error in addition to the
the ensemble average of the scaled simulations can be usadrmal statistical error of the Monte Carlo simulations.
to calculate the result for the original problem we are inter- For the standard Monte Carlo simulations there exists a
ested in. In this equatiorR(t) is the total transition rate corresponding measurement scheme interpretation based on
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the continuous monitoring of the environment of the system. dp(t) A@)+T(t)

The scaling technique modifies the Monte Carlo simulation at > [2ap(t)a’ - a'ap(t) - p(t)a'a]
method in such a way that the measurement scheme interpre-
tation is lost. A(t) -T'(t)

A =IO ot 4 — aafa(f) — t
The scaled simulations correspond to a stochastic T [2a'p(ia - aa'p(t) - p(aa’].

Schradinger equation where the deterministic part generated (26)
by G, see Eq.(10), remains the same but the jump part is
scaled withp, i.e., the expectation value of the Poisson in-In the previous equatiorg anda' are the annihilation and

crement becomes creation operators analt) is the density matrix of the sys-
5 tem harmonic oscillator. The time dependent coefficients
E[dN(1)] = By (DLiy*dt. (25 A(t) andI'(t) appearing in the master equation are known as

. . . diffusion and dissipation coefficients, respectivgly,24].
Thus the stochastic Schrodinger equation does not have a . o1 Ohmic reservoir spectral density with Lorentz-

corresponding master equation, and actually does not need BYude cutoff. the expression fax(t) is [16,25

have one for the scaling to work. This is because we are not ' '

looking for two master equations whose results are scalable oo T2 ot .

from each other. Rather the key point is to modify in a suit- A1) = 2a le +r2{1 —e “[codwot) — (1/r)sin(wot) I},
able way the equations for the simulations in order to make

them faster and more efficient. (27)

~ Summarizing, we have demonstrated above how the scalghere the assumption of the high temperature reservoir has
dependent but always positive decay coefficients). For

this the standard Monte Carlo wave-function method can be ()= o wor
used7,20]. In a similar way, it can be shown that the scaling B
works also for the non-Lindblad-type case whet&) may . ) )
acquire temporarily negative values. In this case one needs {887 =@c/ o is the ratio between the environment cutoff
use the doubled Hilbert space unravelfiid. We show ex- frequencyw, and the oscillator frequenay,, « is the dimen-

amples of the scaling for both of these cases in the nex§iOnless coupling constari,is the Boltzmann constant, and
section. T is the temperature. When>1, the decay coefficients

A(t)£I'(t)>0 for all times, and the master equation is of
Lindblad type. Wherr <1, the decay coefficients(t) £I'(t)
IV. EXAMPLES FOR SCALING acquire temporarily negative values and the master equation
is of non-Lindblad typg16]. For Lindblad-type master equa-
The discussion above shows how it is possible to reduclﬁon one clan applyyt?]% st]andardl MCWE ympethiﬁéc vV g\)u

th‘? size of the generat_ed ensemble ir_1 the Monte_ Carlo SimlWhere as the non-Lindblad-type case requires the application
lations for non-Markovian systems. It is worth noting that for ¢ \no NMWE method in the doubled Hilbert spat@ec
the Markovian case the scaling is not needed because tl?e B '

jump probabilities can be increased trivially by increasing,
:/ig.,kth_e time stehp S(;Zét in the s::nbulatlons. Eor the fnon- rigorous proof presented abdyeve compare below the re-

arkovian case this does not work because the main featureg s optained from the simulations to the exact analytical
of the open system dynamics may be given by the time der'esults[lG 26
pendence of the decay rates, afildhas to be kept small T
compared to the temporal variations of the decay coeffi-
cients. A. Lindblad-type master equation and MCWF simulations

We show below two e_xamples for the scallng._ In these For the Lindblad-type case we choose parameters
examples we use the scaling fact@s10* and 13 while the 202KT 0= 1.2% 106 1210 2o/ w.=0.5% 108 and the

. C_ . y - y O C_ . y

generated ensembles have the sizes of the order fid0 scaling factorg=10%. The initial state of the system is cho-
other words, without the scaling, the solution of the Pr€-can to be a coherent stalé=\2) such that, att=0, (n)

Eg?;ed problems would require at leas? tsemble mem- =|¢?=2. We emphasize that the present paper generalizes the
: gc,caling method we have used in REE6] for initial Fock

To demonstrate the scaling, we perform the simulation States to arbitrary system Hamiltonians and arbitrary initial
for the short time non-Markovian dynamics of a quantumStates y sy y

Brownian particle(damped harmonic oscillatpf16,17). We . G :
demonstrate both the Lindblad-type and non-Lindead-typeD The non-Hermitian part of the Hamiltonian is now given
cases. y [see Egs(2), (4), and(26)]

