
 
 
 
 

Heriot-Watt University 
Research Gateway 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Heriot-Watt University

Simple trapped-ion architecture for high-fidelity Toffoli gates

Borrelli, Massimo; Mazzola, Laura; Paternostro, Mauro; Maniscalco, Sabrina

Published in:
Physical Review A (Atomic, Molecular, and Optical Physics)

DOI:
10.1103/PhysRevA.84.012314

Publication date:
2011

Link to publication in Heriot-Watt Research Gateway

Citation for published version (APA):
Borrelli, M., Mazzola, L., Paternostro, M., & Maniscalco, S. (2011). Simple trapped-ion architecture for high-
fidelity Toffoli gates. Physical Review A (Atomic, Molecular, and Optical Physics), 84(1), [012314].
10.1103/PhysRevA.84.012314

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/29085576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.84.012314
https://pureapps2.hw.ac.uk/portal/en/publications/simple-trappedion-architecture-for-highfidelity-toffoli-gates(45ca3dbf-25af-43b6-9078-c86f678be7cd).html


PHYSICAL REVIEW A 84, 012314 (2011)
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We discuss a simple architecture for a quantum TOFFOLI gate implemented using three trapped ions. The
gate, which, in principle, can be implemented with a single laser-induced operation, is effective under rather
general conditions and is strikingly robust (within any experimentally realistic range of values) against dephasing,
heating, and random fluctuations of the Hamiltonian parameters. We provide a full characterization of the unitary
and noise-affected gate using three-qubit quantum process tomography.
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I. INTRODUCTION

In the quest for scalability of a quantum computing device,
the role played by many-qubit gates is quite central. Adequate
sets of gates have been identified that allow for the break-
down of complex computational networks in simpler tasks
involving at most two qubits per time [1]. Unfortunately, the
overhead in terms of the length of corresponding quantum
circuits (i.e., the number of such elementary operations
being required) soon overcomes the advantage provided by
having to manage only two-body interactions. Multiqubit
gates exist, able to bypass such a problem by requiring the
simultaneous conditional evolution of three or more qubits.
Among these, the TOFFOLI gate (whose unitary we label
TOFFOLI) [2] is celebrated for its role in phase-estimation
and error correction protocols [3], as well as in the quantum
factorization algorithm [4]. Remarkably, the TOFFOLI gate
has jumped across the field of computing, from classical to
quantum, playing an important role in schemes for reversible
classical computation [5]. The recent effort put in the task of
harnessing a three-qubit TOFFOLI gate has been considerable.
On one side, important experimental demonstrations on the
practical realization of such gate have been reported [6,7].
On the other hand, significant improvement in the design
of economic ways of implementing an n-qubit TOFFOLI gate
have arisen from realizing that less resources are needed
when using particles that live in higher-dimensional Hilbert
spaces [8–10]. Interesting and compact architectures using the
measurement-based paradigm for information processing have
been also suggested [11].

Clearly, theoretical and experimental endeavors aiming at
streamlining the realization of high-fidelity quantum gates
and thus speeding-up the progress toward full scalability are
extremely important and should be valued as such. In this
paper, we present a compact protocol for the implementation of
a high-fidelity three-qubit TOFFOLI gate in a trapped-ion archi-
tecture. Our scheme exploits an enlarged computational space
consisting of three-level particles and an ancillary phononic
mode [12,13]. While information is encoded only in two
electronic states of each ion, their third levels are used as con-
venient working spaces, similarly to the phononic ancilla. In
this respect, our algorithm is close in spirit to the work by Ralph
et al. [8], although our protocol is different by construction, and
to further proposals exploiting higher-dimensional particles for
improved manipulation of the computational states [9]. As we

shall prove, the use of an enlarged computational space and
a simultaneous driving of multipole atomic transitions [14]
allow a quite considerable reduction in the number of opera-
tions necessary to implement the three-qubit gate. Indeed, by
adhering as much as possible to the parameters and working
conditions of a single experimental setting, we show that our
proposal requires roughly 44% of the operations needed in the
seminal proof of principle provided by Monz et al. [6]. We
thoroughly characterize the gate using three-qubit quantum
process tomography (QPT) [15] performed using realistic
working parameters and reveal its remarkable efficiency and
robustness against leakage from the computational space,
dephasing, heating, and laser-power fluctuations. We thus pro-
vide a possible platform for the experimental implementation
of such a key gate in the design of quantum computing devices.

