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1 1. INTRODUCTION

The increasing ability in coherent control and
manipulation of the state of quantum systems has
paved the way to experiments able to monitor the tran�
sition from quantum superpositions, such as the para�
digmatic Schrödinger cat states, to classical statistical
mixtures [1, 2]. The emergence of the classical world
from the quantum world, due to decoherence induced
by the environment, has been extensively investigated
in the last few decades both in connection to funda�
mental issues of quantum theory and in relation to the
emerging quantum technologies. The fragile nature of
quantum superpositions and entangled states
exploited, e.g., in quantum communication, quantum
computation, and quantum metrology, makes these
potentially very powerful techniques also very delicate.
For this reason several methods have been proposed in
order to protect quantum states from decoherence and
dissipation. For example, methods based on decoher�
ence free subspaces, dynamical decoupling and bang�
bang techniques, just to mention a few, have been
investigated [3]. Recently the connection between
these techniques and the quantum Zeno effect has
been clarified [4].

In a recent Letter we have studied the conditions
for observing the Zeno and anti�Zeno effects in a
damped harmonic oscillator [5]. The quantum Zeno
and anti�Zeno effects [6, 7] predict, respectively, the
inhibition and the enhancement of the decay of the
initial state due to a series of measurements aimed at
checking whether the system is still in its initial state or
not [8]. Typically, when studying Zeno and anti�Zeno
dynamics, the system is assumed to be initially pre�
pared in an eigenstate of the free Hamiltonian, e.g., in
our case, a Fock state. This is the situation we have
considered in [5, 9]. The aim of this paper is to see
whether the quantum Zeno effect can be exploited
also to inhibit quantum decoherence when the system

1  The article is published in the original.

is initially prepared in a Schrödinger cat state. The
analysis of Zeno and anti�Zeno phenomena in the
context of the damped harmonic oscillator gives us the
possibility of exploring the modification of the quan�
tum�classical transition as an effect of measurements
performed on the system. This possibility stems from
the fact that the harmonic oscillator possesses both
quantum states, such as Fock states and superposition
of coherent states, and classical (or semiclassical)
states, such as the coherent and the thermal states.

Another aspect discussed in the paper is the con�
nection between the dynamics in presence of non�
selective energy measurements and the dynamics in
presence of modulation of the system�reservoir cou�
pling constant. The second scenario may be useful in
implementing experiments aimed at revealing the
quantum Zeno and anti�Zeno effects with engineered
reservoirs [1, 2]. We will show that, for certain types of
reservoirs, a simple periodic modulation of the sys�
tem�reservoir coupling constant is equivalent to per�
forming non�selective energy measurements, as one
would expect from the results presented in [4]. An
experimental verification of the Zeno and anti�Zeno
effects with engineered reservoirs would allow one to
observe these phenomena through indirect measure�
ments, contrarily to the direct ones of [10], in the spirit
of the “genuine” quantum Zeno effect [11].

The outline of the paper is the following. In Section 2
we describe the non�Markovian dynamics of the
damped harmonic oscillator and we present the master
equation and its solution in terms of the Wigner func�
tion. In Section 3 we show how the dynamics changes
both in presence of non�selective energy measure�
ments performed on the system and in the case of a
shuttered reservoir. Section 4 contains the main result
of the paper, i.e., the possibility of controlling the
quantum�classical border using quantum Zeno phe�
nomena. Finally, Section 5 contains the conclusions.
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2. THE SYSTEM

2.1. The Master Equation

We consider a harmonic oscillator linearly coupled
to an engineered reservoir modelled as an infinite
chain of non�interacting oscillators [12–18]. The
microscopic Hamiltonian of the total system, in units
of �, has the form

(1)

(2)

(3)

(4)

where H0, HE, and Hint are the system, environment
and interaction Hamiltonians, respectively, a (a†) and

bn ( ) are the annihilation (creation) operators of the
system and of the reservoir quantum oscillators,
respectively, ω0 is the frequency of the system oscilla�
tor, ωn are the frequencies of the reservoir oscillators, g
is the coupling constant, and the quantities κn describe
how strongly the reservoir oscillators are coupled to
the system. In the continuum limit κn enter in the def�
inition of the spectra] density of the reservoir, the key
quantity governing the open system dynamics: J(ω) =

 – ωn)/(2mnωn), with mn masses of the envi�

ronmental oscillators [13].
Following the standard derivation of the master

equation for the reduced system [see, e.g., [13]] one
can demonstrate that the exact master equation, in the
interaction picture, takes the form [18–20]

(5)

where ρ(t) is the reduced density matrix, X = (a +

a†)/  and P = i(a† – a)/ .

The master equation given by Eq. (5), being exact,
describes also the non�Markovian short time system�
reservoir correlations due to the finite correlation time
of the reservoir. In contrast to other non�Markovian
dynamical systems, this master equation is local in
time, i.e., it does not contain memory integrals. All the
non�Markovian character of the system is contained
in the time dependent coefficients appearing in the
master equation (for the analytic expression of the

H H0 HE Hint,+ +=

H0 ω0 a†a 1
2
��+⎝ ⎠

⎛ ⎞ ,=

HE ωn bn
†
bn

1
2
��+⎝ ⎠

⎛ ⎞ ,

n

∑=

Hint g κn a† a+( ) bn
†

bn+( ),

n

∑=

bn
†

κnδ(ω
n∑

dρ t( )
dt

����������� Δ t( ) X X ρ t( ),[ ],[ ]–=

+ Π t( ) X P ρ t( ),[ ],[ ] i
2
��r t( ) X

2 ρ t( ),[ ]+

– iγ t( ) X P ρ t( ),{ },[ ],

2 2

coefficients see, e.g., [21]). These coefficients depend
uniquely on the form of the reservoir spectral density.
The coefficient r(t) describes a time dependent fre�
quency shift, γ(t) is the damping coefficient, Δ(t) and
Π(t) are the normal and the anomalous diffusion coef�
ficients, respectively [18].