2
711 [1-e 2! cogwpt) —re “d sin(wet)].  (28)

To demonstrate that the scaling works addition to the

The dynamics of a harmonic oscillator linearly coupled to i
a quantized reservoir, modeled as an infinite chain of quan-  Hpec=- E{[A(t) -T(tJaa" +[A(t) +T(t)]aa}. (29)
tum harmonic oscillators, is described, in the secular ap-
proximation, by means of the following generalized masterThe jump probabilities for each time stépand decay chan-
equation[23,24: neli are now modified so that the jump probability for chan-
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x10° By comparing Eq.(26) with the master Eq(1), the op-
14 " " " eratorsA(t) andB(t) have to be chosen as
12| | A =B(D)
e = —iwga'a- H{[A®M + [(t)a'a+ [A(t) - T(t)]aal'}.
Cos (33
é0.6 Accordingly, the operator€; andD; are
E 04 Ca(t) =Dy (1) = V|A(D) - T(t)|aT,
02 C,(t) = Dy(t) = V]A(t) + [(t)|a (34)
00 ol.s 1 1',5 2 and the corresponding operatdksbecome
Ot —[sgfa®-T®mlal 0
FIG. 1. Comparison between analytidablid line) and scaled (0= V|A(t) ) F(t)|{ i 0 aT}’

Lindblad-type case. The figure shows the behavior of the expecta- e
tion value of the quantum numbén) as a function of time. The L) = \"|A(t) + 1“(t)|
initial state of the system is a coherent sﬂ@te\ﬁ). For the param-

eters used here, the scaling reduces the required ensemble size by aThe statistics of the quantum jumps is described by the
factor on the order of 0 The simulation here containsx610®  waiting time distribution functiorf,(7) which represents the
realizations. probability that the next jump occurs within the time interval

[t,t+7). F(7), derived from the properties of the stochastic
nel 1 (jump up, absorption of one quantum of energy fromprocess, reads

simulation resultgcircles with the bars of the standard error for the
{ 0

sgiA(t) +T'(t)]a Z} (35

the environmentis r

Py(t) = BATA - T(O K plaal]y), (30) Pl =1 ex’{ ) J AL ds} B
and for channel Zjump down, emission of one quantum of \yhere for channel ump up, the system absorbs a quantum
energy into the environment of energy from the environment

P,(t) = BAA(D) +T(H) K yfa'aly). (31) IA®) -T(1)| <

> (n+ D a2+ |02,

PO=E 00 &

The ensemble average is then calculated in the usual Monte

Carlo way, as presented in Sec. Il A and the simulation re-

sults plugged into Eq(24) to get the final result. (37)
Figure 1 shows the excellent match between the analyticaind for channel Zjump down, the system emits a quantum

curve and the simulations using the scaling. For the discusgf energy into the environment

sion of the analytical solution, see Réfl6]. The results AD +T0)

confirm once more the validity of the scaling procedure and A(t) +I'(t

show the short time quadratic non-Markovian behavior of Po()=5 ”0(0”2_2 YNGR TAGIE

. n=0

the average quantum numbémy=(a'a) of the oscillator.

Moreover, for the parameters used here, the scaling reducétere, the probabilities are scaled with a factopadccording

the required ensemble size by a factor of.Ithe simulation  to the scaling scheme presented above. When the jump oc-

here contains & 10° realizations. curs, the choice of the decay channel is made according to

the factorsP,(t) and P,(t). The times at which the jumps
B. Non-Lindblad-type unraveling in the doubled Hilbert space occur are obtained from Ed36) by using the method of

For the non-Lindblad-type case we choose the followingnversion[1]. _ _
parameters @kT/w,=2.4X 10, r=0.1, aPwylw.=0.5 Flgur_e 2 dlsplays the short time oscillatory non-
%108, and the scaling factog=10%. As initial state we Markovian behavior of the average quantum number
choose a superposition of Fock StatEs(|0>+|l>)/\§ This l‘ype of behavior is studied in detail in Réﬂ.6] The

The doubled Hilbert space state vector for the harmonid€sults show the excellent match between the exact analytical
oscillator reads solution and the simulation results using the scaling with 6

X 10P realizations. Again, the results confirm the validity of
b(t) S o®n(t)|n) the scaling procedure. Moreover, the inset shows a very poor
o) = UAt) = SO | (32 match between the non-scaled simulations with&? real-
n=0%n izations[27] and justifies the claim that the reduction in the
where ¢,(t) and i,(t) are the probability amplitudes in the ensemble size is at least on the order df When the scaling
Fock state basis. procedure is used.

