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In this paper I investigate the usability of the characteristic functions for the description of the dynamics of
open quantum systems focussing on non-Lindblad-type master equations. I consider, as an example, a non-
Markovian generalized master equation containing a memory kernel which may lead to nonphysical time
evolutions characterized by negative values of the density matrix diagonal elements �S. M. Barnett and S.
Stenholm, Phys. Rev. A 64, 033808 �2001��. The main result of the paper is to demonstrate that there exist
situations in which the symmetrically ordered characteristic function is perfectly well-defined while the cor-
responding density matrix loses positivity. Therefore, nonphysical situations may not show up in the charac-
teristic function. As a consequence, the characteristic function cannot be considered an alternative complete
description of the non-Lindblad dynamics.

DOI: 10.1103/PhysRevA.72.024103 PACS number�s�: 03.65.Yz, 03.65.Ta

The theory of open quantum systems describes the inter-
action of a quantum system with its environment �1�. Al-
though many physical systems may be considered under cer-
tain conditions quasiclosed for certain intervals of time, no
quantum system may be seen as completely isolated from its
surroundings. The unavoidable interaction between the sys-
tem and its environment leads to the phenomena of decoher-
ence and dissipation �2�.

The description of the dynamics of open systems has re-
cently attracted much attention for mainly two reasons. On
the one hand, environment induced decoherence due to the
establishment of entanglement between the system and the
environment is one of the key issues of the quantum mea-
surement theory �2�. On the other hand, the system-
environment interaction seems to be the major limiting factor
in the realization of quantum devices necessary for the new
quantum technologies, e.g., quantum computation �3�.

The study of the dynamics of an open system is, in gen-
eral, a very difficult task. Usually, even if one is interested in
the dynamics of the system only, the influence of the typi-
cally infinite environmental degrees of freedom, makes it
impossible to solve exactly the equations of motion for the
observables of interest. For this reason, the standard descrip-
tion of open systems relies on a number of approximations
which allow the derivation of a master equation for the re-
duced density matrix of the system. The two most common
approximations are the weak coupling approximation, valid
when the interaction between system and environment is suf-
ficiently weak, and the Markov approximation, relying on
the assumption that the characteristic times of the system are
much larger than those of the environment �4�.

Generally, when these approximations are satisfied, the
master equation for the reduced density matrix may be writ-
ten in the so-called Lindblad form, which is the only possible
form of first-order linear differential equation, for a com-

pletely positive dynamical semigroup having bounded gen-
erator �5,6�. The Lindblad master equation, however, is valid
as long as the weak coupling and Markov approximation
hold. While these assumptions are often well justified in
quantum optics, in many solid-state systems, i.e. photonic
band-gap materials and quantum dots, the Markov approxi-
mation does not hold �7�. Similarly, the reservoir interacting
with a single mode cavity in atom lasers is strongly non-
Markovian �8�. Non-Markovian generalized master equa-
tions usually are not of Lindblad type.

It is worth noticing that there exist also Markovian sys-
tems described by master equations which cannot be cast in
the Lindblad form �9,10�. An important problem in the de-
scription of open quantum systems whose master equations
are not in the Lindblad form is that their dynamical map
needs not be completely positive �11�, and this may lead to
physical inconsistency. It may even happen that the positivity
condition of the density matrix during the time evolution, a
condition less restrictive then complete positivity but neces-
sary to guarantee the probabilistic interpretation of the den-
sity matrix, breaks down.

For the sake of completeness, let me underline that com-
plete positivity is a necessary requirement for a consistent
physical description of open quantum systems whenever fac-
torized initial conditions for the system and the reservoir are
assumed, i.e. �̂T�0�= �̂�0� � �̂E�0�, with �̂T�0� , �̂�0� , �̂E�0�,
initial density matrices of the total system, of the reduced
system of interest, and of the environment, respectively.
Most of the derivations of master equations found in the
literature rely on this assumption. However, when correla-
tions are present at the initial time, acceptable quantum dy-
namics which are not completely positive may exist �13�. In
the following I will focus on the case of factorized initial
conditions for which the dynamical map must be completely
positive.

When working with non-Markovian generalized master
equations, or with master equations which are not in the
Lindblad form, it is of crucial importance to establish condi-*Electronic address: maniscalco@ukzn.ac.za
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tions under which the density matrix preserves positivity and
complete positivity during the time evolution. In most of the
cases these conditions are given in terms of the density ma-
trix elements at time t, and therefore require the knowledge
of the analytic solution of the non-Markovian master equa-
tion. In Ref. �14�, conditions for complete positivity in terms
of the memory kernel are presented for a class of generalized
master equations. To the best of the author’s knowledge,
however, a criterion analogous to the Lindblad one for gen-
eral master equations with memory has not yet been formu-
lated.