The dynamics of the system has been extensively
studied numerically using the path integral approach
(see [17, 22] for a review). In particular, this model has
been used to demonstrate the action of environment
induced decoherence for initial Schrödinger cat states
such as, e.g.,

(6)

where |α〉 is a coherent state,

(7)

and we take α ∈ � for simplicity. It has been proven
that the decoherence induced by the environment acts
in a much faster time scale than the thermalization
process, in particular the decoherence time τd is
inversely proportional to the separation between the
two components of the superposition, i.e., 2|α|2. The
aim of our paper is to study if and when it is possible to
inhibit this fast decoherence process by means of the
quantum Zeno effect.

We begin by noticing that, under certain condi�
tions, it is possible to obtain simple analytical results
for the time evolution of the density operator. In par�
ticular, for an Ohmic reservoir described by a spectral
distribution of the form [12]

(8)

with ωc the cutoff frequency, in the limit of high tem�
peratures and for sufficiently weak system�reservoir
couplings, both the anomalous diffusion term Π(t) and
the frequency shift term r(t) are negligible [19, 23]. In
this case, and for times t � tth, with tth the thermaliza�
tion time, Eq. (5) can be approximated by the follow�
ing master equation

(9)

We are interested in the dynamics over time scales t ≤
τd � tth. This justify the use of the master equation (9)
throughout the paper. In the next section we will

Ψ| 〉 1

�
������� α| 〉 α–| 〉+( ),=

�
1–

2 1 2 α 2
–( )exp+[ ],=

J ω( ) 2ω
π

������
ωc

2

ωc
2 ω2

+
���������������,=

dρ t( )
dt

����������� Δ t( ) γ t( )+
2

��������������������� 2aρ t( )a† a†aρ t( )– ρ t( )a†a–[ ]=

+ Δ t( ) γ t( )–
2

��������������������� 2a†ρ t( )a aa†ρ t( )– ρ t( )aa†–[ ]

+ Δ t( ) γ t( )–
2

���������������������e
2iω0t–

2aρ t( )a a
2ρ t( )– ρ t( )a

2
–[ ]

+ Δ t( ) γ t( )–
2

���������������������e
2iω0t

2a†ρ t( )a† a†( )2ρ t( )– ρ t( ) a†( )2
–[ ].



LASER PHYSICS  Vol. 20  No. 5  2010

QUANTUM ZENO CONTROL OF DECOHERENCE 1253

present the solution of this master equation in terms of
the Wigner function and discuss its properties for an
initial state of the form of Eq. (6). Moreover, we will
check the validity of the approximations under which
the master equation (9) holds by comparing the solu�
tion we have derived with the solution of the exact Hu�
Paz�Zhang master equation (5).

The second order expansion of the diffusion and
dissipation coefficients appearing in Eq. (9) reads as
follows [18, 21]

(10)

(11)

with N(ω) = (  – 1)–1 the average number of
reservoir thermal photons, kB the Boltzmann con�
stant, and T the reservoir temperature. We note that,
for high T, i.e., N(ω) � 1, Δ(t) � γ(t). The dynamics
of the coefficients Δ(t) and γ(t) can be easily calculated
in the high T limit inserting Eq. (8) into Eqs. (10)–
(11),

(12)

(13)

with r = ωc/ω0.

From these equations we see that Δ(t) and γ(t) start
from an initial zero value and quickly approach their
constant Markovian value. Indeed for t � τR = 1/ωR,
with τR the reservoir correlation time, the time depen�
dent coefficients Δ(t) + γ(t) and Δ(t) – γ(t) become

(14)

(15)

respectively, with N(ω0) � kBT/ω0 and

(16)

By looking at Eq. (9) one realizes immediately that,
for times ω0t � 1 the last two terms average out to zero
and the master equation reduces to the secular

Δ t( ) g
2 ω t1J ω( ) 2N ω( ) 1+[ ]dd

0

∞

∫
0

t

∫=

× ωt1( ) ω0t1( ),coscos

γ t( ) g
2 ω t1J ω( ) ωt1( ) ω0t1( ),sinsindd

0

∞

∫
0

t

∫=

e
�ω/kBT

Δ t( ) 2g
2
kBT r

2

1 r
2

+
����������� 1 e

ωct–
ω0t( )cos[–{=

– 1/r( ) ω0t( )sin ] },

γ t( )
g

2ω0r
2

1 r
2

+
������������=

× 1 e
ωct–

ω0t( )cos– re
ωct–

ω0t( )sin–[ ],

Δ t( ) γ t( ) � Γ N ω0( ) 1+[ ] γ1
M

,≡+

Δ t( ) – γ t( ) � ΓN ω0( ) γ 1–
M

,≡

Γ 2g
2 r

2

r
2

1+
�����������ω0.=

approximated master equation used, e.g., [5, 9, 21, 24,
25]

(17)

It is known that in the weak coupling limit there exists
a class of observables, e.g., n = a†a, whose dynamics is
not affected by the counter�rotating terms, i.e., by
those terms neglected in the secular approximation
[17, 19]. In general, however, the counter�rotating
terms do contribute to the dynamics of the reduced
density operator of the system, in particular in the
short non�Markovian time scale we are interested in.