[

(38)
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FIG. 2. Comparison between analytidablid line) and scaled FIG. 3. Contribution from the various terms of the scaling Eq.

simulation resultgcircles with the bars of the standard error for the (24). (& Ta=(A)(t), (b) Te=-Pi(){A)(t)/B, (©) Tc=—{[N
non-Lindblad-type case. The figure shows the behavior of the ex~ Nj(t)]/(,BN)}<A>O(t)x and(d) Tp=(A)(t)/ B. The terms have been
pectation value of the quantum numb@) as a function of time.  shifted to start from the same initial value for easier comparison.
The initial state of the system is the superposition of Fock stategiereA is the number operatgk=a'a. The final result presented in
(10)+]1))/v2. For the parameters used here, the scaling reduces tfRig. 2. is mostly given as a sum of the terms displayegainand
required ensemble size atleast by a factor of. he simulation  (d).

contains 6 10° realizations. The inset shovi® the same scale as
the main plo} the poor match between the analytical regatilid
line) and the simulation result without the scalifajrcles with 6

X 10° realizations which is three orders of magnitude larger tha
used in the scalingsee text

state of the system was a Fock state. Here, we present a
generalized scaling scheme which is able to treat arbitrary
Mnitial states of the system and arbitrary Hamiltonians. We
emphasize that the scaling method works very well for solv-
ing the short time dynamics of non-Markovian, systems,
The reduction of the ensemble size can be estimated alsghich bear importance, e.g., for the decoherence studies for
by calculating the maximum jump probability of a single quantum information processings].
realization. In the example considered here, the maximum In generaL non-Markovian SystemS, even when they are
probability is of the order of l-d, in other words on average weakly coupled to their environments, can posses rich dy-
an ensemble size of 1(roduces one jump event in the namical features despite of the fact that the quantum jump
unscaled simulations. We estimate that one needs severglobability per stochastic realization is small during the time
hundreds jumps in the simulations to produce accurately theyolution period of interegsee the examples abov&his is
rich dynamical features of the heating function displayed inthe key area where the scaling method we have presented is
Fig. 2, and consequently the requirement for the ensemblgseful. The small jump probabilities due to the weak cou-
size is at least TOwithout the scaling. Thus, the reduction in pling can lead to the situations where the requirement for the
the ensemble size by the scaling method is again found to b§ize of the generated ensemble in the Monte Carlo wave
at least on the order of 10 function simulations is unconveniently large. In these cases,
It is interesting to compare the various terms in the scalthe scaling method can be used to reduce and optimize the
ing Eq. (24) in the non-Lindblad case. Figure 3 shows thegenerated ensemble size for efficient numerical simulation of
four terms of the scaling Eq24). One can notice that two of weakly coupled non-Markovian systems.
the terms practically cancel each other and the final result is The scaling method presented here can be used when the
mostly given by the two terms presented in Figéa)and  master equation of the open quantum system can be ex-
3(d). pressed in the general form of Ed) obtained by the time-
V. DISCUSSION AND CONCLUSIONS convolutionless projection operator techniqitee one-jump
restriction still applies, see belgwTo compare our method
We have demonstrated a scaling method for Monte Carldo the other simulation methods for non-Markovian systems
wave-function simulations which can reduce the size of theone should actually compare the validity of the TCL with
generated ensemble by several orders of magnitude espeespect to the methods presented, e.g., in Ref8-31].
cially for weakly coupled non-Markovian systems. The scal-Thus, making a rigorous comparison is an involved task and
ing is based on the notion that once in the simulations thés left for future studies. We initially note here that our
jump probabilities are scaled, and the deterministic evolutiormethod is not restricted with respect to the temperature of
given by the non-Hermitian Hamiltonian left untouched, onethe environment(while method presented in Ref31] is
can obtain the time evolution of the observables of interestvalid for the zero-temperature batand is valid, at least in
from the scaling Eq(24). principle, to the order used in the TCL expansion of master
The scaling has been used in a restricted form, for a speequation to be unravelle@ivhile method presented in Ref.
cific physical system, in Ref.16]. In that case the initial [30]is post-Markovian, i.e., first order correction to Markov-
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ian dynamics However, it is worth mentioning that the va- vt

lidity of the TCL expansion is crucially related to the exis- exp| - if H(t)dt [¢

tence of the TCL generatdsee, e.g., page 447 of Rél]).
The scaling method is limited to the cases where there is gt('//o) = , (A2)

maximally one jump per realization in the generated Monte _Jt
=i

0

Carlo ensemble. Moreover, it is also important to note that exp H(t)dt' |y
the same restriction applies also for the scaled simulations.
These limits can be easily checked by calculating the jumR’Nhere
probabilities from Eqs(6) and (36) for the time period of

interest or by monitoring the number of jumps in the simu- 13 N

lations. As soon as more than one jump per realization in the H=Hs- EZ y(OLL. (A3)
scaled simulations begin to occur, one can estimate the error !