Very useful tools for the description of the dynamics of
paradigmatic open quantum systems such as the damped har-
monic oscillator �quantized mode of the electromagnetic
field, motion of a trapped ion� or the quantum Brownian
particle, are the characteristic functions and the quasiprob-
ability distribution functions. Both of them contain all the
information necessary to reconstruct the density matrix, and
therefore they have been considered up to now “alternative
complete descriptions of the dynamics ”�15,16�. However,
the characteristic function can be considered an alternative
complete description of the dynamics if and only if it is
equivalent to the density matrix. I will prove in the following
that, contrary to what has been believed until now, the char-
acteristic function and the density matrix descriptions of the
dynamics cannot be considered equivalent. To the best of the
author’s knowledge this is the first time that the equivalence
between the characteristic function and the density matrix is
questioned, and an example pointing out the nonequivalence
between these two approaches is presented.

Let me begin by recalling the definition of the p-ordered
characteristic functions

���,p� = Tr��̂D̂����exp�p���2/2�

� Tr��̂exp��â† − �*â��exp�p���2/2� , �1�

where D̂��� is the Glauber displacement operator and â�â†� is
the annihilation �creation� operator of the quantum harmonic
oscillator. In the previous equation, the parameter p assumes
the values p=1, 0, �1 in correspondence to normal, sym-
metric, and antinormal ordering of the creation and annihila-
tion operators. The two-dimensional Fourier transform of
��� , p� gives the Glauber-Sudarshan P-representation for p
=1, the Wigner function for p=0, and the Husimi Q-function
for p=−1 �15�.

In what follows I will focus on the p=0 characteristic
function ��� , p=0������, known as symmetrically ordered
characteristic function �SCF� or quantum characteristic func-
tion. Having in mind Eq. �1� it is straightforward to prove
that the result obtained in this paper for the symmetrically
ordered characteristic function also applies to the other two
characteristic functions.

The SCF is always defined and it is, in general, a
complex-valued function satisfying the following properties:

��� = 0� = 1; ������ � 1. �2�

The first of the two properties is a consequence of the fact
that Tr��̂�=1, while the second stems from the fact that ����

is the expectation value of the displacement operator D̂���
which is unitary, and therefore the magnitude of its eigenval-
ues is unity. One of the advantages of using the symmetri-
cally ordered characteristic function is that the analytic ex-
pression for the mean values of many observables of interest
may be calculated easily by means of the relation

�a†man� = 	
 d

d�
�m
−

d

d�*�n

����	
�=0

. �3�

In the literature the characteristic functions have been ex-
tensively used to study the dynamics of both Markovian
�15–17� and non-Markovian �9,18–22� open systems. It has
also been shown that characteristic functions may be used to
establish observable conditions of nonclassicality for the
states of the quantized electromagnetic field �23�. In what
follows I will show that there exist situations in which the
characteristic function description of an open quantum sys-
tem may lead to problems.

Let me consider the non-Markovian dynamics of a har-
monic oscillator interacting with a zero temperature reser-
voir. I consider one of the most popular phenomenological
models for this system, involving a memory kernel �1,12,14�,

d�̂�t�
dt

= �
0

t

K�t − t��L�̂�t��dt�, �4�

where K�t− t�� is the memory kernel and the Liouvillian op-
erator L is given by

L�̂ = 2â�̂â† − â†â�̂ − �̂â†â . �5�

By applying the rules

�̂ → ����, â�̂ → 
−
d

d�* −
�

2
�, â†�̂ → 
 d

d�
−

�*

2
� , �6�

�̂â → 
−
d

d�* +
�

2
�, �̂â† → 
 d

d�
+

�*

2
� ,

one may derive, from the master equation �4�, the corre-
sponding integro-differential equation for ����:

����,t�
�t

= �
0

t

K�t − t��
− 
�
�

��
+ �* �

��*� − ���2����,t��dt�.

�7�

Following a method developed in Ref. �24� for non-
Markovian Fokker-Plank equations, a formal solution of this
integro-differential equation may be obtained in the form of
an integral decomposition involving the solution of the cor-
responding Markovian problem, which is known in the lit-
erature �see, e.g., Ref. �15��.

Let me focus on the case of a memory kernel of exponen-
tial type

K�t − t�� = g2e−��t−t��, �8�

with g coupling strength and � decay constant of the system-
reservoir correlations. I consider, as initial state, a Fock state
�n�, with �n� being the eigenstates of the quantum number
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operator n̂= â†â. The corresponding SCF reads as follows:

�n��� = Ln����2�e−���2/2, �9�

with Ln����2� the Laguerre polynomial of order n. For n=1,
e.g., the initial symmetrically ordered characteristic function
is ��� ,0�= �1− ���2�e−���2/2, and it is easy to verify by direct
substitution that

���,t� = 
1 − ���2e−�t/2
cos �t +
�

2�
sin �t��e−���2/2,

�10�

is a solution of Eq. �7�, with �=�2g2− �� /2�2. Figure 1
shows the absolute value of the symmetrically ordered char-
acteristic function, as given by Eq. �10�, as a function of ���2
at different time instants and for g /�=1.