In the following we will focus on two specific phys�
ical regimes characterized by opposite values of the
parameter r, namely the case in which r = ωc/ω0 � 1
and the case r � 1. We will refer to these cases as the
resonant and the off�resonant case, respectively, since
for r � 1 the frequency ω0 of the oscillator overlaps
with the spectrum of the reservoir while, for r � 1, ω0

is off�resonant with the spectrum J(ω). From previous
studies on the dynamics of the heating function 〈n(t)〉
we know that the system time evolution differs notably
in these two regimes [21]. As we will see in Section 4,
also the possibility of manipulating the quantum�clas�
sical transition by means of the quantum Zeno effect
crucially depends on the value of the resonance
parameter r.

To investigate the possibility of modifying the
decoherence time by means of the quantum Zeno
effect we need to focus on the short time non�Mark�
ovian dynamics, since generally the effect takes place
when measurements are performed at times t ≤ τR [8].
It is worth stressing that, in the resonant case r � 1, for
ωct ≤ 1, we cannot use the secular approximated mas�
ter equation since ω0t � ωct ≤ 1. Therefore we should
use Eq. (9). On the contrary, in the oft�resonant case
r � 1, we can focus on the dynamics for times 1/ω0 �
t ≤ 1/ωc, since this is consistent with the assumption
r = ωc/ω0 � 1, and use the simpler secular approxi�
mated master equation (17).

2.2. The Dynamics

We now look at the short�time dynamics of a
Schrödinger cat state of the form given in Eq. (6). This
state is also known as even coherent state due to the
fact that only the even components of the number
probability distribution are nonzero. The oscillations
in the number state probability are a strong sign of the
nonclassicality of this state. This and other nonclassi�
cal properties of the even coherent state, such as the
negativity of the corresponding Wigner function, have
been extensively studied in the literature (see, e.g.,
[26] and references therein). In Fig. 1 we show the

dρ t( )
dt

����������� Δ t( ) γ t( )+
2

��������������������� 2aρ t( )a† a†aρ t( )– ρ t( )a†a–[ ]=

+ Δ t( ) γ t( )–
2

��������������������� 2a†ρ t( )a aa†ρ t( )– ρ t( )aa†–[ ].
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number probability distribution and the Wigner func�
tion for the even coherent state. This state has been
realized in the trapped ion context and the transition
from a quantum superposition to a classical statistical
mixture has been observed experimentally [1].

The decoherence and dissipation due to the inter�
action with both thermal reservoirs and squeezed res�
ervoirs has been studied, in the Markovian limit, in
[26] and [27–29], respectively. On the other hand, the
exact dynamics of the Hu–Paz–Zhang master equa�
tion (5) has been numerically investigated in [22, 23].
In the following we will look for a simple analytic solu�
tion valid in the short�time non�Markovian regime in
the two limits r � 1 and r � 1. We will verify the validity
of the approximations made to derive such a solution
comparing it with the Hu–Paz–Zhang result [22, 23].

In order to describe the transition from the initial
even coherent state to the corresponding classical sta�
tistical mixture induced by the interaction with the
environment it is convenient to look at the dynamics
of the Wigner function. We know from the Markovian
results that the quantum�classical transition is indi�
cated by the fast disappearance of the interference
fringes in the Wigner function, In order to investigate
the non�Markovian dynamics we need to find out the
time evolution of the Wigner function for times t ≤
1/ωc.

2.2.1. The off�resonant case r � 1. In the off�reso�
nant case r � 1 the solution of Eq. (17) in terms of the
quantum characteristic function (QCF) χ(ξ) is pre�
sented in [19]. From this solution, and remembering

that the Wigner function is the Fourier transform of
the QCF,

(18)

one obtains straightforwardly the following expression
for the dynamics of an initial even coherent state.

(19)

with

(20)

(21)

with

(22)

(23)

where the coefficients Δ(t) and γ(t) are given by
Eqs. (12)–(13). As known from the Markovian theory,
the interaction with the environment causes the disap�
pearance of the interference peak and therefore the
transition from quantum superposition to classical sta�
tistical mixture. An useful quantity to monitor this
transition is the fringe visibility function

(24)

where we indicate with WI(β, t)|peak and W(±α)(β, t)|peak

the value of the Wigner function at β = (0, 0) and β =
(±α, 0), respectively. Inserting Eqs. (20)–(21) into
Eq. (24) we obtain, for the r � 1 case,

(25)