by calculating the ratio between the two-jump and the one- By using the recursion relation for the propagatof1]
jump probabilities per realization. In the examples we haveand neglecting the terms of the Qrder»@qf'[)2 or higher, one
described, we have not used very aggressive optimization @fan now calculate the contribution of the one jump path to
the ensemble sizéhough the ensemble size reduction is onthe propagator as

the order of 16), and no error has been introduced. This has
been confirmed by monitoring the jumps in the simulations:
no two-jump realizations was generated. Thus, the error bars
displayed in the Figs. 1 and 2 correspond to the usual statis-
tical error(standard deviatignof the Monte Carlo ensemble. L
_ In conclu5|_on,_the sc_al_lng meth(_)d has I|m|tat|o{1_rme 5(¢—9t(¢2))2 7i(5)|||—i¢1”25<|—1_‘//2>1
jump per realizationbut it is interesting to note that in the [ (ILigll

region where the method can not be appligtbre than one

jump per realizatio)) it is not needed. This is because in this S - 9dth)), (A4)
region there already occurs large enough number of jumps . )
enhancing the statistical accuracy of the simulations. In othefhere the transition rate summed over the decay channels is
words, the problem which the scaling solves appears only L
within the region of validity of the method. W] = >, yi(s)||Li¢1||26<m
i i

The physical interpretation of EqA4) is straightforward.
The integrations sums over the various one jump routes and

0

t
T(l)[¢,t|¢o,0]=f de DlﬂlDlﬂ;fDlﬂsz;
0

- lﬁz) . (A5
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APPENDIX A: HILBERT SPACE PATH INTEGRAL BLAYT) = (A)(D)] :J Dl/fDl/f*<l/I|A| l/,){_ 8

Expanding the exponential waiting time distributién ¢
and takmg into account the terms corr_espondlng to maxi- ‘gt(l/fo))f ds>, Byi(9)l|Lig )|
mum one jump per realization for short times and weak cou- 0o i
plings, the contribution to the propagator from the path with-

t
out the jumps ig1] +f de Dl//lDl//*lleﬂle//;ts(l/f

0

TOL 4, t] ik, 0] = (1 — FL o, t]) S(efr— Li
[t 0] = ( [0,t]) 8¢ — 9:(o) 0D BUOLv? Lith
t ) i ”Li‘/’l”
= 1—f dsX, %(9)||Ligs(o)
0 i
- )5(1,0 — 0s(¥ ))}- (B1)
X 8¢ - 9(¥)), (A1) I i

For scaling to work, we have to be able to extract from the
where &(—g()) is the functional delta-function and the simulations the information on the rhs of this equation.
deterministic evolution according to the non-Hermitian This can be done as follows. We note the first term on the
HamiltonianH is given by rhs of Eq.(B1) as
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Ao(t) = Py (D (AY(D), B2 summation is carried over those realizations that have
(Aolt) = Pt (A)olV (B2) jumped until timet. The corresponding simulation presenta-
whereP,(t) is the total transition rate tion (simulation averageis given in the last part.
t Now the ensemble average of all realizatidAg(t), the
Pioi(t) :f ds>, Byi(9)|Ligsw)|?- (B3)  quantity which we can easily calculate in the simulation, is
0 i given by as a sum of 0 and 1 jump realization contributions
Furthermore, we denote b@l the second term on the — N - N;(t)
rhs of Eq.(B1) as (Prolt) = —J_N (Ao(t) + (AN (1). (B5)
_ . Equation(B1), which includes the quantity we are inter-
(A(t) = f DyDy (JlAlY) ested in, can now be written as
t —_— —
x{ f ds f Dy1Dyy f DD 81~ g(1h)) BUAY®) = (Ao()] = = (A)g(t) + (A)s(t) = = Prod Ao(t)
0
N—=N; —
L.
xS ﬂw(s)HLiwlllza(ﬁ - wz) U gswfo))} TN Ao B (BO)
i 171
N (t) . . . . .
N (t) < From this equation we easily obtain the final result for the
= —JN— Ei (GOIAGO)N;(©), (B4 expectation value of arbitrary operatiin compact form as
=
whereN;(t) is number of jumps andll is the total number of (AXt) = {1 _ Pl _IN=N;(® (A)o(t) + 1<K>tot(t).
realizations. Here, the second part is the one jump contribu- B B N B
tion to the expectation value, expressed formally, and the (B7)
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