The paper is organized as follows. In Sec. II we give
a full description of the protocol and compute the fidelity
of the whole unitary process. In Sec. III we analyze how
several sources of imperfections affect the process fidelity
of the scheme. We numerically solve the Markovian master
equation including heating and dephasing, and we statistically
simulate the effect of a mismatch in the Rabi frequencies in
the Hamiltonian model taking also into account the nonperfect
preparation of the initial phononic state. In Sec. IV we
summarize our findings.

II. THE PROTOCOL

Our system consists of N = 3 ions in a linear trap.
We consider three energy levels {|lj 〉,|gj 〉,|ej 〉} in a lad-
der configuration and their common phononic mode a

(frequency ν). Potential candidates for such states are the
electronic states S1/2(m = −1/2),S1/2(m = 1/2),D5/2(m =
−1/2)} in 40Ca+ ions. The coupling between any pair of
such levels is induced by controlled light-matter interactions
at wavelength close to the S1/2 ↔ D5/2 transition (wavelength
729 nm) [16]. The |lj (gj )〉 ↔ |ej 〉 transition can be guided
via quadrupole couplings while the |lj 〉 ↔ |gj 〉 one can be
driven by a far off-resonance Raman coupling through the
fast-decaying P3/2 level [17]. Both these cases are described
in a unique framework where the internal and external degrees
of freedom of an ion are coupled via the Hamiltonian (in the
interaction picture)

ĤI (t) = (h̄�/2)σ̂ (αβ)
− e−iη(âe−iνt+â†eiνt )−i(ωαβ−ωL)t + H.c. (1)
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Here � ∈ R is the Rabi frequency of the transition |α〉 ↔ |β〉
(with α,β = e,g,l), σ̂

(αβ)
− = |α〉〈β|, ωαβ is the corresponding

transition frequency, and η is the Lamb-Dicke parameter [17].
For a quadrupole transition, ωL is the actual frequency of the
field being used, while for a Raman transition this parameter
is the difference between the frequencies of the two fields
needed to off-resonantly couple |lj 〉 and |gj 〉 to the P3/2 energy
state. Finally, we have introduced the phononic annihilation
(creation) operator â (â†) of the quantized phononic mode.
In the following, we exploit the flexibility of laser-induced
trapped-ion dynamics that is achieved by tuning the laser-ion
detuning δαβ = ωαβ − ωL [17]. In passing, we would like to
remark that, as discussed above, our scheme relies on the use
of both Raman and quadrupole transitions. While this is a
perfectly realistic option, most recently employed for intra-
cavity ion-photon interfaces [18], its realization may require
a considerable technical effort compared to experiments that
rely on only one of such coupling schemes.

In the well-known Lamb-Dicke [13] limit the Hamiltonian
(1) can be greatly simplified and, depending on δαβ , we can
implement three different types of interaction. By setting δαβ =
0 we realize a carrier coupling Ĥc = h̄�(1 − η2a†a)σ̂ (αβ)

x ,
which induces a complete spin flip without affecting the energy
of the phonon mode. If we instead set δαβ = ν we engineer
the energy-conserving coupling Ĥ

(αβ)
r (ζ ) = ζ âσ̂

(αβ)
+ + H.c.,

where ζ = h̄η(�/2) and a phononic excitation is created
(destroyed) upon annihilation (creation) of a spin quantum.
Similarly, the choice δαβ = −ν (corresponding to the tuning
to the first blue sideband) induces the coupling Ĥ

(αβ)
b (ζ ) =

ζ â†σ̂ (αβ)
+ + H.c. where spin and phononic excitations are

simultaneously created or destroyed. We now show how to
realize a TOFFOLI gate using the unitary evolution given by the
Hamiltonian Ĥr , together with properly arranged single-qubit
operations preceding and following the dynamics induced by
Ĥr . We work in the single-excitation sector of the Hilbert space
of the whole ionic string, including the phononic mode. Such
operations will be required to guarantee that the state of the
system remains within such subspace. Moreover, we should
avoid any correlation between the internal degrees of freedom
of the string and their vibrational one. Therefore, we have to
enforce that the phononic mode, being initially prepared in
|0〉a , returns to this state when the gate is completed.