W β( ) 1

π2
���� d

2ξχ ξ( ) βξ* β*ξ–( ),exp

∞–

∞

∫=

W β t,( ) W
+α( ) β t,( ) W

α–( ) β t,( ) WI β t,( ),+ +=

W
α± β t,( ) �

π N t( ) 1/2+[ ]
����������������������������

βi
2

N t( ) 1/2+
���������������������–⎝ ⎠

⎛ ⎞exp=

×
βr e

Γ t( )/2– α+−( )
2

N t( ) 1/2+
������������������������������– ,exp

WI β t,( ) 2�
π N t( ) 1/2+[ ]
���������������������������� β 2

N t( ) 1/2+
���������������������–⎝ ⎠

⎛ ⎞exp=

× 2α2
1 e

Γ t( )–

2N t( ) 1+
�������������������–⎝ ⎠

⎛ ⎞–exp

× 2e
Γ t( )/2–

N t( ) 1/2+
���������������������αβi ,cos

N t( ) t'Δ t'( ),d

0

t

∫=

Γ t( ) 2 t'γ t'( ),d

0

t

∫=

F α t,( ) Aint–( )exp≡

=  1
2
��

WI β t,( ) peak

W
+α( ) β t,( ) peakW

α–( ) β t,( ) peak[ ]
1/2

��������������������������������������������������������������������,

F α t,( ) 2α2
1 e

Γ t( )–

2N t( ) 1+
�������������������–⎝ ⎠

⎛ ⎞– .exp=

W(β)
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Fig. 1. Wigner function W(β) and number probability dis�
tribution Pn for the state given by Eq. (6) with α = 2.
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This equation tells us that, as for the Markovian the�
ory, the interference term disappear faster and faster,
the larger is the separation between the two compo�
nents of the superposition, measured by 2α, and the
higher is the temperature of the environment (eee
Eqs. (12)–(22)).

2.2.2. The resonant case r � 1. We now consider
the dynamics in the more complicated resonant case.
The solution of the master equation (9) can be
obtained by noticing that this equation has the same
operatorial form of the master equation for a har�
monic oscillator in a thermal squeezed bath. Indeed,
having in mind, e.g., [28, Eq. (6)] we can see that the
two master equations coincide provided we take Δ(t) +

γ(t) = γ(N + 1), Δ(t) – γ(t) ≡ γN and [Δ(t) – γ(t)]
≡ –γM. We note in passing that the condition for the
positivity of the density, operator |M|2 ≤ N(N + 1) is
always verified in our case. Moreover, for ωct ≤ 1 we

can approximate  � 1 since r = ωc/ω0 � 1. As a
consequence we have M ∈ � and M = –N.

In order to derive the Wigner function solution we
follow the same lines of the Markovian case. We write
down the Fokker�Planck equation corresponding to
the master equation (9) for the Wigner function. Since
the initial state is a linear combination of Gaussian
terms, the form of the master equation ensures that
each Gaussian term evolves independently. Therefore
the evolved state will also be a linear combination of
Gaussian terms [30]. Having this in mind it is straight�
forward to derive the Wigner function dynamics as fol�
lows

(26)

(27)

with N(t) and Γ(t) given by Eqs. (22)–(23). Compar�
ing the dynamics to the case r � 1, where the secular
approximation holds, we see the following differences.
First of all the variances of the two Gaussians W ±α(β,
t), correspondent to the two components of the super�
position, do not follow the same dynamics anymore.
This asymmetry in the dynamics of the variances is
typical of the behavior of harmonic oscillators in
squeezed environments. What is more interesting for

e
2iω0t

e
2iω0t

W
α± β t,( ) �

π N t( ) 1/4+{ }1/2
����������������������������������=

×
βi

2

2N t( ) 1/2+
�����������������������–⎝ ⎠

⎛ ⎞ βr e
Γ t( )/2– α+−( )

2

1/2
������������������������������– ,expexp

WI β t,( ) 2�

π N t( ) 1/4+{ }1/2
����������������������������������=

×
βi

2

2N t( ) 1/2+
�����������������������–

βr
2

1/2
������–⎝ ⎠

⎛ ⎞exp

× 2α2
1 e

Γ t( )–

4N t( ) 1+
�������������������–⎝ ⎠

⎛ ⎞– 2e
Γ t( )/2–

2N t( ) 1/2+
�����������������������αβi ,cosexp

the study of the quantum�classical transition is the
behavior of the fringe visibility

(28)

Comparing this equation with Eq. (25) obtained for
r � 1 we notice that, with regard to the decoherence
process, in the resonant case r � 1 it is as if the system
would interact with a thermal reservoir with an effec�
tive temperature that is the double of the real temper�
ature. This is simply due to the non�negligible role
played by the counter�rotating terms present in the
microscopic interaction Hamiltonian of Eq. (4).

To conclude this section we compare the dynamics
of the fringe visibility factor obtained without per�
forming the secular approximation, i.e., by solving
Eq. (9), with the result presented in [23] for the exact
Hu–Paz–Zhang master equation (5). Combining
Eq. (24) and Eq. (28), and using Eq. (22) we obtain

(29)

where we have put e–Γ(t) � 1 since we are far from ther�
malization, i.e., t � tth. We recall that after a time t �
τR the diffusion coefficient attains its constant Mark�

ovian value ΔM and therefore  � ΔMt. Having

this in mind we can compare Eq. (29) with the high
temperature and low damping approximation of Aint

given by [23, Eq. (42)]. It is immediate to notice that,
mutatis mutandi, our Eq. (29) coincides with [23,
Eq. (42)] for t � τR and also it provides a straightfor�
ward generalization of this equation for the case t ≤ τR.