Looking at Eq. �10� it is easy to verify that, for the pa-
rameters considered in the example, the SCF is always de-
fined and it satisfies at all times and for each vale of � the
conditions given by Eqs. �2�, as one can also see clearly from
the figure.

Once the time evolution of the symmetrically ordered
characteristic function is known, one can always reconstruct
the density matrix at all times, since �̂�t� can be obtained
from ��� , t� by using the relation

�̂�t� =
1

2�
� ���,t�D̂���d�d�*. �11�

From this equation, keeping in mind that the diagonal ele-
ments of the Glauber displacement operator are given by

�n�D̂����n� = Ln����2�e−���2/2, �12�

and that L1����2�=1− ���2, one gets

�11�t� � �n = 1��̂�t��n = 1� = e−�t/2
cos �t +
�

2�
sin �t� .

�13�

The quantity �11�t� describes the decay of the population of
the initial state �n=1� due to the interaction with a zero-
temperature reservoir. For t→	, �̂11→0 and �̂00→1, indi-
cating that, due to dissipation, the state of the oscillator

passes from the initial excited Fock state �n=1� to the ground
state. A close look at Eq. �13�, however, shows that the posi-
tivity of the density matrix is clearly violated, since �̂11�t�

0 for some intervals of time. This situation has been dis-
cussed in detail by Barnett and Stenholm in Ref. �12�, where
the risks of an apparently physically well-grounded memory
kernel, as the exponential one given by Eq. �8�, were care-
fully analyzed. The loss of positivity shows up for strong or
intermediate coupling regime ng2 /��1/8 �12�, alerting us
to the fact that the dynamics of the system, for these values
of the parameters, is unphysical.

It is worth stressing, however, that if one describes the
time evolution by using the symmetrically ordered character-
istic function, one does not realize that the equations of mo-
tion lose physical sense because this function, contrarily to
the density matrix which violates one of its defining condi-
tions �positivity�, continues to verify at all times the condi-
tions given by Eqs. �2�. Hence, for non-Lindblad cases, when
both the complete positivity and the positivity conditions
may be violated, unphysical situations, such as the negativity
of the density matrix, may not show up in the dynamics of
the SCF.

A careful analysis of Eq. �10� shows that only for values
of the ratio g /� such that, for certain intervals of time,
�11�t�
−1/2 then the second of the conditions given in Eqs.
�2� is violated for ���2�1. In general, however, there is no
correspondence between the loss of the positivity condition,
and therefore of complete positivity, and the violation of one
of the conditions defining the symmetrically ordered charac-
teristic function. Stated another way the problem is the fol-
lowing. The fact that D̂��� is a unitary operator, together with
the properties that �̂ is a positive �then Hermitian� trace-class
operator with trace 1, imply that �������1, i.e. the second of
Eq. �2�. This is, however, only a necessary condition; indeed
I have shown in this paper that there exist situations in cor-
respondence of which the density matrix is not positive but
still �������1. The crucial question is, therefore, which is the
additional condition to be imposed on the SCF to ensure that
the operator �̂, defined through Eq. �11�, is a positive trace-
class operator with trace 1? The answer to this question is
very important since it would allow the safe use of the SCF
in non-Lindblad cases. Until this condition is not found, one
cannot claim that the density matrix and the SCF are equiva-
lent descriptions of the dynamics, as the example given in
this paper clearly indicates. The derivation of the condition
to be imposed on the symmetrically ordered characteristic
function to make it a useful tool in the description of non-
Lindblad-type situations will be the object of further study.
However, presently, it seems to the author that this question
does not have a simple answer.

Let me conclude by considering the behavior of the
Wigner function. The Wigner function is the two-
dimensional Fourier transform of the symmetrically ordered
characteristic function

W�
� =
1

�2�
−	

	

d�d�*����e
�*−
*�. �14�

The Wigner function is a real valued function satisfying the
condition �W�
���2/�. Inserting Eq. �10� into Eq. �14� we
get

FIG. 1. Behavior of ������2��, as given by Eq. �10�, at different
time instants in the interval 0
�
0. The initial state is �n=1� and
g /�=1.
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W�
,t� =
2

�
e−2�
�2�1 + 2�2�
�2 − 1��11�t�� , �15�

with �11�t� given by Eq. �13�. From the previous equation
one may verify that whenever 0��11�t��1, then �W�
��
�2/�, but the former inequality is immediately violated in
correspondence to a violation of the positivity condition, in
our example when �11�t� becomes negative.