We are now in a position to describe the details of
our protocol. First, we codify three qubits in the internal
degrees of freedom of the ions by using the simple encoding
scheme (|01〉,|11〉) = (|g1〉,|e1〉), (|0j 〉,|1j 〉) = (|gj 〉,|lj 〉)(j =
2,3). With this, we construct an eight-state basis for the three-
qubit system as B = {|000〉,|100〉,|010〉,|110〉,|001〉,|101〉, −
i|011〉, − i|111〉}123, where we have redefined the last two
states so as to include an overall phase factor (the choice is
made only to simplify our calculations). Our protocol begins
with the realization of the single-qubit operations on the qubit
1-phononic mode system given by (τ = π/2ζ )

R̂+
A (π/2ζ ) = eiĤ

(eg)
b (ζ )τ , R̂−

B[C](π/2ζ ) = eiĤ
(le[g])
r (ζ )τ . (2)

The first transformation in Eq. (2) excites the first blue
sideband for the |g1〉 ↔ |e1〉 transition while the remaining two
embody the first red sideband excitations for the |e1〉 ↔ |l1〉
and |g1〉 ↔ |l1〉 passages. In order to work with the same

phononic mode, we need laser fields with frequencies ωA
L −

ωge = −ν, ωB
L − ωle = ν, ωC

L − ωgl = ν. In the subspace
with at most a single excitation, it is straightforward to see that
the composite operation R̂ = R̂−

C (π/2ζ )R̂−
B (π/2ζ )R̂+

A (π/2ζ ),
operated on states having initially no phononic excitations,
performs a logical σ̂x gate in the space of the phononic mode,
controlled by the spin state |g1〉. That is R̂(|g1,0〉 |e1,0〉)T =
(|g1,1〉 |e1,0〉)T. This operation encodes a logical qubit in the
single-excitation states {|g1,1〉,|e1,0〉}. Therefore, we should
consider the states of the extended system (with a single
excitation overall) comprising the internal and external degrees
of freedom of the string. This is seen, in our scheme,
as the computational space of three logical qubits, one of
which being embodied, in a sort of dual rail encoding, by
{|0L〉,|1L〉} ≡ {|g1,1〉,|e1,0〉} [15]. We now couple each ion to
a field of frequency ωL = ωeg + ν at Rabi frequency �j . The
total interaction is described by [19]

ĤT C =
3∑

j=1

(h̄η�j/2)â|ej 〉〈gj | + H.c. (3)

We let each of the single-excitation states mentioned above
evolve under ĤTC for a time tT at which we turn Eq. (3) off
and apply the gates forming R̂ in reverse order. This separates
the state of the phononic mode from the spin state of ion 1.
That is, we decode the logical qubit {|0L〉,|1L〉} resetting the
vibrational mode into |0〉 and remaining with just the ion-string
computational states. The vibrational degrees of freedom can
now be traced out without affecting the resulting gate,

ÛT (t) = (R̂† ⊗ 1̂23)exp[−(i/h̄)ĤTCtT ](R̂ ⊗ 1̂23), (4)

where 1̂23 is the identity operators in the tensor-product space
of qubits 2 and 3. The main idea now is finding a time tT such
that ÛT (t) is as close as possible to the ideal gate TOFFOLI.

We first observe that there are four time scales associated
with the dynamics at hand. Each of them is determined
by the inverse of the Rabi frequencies of the processes in-
volved in this scheme, that is, 123 = h̄η(

∑3
j=1 �2

j )1/2, 1j =
h̄η(�2

1+�2
j )1/2(j = 2,3), and 1 = h̄η�1. The pedices used

in such expressions identify the qubits that participate to
the interaction with the phononic mode. It is thus clear that
the quest for tT is equivalent to the research of a set of
suitable single-ion Rabi frequencies {�j } such that our goal
is achieved. An analytical/numerical optimization leads to the
following relative ratios of coupling strengths �1:�2:�3 =
1:

√
143:16. With this at hand, at the optimal instant of time

given by tT = π/η�1, we find

ÛT = TOFFOLI − 10−3|110〉〈110| − 2 × 10−3|001〉〈001|. (5)