3. QUANTUM ZENO AND ANTI�ZENO 
EFFECTS FOR THE DAMPED HARMONIC 

OSCILLATOR

In general, quantum Zeno phenomena in unstable
systems occur when repeated interruptions of the sys�
tem�reservoir coupling, typically associated with mea�
surements, modify the natural lifetime of the system
[31]. It has been shown that the atomic decay into
structured reservoirs can be modified by both projec�
tive (impulsive) and continuous measurements, and
that it is possible to mimic the effect of both types of
measurements by means of appropriate stochastic
fields [31]. Furthermore, it has been demonstrated
that a modulation in the system�reservoir coupling
constant allows to control the decoherence and relax�
ation of a two�level system [32].

In a similar fashion we will now investigate the
effect of both projective measurements and modula�

F α t,( ) 2α2
1 e

Γ t( )–

4N t( ) 1+
�������������������–⎝ ⎠

⎛ ⎞– .exp=

Aint 2α2

4 t'Δ t'( )d

0

t

∫

4 t'Δ t'( )d

0

t

∫ 1+

���������������������������

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

t'Δ t'( )d
0

t

∫
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tion in the system�reservoir coupling constant for the
damped harmonic oscillator. We will first find out
when and how measurements performed on the sys�
tem inhibit or enhance the decoherence of an initial
Schrödinger cat state. We will then focus on the effect
of a modulation of the system�reservoir coupling con�
stant. Finally we will show when such modulation
mimics the effect of a series of nonselective energy
measurements performed on the system.

In the previous section we have described the non�
Markovian dynamics of an even coherent state in a
high T thermal bath. We have seen that due to the
interaction with the environment a fast decoherence
process destroys the quantumness of the initial super�
position. Since we have developed a non�Markovian
theory valid also for times t ≤ τR we can now investigate
the possibility of inhibiting the decoherence process
by means of the quantum Zeno effect. It is worth
reminding that the quantum Zeno effect crucially
relies on the short time non�Markovian behavior of
the system.

In the following we will focus on the case in which
the system oscillator interacts with an engineered high
T reservoir. A specific implementation of a high T
engineered reservoir has been demonstrated in [1, 2],
in the trapped ions context. In [24] it has been shown
that the engineered amplitude reservoir realized by
applying noisy electric fields to the trap electrodes can
be used to simulate quantum Brownian motion and
that a simple modification of the experimental setup
would allow to reveal the non�Markovian quadratic
short time dynamics (see also [33]).

3.1. Evolution in Presence of Non�Selective Energy 
Measurements

We begin analyzing the modifications to the open
system dynamics due to a series of non�selective
energy measurements, described in terms of the pro�

jection operator 

(30)

where |n〉 are the Fock states of the harmonic oscillator
and Pn = 〈n|ρ|n〉 are the diagonal elements of the
reduced density matrix [4]. Essentially the effect of
these measurements is to erase instantaneously all the
coherences, without selecting any of the energy states
of the systems. We assume that the system oscillator
interacts with an engineered reservoir and that, during
the time evolution, the system is subjected to a series of
nonselective energy measurements. We indicate with τ
the time interval between two successive measure�
ments.

Following the derivation given, for a generic sys�
tem, in [4] we can write down a coarse grained master

P̂

P̂ρ Pn n| 〉 n〈 |,
n

∑=

equation governing the system time evolution in pres�
ence of m nonselective measurements for r � 1

(31)

with γ±1(τ) given by

(32)

where sinc(x) = sinx/x, and the thermal spectral den�
sity κβ(ω) is defined as

(33)

with θ(ω) the unit step function.
For r � 1 the master equation is given by the first

two lines of Eq. (31). The dynamics described by the
master equation (31) is such that only the diagonal ele�
ments of the density matrix are nonzero, due to the
effect of the nonselective measurement described by
Eq. (30). We note that the decay rates γ1(τ) and γ–1(τ)
do not depend on time t, hence these rate equations
are formally equivalent to those obtained from the
Markovian master equation for the damped harmonic
oscillator in a squeezed reservoir, provided that one
identifies γ1(τ) with Γ[N(ω0) + 1] and γ–1(τ) with
ΓN(ω). The effect of the nonselective energy measure�
ments is therefore twofold. On the one hand they
destroy the off diagonal elements of the density
matrix, and on the other hand they modify the decay
coefficients appealing in the rate equations in a way
that depends crucially both on the system/reservoir
parameters and on the interval τ between the measure�
ments.

An interesting feature of the system dynamics is
that, due to the diagonalization of the density matrix
performed by the energy measurements, the number
probability distribution Pn(t) satisfies the following
rate equation

(34)

Note that, the last two lines in Eq. (31), arising from
the counter�rotating terms, do not contribute to the
dynamics. As a consequence, Eq. (34) describes the

dρ t( )
dt

����������� γ1 τ( )P̂ aP̂ρ t( )a† 1
2
��a†aP̂ρ t( )– 1

2
��P̂ρ t( )a†a–=

+ γ 1– τ( )P̂ a†P̂ρ t( )a 1
2
��aa†P̂ρ t( )– 1

2
��P̂ρ t( )aa†–

+ γ 1– τ( )P̂ a†P̂ρ t( )a† 1
2
��a†2P̂ρ t( )– 1

2
��P̂ρ t( )a†2–

+ γ 1– τ( )P̂ aP̂ρ t( )a 1
2
��a

2
P̂ρ t( )– 1

2
��P̂ρ t( )a

2
–

γ 1± τ( ) τ ωκβ ω( )sinc
2 ω ω0+−

2
�������������τ⎝ ⎠

⎛ ⎞ ,d

∞–

∞

∫=

κβ ω( ) g
2
J ω( )θ ω( ) N ω( ) 1+[ ]=

+ g
2
J ω–( )θ ω–( )N ω–( )

P· n t( ) γ1 τ( ) n 1+( )Pn 1+ t( ) nPn t( )–[ ]=

+ γ 1– τ( ) nPn 1– t( ) n 1+( )Pn t( )–[ ].
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dynamics of the number probability distribution both
in the r � 1 regime and in the r � 1 regime.