It is worth stressing the difference between the Wigner
function, which is the Fourier transform of the SCF, and the
symmetrically ordered characteristic function itself. While
the first one violates one of its defining conditions when the
density matrix loses positivity, the second one does not. In
this sense it seems that the symmetrically ordered character-
istic function has less “physical meaning” than the density
matrix or the Wigner function. It is worth noting that, as a
consequence of the lack of a condition equivalent to the posi-
tivity of the density matrix, each time one deals with non-
Lindblad dynamics one can use the SCF only if it is possible
to derive the corresponding density matrix, by means of Eq.
�11�, and check its positivity. In this paper I considered a
rather easy example of the dynamics for which both the den-

sity matrix and the SCF solutions have simple analytic ex-
pressions. In general, however, it is not obvious that, once
the solution of the Fokker-Planck equation for the SCF is
known, one is also able to derive a useful expression for the
density matrix necessary to check the positivity condition.
This fact strongly limits the usability of the SCF for the
study of non-Lindblad dynamics. For this reason, new nec-
essary and sufficient conditions establishing the equivalence
between the SCF and the density matrix are highly desirable.
Moreover, the answer to the open question posed in this pa-
per about the identification of a condition on the SCF corre-
spondent to positivity of the density matrix would shed light
on the physically meaningful ingredient allowing the consid-
eration of the description of an open quantum system via the
SCF as a complete description of its dynamics.

This work has been supported by the European Union’s
Transfer of Knowledge project CAMEL �Grant No. MTKD-
CT-2004-014427� and by the Italian National Foundation
Angelo Della Riccia. The author gratefully acknowledges
Antonino Messina, Francesco Petruccione, Jyrki Piilo, and
Stig Stenholm for useful comments and suggestions.

�1� H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems �Oxford University Press, Oxford, 2002�.

�2� E. Joos, H.-D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O.
Stamatescu, Decoherence and the Appearence of a Classical
World in Quantum Theory, 2nd ed. �Springer-Verlag, Berlin,
2003�.

�3� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, England, 2000�.

�4� R. Alicki and K. Lendi, Quantum Dynamical Semigroups and
Applications �Springer-Verlag, Berlin, 1987�.

�5� G. Lindblad, Commun. Math. Phys. 48, 119 �1976�.
�6� V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.

Phys. 17, 821 �1976�.
�7� S. John and T. Quang, Phys. Rev. Lett. 78, 1888 �1997�; T.

Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, ibid.
79, 5238 �1997�.

�8� J. J. Hope, G. M. Moy, M. J. Collett, and C. M. Savage, Phys.
Rev. A 61, 023603 �2000�.

�9� W. G. Unruh and W. H. Zurek, Phys. Rev. D 40, 1071 �1989�.
�10� W. J. Munro and C. W. Gardiner, Phys. Rev. A 53, 2633

�1986�.
�11� K. Kraus, States, Effects and Operations, Fundamental No-

tions of Quantum Theory �Academic, Berlin, 1983�.
�12� S. M. Barnett and S. Stenholm, Phys. Rev. A 64, 033808

�2001�.
�13� P. Pechukas, Phys. Rev. Lett. 73, 1060 �1994�; R. Alicki, ibid.

75, 3020 �1995�; P. Pechukas, ibid. 75, 3021 �1995�.
�14� A. A. Budini, Phys. Rev. A 69, 042107 �2004�.
�15� S. M. Barnett and P. M. Radmore Methods in Theoretical

Quantum Optics �Oxford University Press, Oxford, 1997�.
�16� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-

tics �Cambridge University Press, Cambridge, 1995�.
�17� V. Giovannetti et al., Phys. Rev. A 70, 032315 �2004�.
�18� A. Isar et al., Int. J. Mod. Phys. E 3, No 2, 635 �1994�.
�19� W. T. Strunz and F. Haake, Phys. Rev. A 67, 022102 �2003�.
�20� F. Intravaia, S. Maniscalco, and A. Messina, Phys. Rev. A 67,

042108 �2003�.
�21� S. Maniscalco, J. Piilo, F. Intravaia, F. Petruccione, and A.

Messina, Phys. Rev. A 69, 052101 �2004�.
�22� S. Maniscalco, J. Piilo, F. Intravaia, F. Petruccione, and A.

Messina, Phys. Rev. A 70, 032113 �2004�.
�23� W. Vogel, Phys. Rev. Lett. 84, 1849 �2000�; Th. Richter and

W. Vogel, ibid. 89, 283601 �2002�; E. Shchukin, Th. Richter,
and W. Vogel, Phys. Rev. A 71, 011802�R� �2005�.

�24� I. M. Sokolov, Phys. Rev. E 66, 041101 �2002�.

BRIEF REPORTS PHYSICAL REVIEW A 72, 024103 �2005�

024103-4