Needless to say, other choices can be found for the set
of Rabi frequencies that achieve a gate close to TOFFOLI.
However, the latter cannot be exactly achieved since one needs
to maximize, simultaneously, eight trigonometric functions
of incommensurate frequencies. Clearly, the only important
parameter in our model is the ratio of the Rabi frequencies
rather than their actual value. The time needed in order to
implement the whole gate is tG = (π/η)[2

∑
k=a,b,c�

−1
k +

�−1
1 ], where �k is the Rabi frequency of pulse k = a,b,c in

Eq. (2). In such a unitary picture, the implementation of Eq. (3)
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FIG. 1. (Color online) Reconstructed process matrix for ÛT . The
matrix is expressed in the three-qubit operator basis formed by {I ≡
1̂,X ≡ σ̂x ,Y ≡ −iσ̂y,Z ≡ σ̂z}. We show the moduli of the matrix
entries. The differences with respect to the elements of an ideal gate
are O(10−4).

for a time tT is sufficient to implement a TOFFOLI-like gate over
the logical target qubit {|0L〉,|1L〉}, which shows the striking
economic nature of our proposal. Surely, the use of excited
vibrational states would open the protocol to the effects of
phononic heating and losses. The necessity of removing such
excitations motivates the use of the encoding-decoding steps
given by R̂.

To evaluate the quality of our proposal, the dynamics
encompassed by the physical processes described so far
should be characterized in a state-independent way. In what
follows, we take an experiment-inspired approach and use
QPT [15] as the tool to estimate the performance of the
gate. Any completely positive N -qubit map �(t) is spec-
ified by a set of 4N orthogonal operators {K̂m} such that
�(t)�(0) = ∑

m,n χmn(t)K̂m�(0)K̂†
n, where ρ(0) is the initial

density matrix of the system and we have introduced the
4N × 4N time-dependent process matrix χ (t) that incorporates
full information on the details of the evolution embodied by
�(t). While a full description of the methodology needed to
reconstruct χ (t) is given in the Appendix , here we remind
that the process matrix allows us to evaluate the closeness of
our protocol to the ideal TOFFOLI (having process matrix χT )
by means of the gate fidelity Fg(tG) = Tr[χT χ (tG)]. In turn,
this is useful to determine the average state fidelity F s(tG) =
[2NFg(tG)+1]/(2N+1), which is obtained by averaging the
fidelity between the ideal and the actual output states over
all pure inputs [20]. In Fig. 1 we show the representation
of the reconstructed process matrix in the tensorial operator-
basis constructed by considering the single-qubit operators
{1̂,σ̂x, − iσ̂y,σ̂z}. The entries of χ (tG) differ from those of
the ideal one by O(10−4), showing the excellent quality of
our gate, which has average infidelity 1 − F s(tG) as small as
10−5.

III. ANLLYSIS OF IMPERFECTIONS

So far, we have considered only unitary evolutions. In order
to provide an estimate of the efficiency of the gate under
more realistic experimental conditions, we need to consider
some of the most severe sources of imperfections in the
ion-trap architecture addressed here [6]. In the following, we
concentrate on quality-limiting effects of a nontechnical nature
and take into account decoherence of the quantum information
stored in the phononic mode given by the vibrational mode of
the ion-string as well as heating due to the coupling between the
phononic mode and a bath at finite temperature. By taking fast
and intense optical pulses [6,17,21], the duration of sideband-
resolved light-ion interactions necessary to implement R̂ can
be made much shorter than the radiative lifetime of the ionic
excited states, the heating of the center-of-mass mode, and the
trap period. We thus neglect any decoherence effect occurring
during the realization of single-ion gates, as achieved in
Refs. [6,22], which are the experiments closer in spirit and
design to our own proposal. At the same time, R should be
applied to qubit 1 only. For a trapping potential having axial
frequency ∼1.2 MHz [6], light pulses with small Gaussian
waists of about 2.5 μm and an electro-optic deflector can be
used to efficiently address individual ions with only a rather
small addressing error. As stated in Ref. [6], the latter does not
limit the accuracy of one-qubit operations at a fundamental
level and mostly accounts for a technical imperfection. We
thus consider the master equation

∂tρ(t)=−i[ĤTC,ρ(t)] − κ(n̄+1)