In order to understand in more detail how the
decay coefficients are modified when compared to the
Markovian ones we further investigate γ±1(τ), as given
by Eq. (32) with Eq. (33). Recasting Eqs. (10)–(11) in
the following form

(35)

(36)

and integrating the sum and the difference of these
coefficients over the time interval τ, it is straightfor�
ward to prove that

(37)

The equation above shows the connection between
the coefficients of the non�Markovian master equa�
tion (9) and the coefficients γ±1(τ) modified by the
presence of the nonselective energy measurements. We
note first of all that when the interval between the
measurements τ is much greater than the reservoir

correlation time τR then γ±1(τ) � , since Δ(t) and
γ(t) quickly set to their Markovian stationary values. In
this case one recovers the usual Markovian dynamics,
i.e., the presence of the nonselective energy measure�
ments cannot modify the Markovian decay of the
number probability distribution. Stated another way,
in order to affect the dynamics one needs to perform
the measurements at time intervals shorter or of the
same order of the reservoir correlation time. This is
well known in the theory of the quantum Zeno effect,
since such effect is crucially related to the short time
initial quadratic behavior of the survival probability,
i.e. of the probability that a system prepared in a given
initial state is still in that initial state after a time t [8].

As we mentioned before for high T reservoirs Δ(t) �
γ(t), therefore, for times much smaller than the ther�
malization time τth � 1/Γ, with Γ given by Eq. (16),

(38)

As we have noted and discussed in [5], for high T res�
ervoirs, therefore, the modified decay rates depend
only on the diffusion coefficient Δ(t) describing envi�
ronment induced decoherence. In other words the

Δ t( ) g
2
t

2
����� ωJ ω( ) N ω( ) 1

2
��+d

0

∞

∫=

× sinc ω ω0–( )t[ ] sinc ω ω0+( )t[ ]+{ },

γ t( ) g
2
t

2
����� ωJ ω( )

2
���������d

0

∞

∫=

× sinc ω ω0–( )t[ ] sinc ω ω0+( )t[ ]–{ },

γ 1± τ( ) 1
τ
�� t Δ t( ) γ t( )±[ ].d

0

τ

∫=

γ 1±
M

γ1 τ( ) � γ 1– τ( ) � 1
τ
�� tΔ t( ).d

0

τ

∫

repetition of nonselective energy measurements at
short intervals τ forces the system to experience an
enhanced or reduced environment induced decoher�
ence, depending on the form of the reservoir spec�
trum, and hence on the temporal behavior of Δ(t).

Before discussing the effect of measurements on
the decoherence of an initial Schrödinger cat state, we
want to address the connection between the dynamics
described in this section and the situation in which the
measurements are replaced by a periodic modulation
in the system�reservoir coupling constant.

3.2. Evolution in Presence of Shuttered Reservoirs

We consider, as before, the case in which the cou�
pling between the system oscillator and the reservoir is
weak enough to justify the use of second order pertur�
bation theory. Instead of introducing a series of nonse�
lective energy measurements we consider the case in
which the coupling between the system and the engi�
neered reservoir is modulated as follows

(39)

with l = 0, 1, 2, … . In practice we assume that the cou�
pling is interrupted periodically, for a short time δτ �
τ, at intervals τ. As we will show in the following, under
certain conditions, these short interruptions mimic
the nonselective energy measurements. We refer to the
system described here with the name of shuttered res�
ervoir, according to the terminology we have used in
[9]. We will assume in the following that the time inter�
vals δτ are so small that the free evolution of the system
can be neglected. This assumption is not necessary
when we deal with the dynamics of an initial Fock
state, as we have explained in [9].

Since both Δ(t) and γ(t) are proportional to the
coupling constant g (see Eqs. (10)–(11)), we can solve
the dynamics using recursively the solution of the mas�
ter equation Eq. (9). More in detail, we solve the mas�
ter equation given by Eq. (9), e.g., in terms of the
Wigner function, and we use the solution at time τ as
initial condition at time τ + δτ. We then calculate the
solution at time 2τ + δτ and use this as initial condi�
tion once more. During the time intervals δτ the sys�
tem oscillator is not coupled to the environment
therefore its dynamics is simply given by the free evo�
lution. If δτ is such that 0 < δτ � 1/ω0 we can neglect
the system free evolution during the interval δτ and
assume that, at each cycle, ρ(τ + δτ) � ρ(τ). Essen�
tially this amounts at assuming that after each time
interval τ, the “old” reservoir is replaced with a “fresh”
reservoir. This is, e.g., the case for the engineered res�
ervoir realized in the trapped ion context [2].

As noticed in [30], for the initial state we consider,
the dynamics is such that each Gaussian term in the
Wigner function dynamics evolves independently

g t( )
g for l τ δτ+( ) t l τ δτ+( ) τ+<≤

0 for l τ δτ+( ) τ t≤ l 1+( ) τ δτ+( ),<+⎩
⎨
⎧

=
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always retaining its Gaussian character (see
Eqs. (26)–(27)). It is therefore sufficient to follow the
time dependence of the first and second statistical
moments, namely the vector of first moments xi = 〈Xi〉,
where i = 1, 2, X1 = X, and X2 = P, and the covariance

matrix σij ≡ 〈XiXj + XjXi〉 – 〈Xi〉〈Xj〉. The covariance

matrix, in our case and for t ≤ τR, takes the simple form

(40)

with

(41)

(42)

with σ11(0) = σ22(0) = 1/2. The vector of first moments
is given by

(43)

From Eqs. (41)–(43), and within the assumptions
made above, it is straightforward to calculate the
coarse grained expression for the first moments and
the covariant matrix obtained using recursively the
solution at each interval of time τ between subsequent
interruptions in the coupling constant. If m = l + 1 is
the number of interruptions and t = mτ, we obtain

(44)

(45)

where

(46)

and γ±1(τ) are given by Eq. (37). In terms of the Wigner
function the solution has the same form as in
Eqs. (20)–(21) and Eqs. (26)–(27), for r � 1 and r �
1, respectively, with the substitutions N(t)  γ1(τ)t
and Γ(t)  bτt.

3.3. Comparison between the Shuttered Reservoir and 
the Nonselective Measurements Scenarios

It is straightforward to demonstrate that, in the
shuttered reservoir scenario and for r � 1, the master
equation whose solution we have presented above is
the following

1
2
��

σ t( ) σ11 t( ) 0

0 σ22 t( )⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

σ11 t( ) � σ11 0( ),

σ22 t( ) � 2 t'Δ t'( )d

0

t

∫ σ22 0( )+

xi t( ) e
Γ t( )/2–

xi 0( ).=

xi t( ) e
mΓ t( )/2–

xi 0( ) e
b
τ
t/2–

xi 0( ),≡=

σ22 t( ) 2m t'Δ t'( )d

0

τ

∫ σ22 0( )e
mΓ t( )–

+=

=  γ1 τ( ) γ 1– τ( )+[ ]t σ22 0( )e
b
τ
t–
,+

bτ γ1 τ( ) γ 1– τ( ),–=

(47)

In order to prove it one can, e.g., transform the master
equation into a partial differential equation for the
Wigner function (see, e.g., Appendix 12 of [34]), and
then verify by direct substitution that the Wigner func�
tion solution satisfies the partial differential equation.
Similarly one can see that, for r � 1, the master equa�
tion is given by the first two lines of Eq. (47).

Comparing Eq. (47), describing the dynamics in
presence of an engineered shuttered reservoir, with
Eq. (31), describing the dynamics in presence of non�
selective energy measurements, one notices immedi�
ately that the difference between the two physical situ�
ations consists in the fact that while the nonselective
measurements always set to zero the coherences, in
the case of a shuttered reservoir the off diagonal ele�
ments of the density matrix do not vanish. The rate
equations for the number probability distribution Pn(t)
coincide in the off�resonant regime r � 1 and are given
in both cases by Eq. (34). In the resonant regime, on
the contrary the contribution of the counter�rotating
terms in the dynamics of Pn(t), in the shuttered reser�
voir scenario, is non negligible. In this case, indeed the
rate equation for Pn(t) contains the contribution of
some off�diagonal elements of the density matrix too,
these terms coming from the last two lines of Eq. (47).

This leads us to the following conclusions. In the
off�resonant regime r � 1, whenever the initial state of
the system is a Fock state, or any state which is diago�
nal in the Fock state basis, the system dynamics in
presence of shuttered reservoirs coincides exactly with
the dynamics in presence of nonselective energy mea�
surements, since for this type of initial condition the
density matrix, for the shuttered reservoir case,
remains diagonal at all times t. Therefore, in this case,
the shuttered reservoir mimics the dynamics in pres�
ence of nonselective energy measurements. This is
interesting because it may be easier to realize experi�
mentally a shuttered reservoir, instead of a sequence of
nonselective energy measurements, by using reservoir
engineering techniques as those used in the trapped
ions context [1]. In [5, 9] we briefly discuss a possible
implementation of the shuttered reservoir with
trapped ions.
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dt
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Secondly, for a generic initial state, and for r � 1
the time evolution of the number probability distribu�
tion, and therefore of all the observables which are
diagonal in the Fock state basis, coincides for the two
scenarios discussed in this paper. In Subsection 4.1 we
will examine in detail the dynamics of the number
probability distribution for the case of an initial
Schrödinger cat state, and we will show that for certain
values of the parameters one can manipulate the quan�
tum�classical border prolonging or shortening the
“life” of the cat.

Finally, in the resonant regime r � 1, a modulation
of the system�reservoir interaction as, e.g., the one
described in Eq. (39), modifies the decoherence of a
Schrödinger cat state, as we will see in Subsection 4.2.
However the modified dynamics differs from the one
induced by a series of non�selective energy measure�
ments because of the contribution of the counter�
rotating terms present in the microscopic interaction
Hamiltonian.

4. CONTROL OF THE QUANTUM�CLASSICAL 
BORDER

4.1. Evolution in Presence of Nonselective Energy 
Measurements

We begin considering the projective measurements
scenario. We focus on the number probability distribu�
tion Pn. As noticed in Subsection 2.2, for an initial
even coherent state of the form of Eq. (6), this quantity
presents oscillations indicating the nonclassicality of
the state (see Fig. 1). In presence of nonselective
energy measurements Pn evolves according to Eq. (34)
both in the resonant and in the oft�resonant regime.