2
[{â†â,ρ(t)} − 2âρ(t)â†]

−κn̄

2
[{ââ†,ρ(t)} − 2â†ρâ]−γ [â†â,[â†â,ρ(t)]], (6)

where ρ(t) is the density matrix of the ionic string and the
vibrational mode, κ is the heating rate, n is the mean number
of phononic quanta of the bath at a given temperature, and
γ is the dephasing rate. Analogously to the unitary case, the
dynamical map EH arising from Eq. (6) should be preceded
and followed by the R̂ gate. That is, any initial state ρ(0) of
the three-ion system evolves until time tG according to

ρ(tG) = R̂†[EH (R̂ρ(0)R̂†)]R̂. (7)

The resulting open-system dynamics implies, in principle,
leakage from the computational space that would spoil the
desired gate. In particular, the thermal evolution included in
our assessment could lead to abandon the subspace where a is
in state |0〉a . The occurrence of such events and their influences
are estimated by determining again the closeness of the map
in Eq. (7) to the ideal gate. We have thus used QPT to quantify
the average gate fidelity for the noise-affected evolution.

We have first considered the effects of heating of the
phononic mode due to noisy electric potentials on the surface
of the trap electrodes, resulting in an effective bath at nonzero
temperature. We have taken (κ−1,γ −1) = (140,85) ms, values
fully consistent with the center-of-mass mode and in line with
the recent experiments [6], and considered n as increasing
up to a maximum number of excitations equal to 5 [6].
We have then reconstructed the process matrix χ̃(tG) and
checked its resemblance to χT by calculating the discrepancy
|χ̃ (tG)−χT |. Figure 2 shows the maximum value per row of
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FIG. 2. (Color online) We take the largest entry per row in the
discrepancy matrix |χ̃(tG) − χT | for n = 5, γ /� = 10−3. We have
highlighted the bars corresponding to some of the operator-basis
elements.

such matrix. The largest deviation out of the 64 values gathered
in this way is 
2.5 × 10−3. In fact, the evaluation of the
average gate fidelity leads to F s = 0.994 855, which is 99.5%
the value achieved for n = 1. The remarkable insensitivity
of the scheme to the effects of an increased mean phonon
number is therefore proven. Our analysis allows us to conclude
that EH results in a dynamics that is well approximated by
ρ(tG) ≈ ρq(tG) ⊗ |0〉〈0|, where ρq(tG) is the density matrix
of the three-ion system. Our analysis allows us to conclude
that results in a dynamics that is well approximated by Our
next step is the evaluation of the dephasing effects, which we
performed by solving Eq. (6) for n = 1, κ−1 = 140 ms, and
growing γ . Figure 3 (circles) shows the quasi-independence
of the effective gate from a raise of γ by almost one order
of magnitude from the value estimated in Ref. [6] (1−F s ∈
[10−5,0.07] for γ /� ∈ [0,12.5] × 10−3).

As remarked above, a key point in our proposal is the
maintenance of precise ratios of the Rabi frequencies of the
operations involved in the construction of ÛT . We know that,
in a real experimental setup, such a task might be quite

FIG. 3. (Color online) Bottom horizontal axis and circular points:
Average state fidelity for ÛT vs γ /�. At γ = 0, it is F s = 0.999 988,
while for the larger dephasing rate that we have considered we have
F s > 0.93. Top horizontal axis and squared points: Average gate
fidelity for ÛT vs the variance � of the distribution taken for the
amplitudes of lasers. The lines are guides for the eye.

FIG. 4. (Color online) (a) Moduli of the real part of the process
matrix associated with the unitary gate ÛT . The top-left corner of
the matrix corresponds to the operator-basis element I ⊗ I ⊗ I .
(b) Same as in panel (a) but for the imaginary parts of the χ matrix.

tricky to accomplish and lasers fluctuations can, in principle,
jeopardize the stability required in the proposed scheme. Since
a unique analytical description of such a technical imperfection
is still missing we have adopted a statistical approach solving
Eq. (6) again, this time treating the �j ’s as stochastic variables
which randomly oscillate around the corresponding ideal
values. More in detail, we have taken �

′
j = �j + δ�j , with

δ�j/�j a uniformly distributed zero-mean variable with
variance � ∈ [1,5]%. Using a sample of 500 randomly drawn
values of δ�j and evaluating the corresponding dynamical
evolution, we have calculated the sample-averaged F s . In
the worst-case scenario given by � = 5% (which anyhow
overestimates current experimental capabilities), we have
achieved an average fidelity of 
71%. Finally, we have
estimated the influence that a residual thermal character of
the initial vibrational state has on our scheme. By preparing
a in a low-temperature thermal state with a mean number of
excitations up to 10−1, we have found that the leakage from
the computational space remains quite negligible, with a gate
fidelity that in the unitary case is never smaller than 0.901.
The analysis has been repeated also in the open-system case,
finding a fidelity equal to 0.8962 for n = 5 and γ = 85 ms,
whileF s = 0.6396 for the case of fluctuating Rabi frequencies
with � = 5%. A quite good robustness of the gate against such
a state-preparation error is thus demonstrated.

Any multiqubit gate can be decomposed as a concatenation
of single-qubit and two-qubit operations belonging to a set
of universal quantum gates. In particular, it is known that
such a concatenation for the three-qubit TOFFOLI gate involves
six control-NOT gates and nine single-qubit rotations. [1]. In
order to prove the advantages of our scheme, with respect to a
more traditional quantum circuit approach, it is reasonable to
compare the fidelity achieved by our protocol to what is found
by decomposing TOFFOLI with state-of-the-art two-qubit gates.
In doing so we refer to the work reported in [23]. Here a fidelity
of 0.85 was obtained concatenating two control-NOT gates. By
ascribing the largest source of imperfections to the two-qubit
gates in the decomposition, TOFFOLI would be realized with
0.614 fidelity. By extrapolating the behavior shown by the
squared points in Fig. 3, � ∼ 5.5% is required to match this
value, which is a very pessimistic estimate for the fluctuations
of the Rabi frequencies.

Recent experiments have demonstrated schemes to imple-
ment two-qubit gates unaffected by intrinsic error mechanisms
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[24]. While the circuit decomposition of the TOFFOLI gate
based on this sort of building blocks is not straightforward, the
use of such gates might also lead to a more robust two-qubits
decomposition.

IV. CONCLUSIONS

We have discussed a scheme for the implementation of
a high-fidelity three-qubit TOFFOLI gate that requires, in
principle, about 44% of the total number of operations
needed by a very recent experimental demonstration in a
trapped-ion system. Despite using a work-space larger than
that of three qubits, our protocol is remarkably robust and
affected by only negligible leakage from the computational
space. It enjoys the gate-catalysis effects provided by the
use of higher-dimensional information carriers. Using QPT,
we have characterized the performances of the gate adopting
parameters extracted from cutting-edge experiments. We have
estimated the influence of some of the most relevant causes
of imperfections in the setup at hand, finding quite a striking
resilience. Economic schemes such as ours are important in the
design of experimental architectures for trapped-ion quantum
computing to be promptly implemented in state-of-the-art
settings [6,25].
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APPENDIX: QUANTUM PROCESS TOMOGRAPHY

The complete characterization of a general completely
positive dynamical map �N over an N -qubit register can be
performed by relying on the framework of QPT [15]. By using
this formalism it is possible to determine of a complete set
of orthogonal operators {K̂m} over which one can perform the
decomposition of each Kraus operator K̂i = ∑

m eimK̂m so as
to get

�N� =
∑
m,n

χmnK̂m�K̂†
n, (A1)

where the channel matrix χmn = ∑
i eime∗

in has been intro-
duced. This is a pragmatically very useful result as it shows
that it is sufficient to consider a fixed set of operators,

whose knowledge is enough to characterize a channel through
the matrix χ . We consider the specific case of a system
of three qubits. The action of � over a generic element
of a basis in the space of the 23 × 23 matrices can be
determined by knowing the action of � over the fixed set
of states constructed as the tensor product of the single-
qubit ensemble of states |0〉,|1〉,|+〉 = (1/

√
2)(|0〉 + |1〉) and

|+y〉 = (1/
√

2)(|0〉 + i|1〉) as follows. Let us illustrate this
argument by means of a single-qubit example. The action of
�1 on the generic element |n〉〈m| of a single-qubit density
matrix (n,m = 0,1) can be reconstructed as