Following the lines of the Markovian derivation we
solve directly Eq. (34) and obtain

(48)

with bτ given by Eq. (46) and

(49)

The quantity at is the difference between the mean
quantum number of the system oscillator at time t,
whose dynamics is studied in [9], and the initial mean
number of excitations.

In Fig. 2 we plot the behavior of the number prob�
ability distribution. These plots clearly show that the
quantumness of the initial superposition, indicated by
the absence of the odd number components, can be
prolonged or shortened in time, by appropriate
sequence of measurements. In more detail one can see
that, in the resonant regime r � 1, i.e., when the fre�
quency of the oscillator overlaps with the reservoir
spectrum, measurements performed at times smaller
than the reservoir correlation time τR strongly inhibit
the quantum to classical transition. On the contrary, in
the off�resonant regime r � 1 the anti�Zeno effect
takes place and the decoherence of the Schrödinger
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cat state takes place at a much faster pace as a conse�
quence of the energy measurements.

4.2. Evolution in Presence of Shuttered Reservoir

We now focus on the shuttered reservoir scenario.
Having in mind the Wigner function solution pre�
sented at the end of Subsection 3.2, we can calculate
the fringe visibility function, defined by Eq. (24),
when the system�reservoir coupling is modulated
according to Eq. (39). The analytic expressions for
F(α, t) coincide with the ones given by Eqs. (25) and
(28), for r � 1 and r � 1, respectively, provided that the
changes Γ(t)  bτt and N(t)  γ1(τ)t are made.

For a high T reservoir, using Eqs. (12) and (38), we
obtain the following analytic expression

(50)

where Γ is given by Eq. (16).
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When the shuttering period τ is much longer than
the reservoir correlation time, i.e., ωcτ � 1, one recov�
ers the Markovian expression for the Wigner function
peak dynamics in absence of shuttering. Stated
another way, for ωcτ � 1 the shuttering does not affect
the dynamics. On the other hand, for values of τ such
that ωcτ ≤ 1, one observes a change in the fringe visi�
bility function depending on the behavior of the coef�
ficient γ1(τ), given by Eq. (50).

In Fig. 3 we compare the non�Markovian dynamics
of the fringe visibility function, indicating the passage
from a quantum superposition to a statistical mixture,
in absence of shuttering and in presence of shuttering
for, ωcτ = 0.01, and ωcτ = 0.001. For r = 100 (Fig. 3a),
i.e., in the resonant regime, the decay of F(α, t) is
inhibited by the shuttering events, and therefore the
Schrödinger cat lives longer. This is a manifestation of
the quantum Zeno effect. On the other hand, for r =
0.1 (Fig. 3b), i.e., in the off�resonant regime, the
fringe visibility function decays faster, indicating a
rapid passage from a quantum superposition to a sta�
tistical mixture of the coherent states |α〉 and |–α〉.
This is a manifestation of the anti�Zeno effect. In both
cases, the shorter is τ, the stronger is the inhibition or
enhancement of the decay of F(α, t) and therefore the
most effective is the control of the quantum to classical
transition. Summarizing, by manipulating the param�
eters of the engineered reservoir one can control the
border between the quantum and the classical worlds.

5. SUMMARY AND CONCLUSIONS

In this paper we have investigated the non�Mark�
ovian short time dynamics of a quantum harmonic
oscillator interacting with an engineered amplitude
reservoir. We have derived a solution in terms of the
Wigner function valid in two opposite physical regimes
characterized by the parameters r � 1 and r � 1. A
comparison between the two solutions reveals that the
counter�rotating terms present in the microscopic
Hamiltonian model have a non�negligible effect in the
resonant case. On the contrary, in the off�resonant
case they can be neglected.

The availability of the simple analytic expressions
describing short time dynamics of the system oscillator
has allowed us to investigate the occurrence of the
quantum Zeno and anti�Zeno effect. In particular we
have focused on the dynamics of an initial Schrödinger
cat state, i.e., a quantum superposition of two distin�
guishable coherent states. This state is strongly sensi�
tive to decoherence induced by the external environ�
ment. The larger is the “separation” between the two
components of the superposition, the faster is the
decay into a statistical mixture of the two components.

Because of the fragility of such a state it is interest�
ing to see whether it is possible to modify the decoher�
ence induced by the environment by means of either
nonselective measurements or modulation in the sys�
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tem�reservoir coupling. Our results show that when
the interval between the measurements (or the shut�
tering period) τ is smaller than the reservoir correla�
tion time τR, then the passage from a quantum super�
position to a classical statistical mixture may be con�
trolled. In more detail one can inhibit or enhance the
“life” of the Schrödinger cat. depending on some sys�
tem/reservoir parameters. This result, which is based
on the occurrence of the quantum Zeno or anti�Zeno
effects, respectively, opens new possibility for protect�
ing very fragile states like the Schrödinger cat states
from the destructive effects of the external environ�
ment.

We have also proved that, in the off�resonant
regime, one can mimic the effect of nonselective
energy measurements by modulating the system�res�
ervoir coupling constant. The second scenario might
be easier to realize experimentally, and might there�
fore pave the way to experiments aimed at moving in a
controlled way the quantum�classical border via the
Zeno and anti�Zeno effect.
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