�1(|n〉〈m|) = �1(|+〉〈+|) + i�1(|+y〉〈+y |)
− (i + 1)[�1(|n〉〈n|) + �1(|m〉〈m|)]/2. (A2)

The argument can be easily extended to the case of three qubits,
involving 43 = 64 ensemble states. Therefore, it is straightfor-
ward to see that all the entries �k = |n1,n2,n3〉〈m1,m2,m3|
(nj ,mj = 0,1 with k = 1,..,64) of an 8 × 8 density matrix
can be found via state tomography of 64 fixed states. Clearly,
�(�j ) = ∑

k λjk�k as {�k} form a basis. From the above
discussion we have

�3�j =
∑
m,n

K̂m�j K̂†
nχmn =

∑
m,n,k

βmn
jk �kχmn =

∑
k

λjk�k,

(A3)

where we have defined K̂m�j K̂†
n = ∑

k βmn
jk �k so that we can

write

λjk =
∑
m,n

βmn
jk χmn. (A4)

The complex tensor βmn
jk is set once we make a choice for

{K̂i} and the λjk’s are determined from a knowledge of ��j .
By inverting Eq. (A4), we get the channel matrix χ and
characterize the map. Let V̂† be the operator diagonalizing
the channel matrix. Then it is straightforward to prove that
if Di are the elements of the diagonal matrix V̂†χ V̂ , then
eim = √

DiV̂mi , so that

K̂i =
√

Di

∑
j

V̂jiK̂j . (A5)

As discussed in detail in the body of our paper, we have
determined the process matrix of our TOFFOLI gate, finding
striking closeness with the ideal case. In Fig. 4 we provide
further details of such reconstruction, by showing the moduli
of both the real and imaginary parts of the χ matrix elements.
Moreover, we have computed the full set of Kraus operators
corresponding to the map associated with the gate ÛT presented
in the main body of the paper, finding

K̂1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −5.55 × 10−17 0 0 0 0 0 0
−5.55 × 10−17 1 0 0 0 0 0 0

0 0 1 −1.11 × 10−16 0 0 0 0
0 0 −1.11 × 10−16 1 0 0 0 0
0 0 0 0 0.999 −5.55 × 10−17 0 0
0 0 0 0 −5.55 × 10−17 0.998 0 0
0 0 0 0 0 0 −3.33 × 10−16 1
0 0 0 0 0 0 1 −4.44 × 10−16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A6)
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with K̂j = 0 (j = 2, . . . ,64). Clearly, the fact that only a
single Kraus operator is different from the null matrix is
the result of the unitarity of the process at hand. Beside

tiny elements no larger than 10−16 (likely arising from small
computational inaccuracies), K̂1 turns out to be identical to
Eq. (6) in the main body of the paper.
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[9] J. Fiurásěk, Phys. Rev. A 73, 062313 (2006); R. Ionicioiu, T. P.
Spiller, and W. J. Munro, ibid. 80, 012312 (2009).

[10] S. S. Ivanov and N. V. Vitanov, e-print arXiv: 1106.0270v1.
[11] M. S. Tame, M. Paternostro, M. S. Kim, and V. Vedral, Phys.

Rev. A 73, 022309 (2006).
[12] A. scheme for a trapped-ion controlled-controlled-phase gate

has been presented in C.-Y. Chen and S.-H. Li, Eur. Phys. J. D
41, 557 (2007). Such a proposal differs from ours in both the
role played by a and the necessity of two extra local operations
on the target qubit for the achievement of Toffoli.

[13] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

[14] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999).
[15] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2000).

[16] The degeneracy of |lj 〉 and |gj 〉 can be split by a magnetic
field of 1.5 G, giving rise to a difference in frequency of about
4.2 MHz.

[17] D. Leibfried, R. Blatt, C. Monroe, and D. WIneland, Rev. Mod.
Phys. 75, 281 (2003).

[18] A. Stute, B. Casabone, B. Brandstätter, D. Habicher, P. O.
Schmidt, T. E. Northup, and R. Blatt, e-print arXiv:1105.0579v1.

[19] M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 (1968).
[20] J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James,

N. K. Langford, T. C. Ralph, and A. G. White, Phys. Rev. Lett.
93, 080502 (2004); A. Gilchrist, N. K. Langford, and M. A.
Nielsen, Phys. Rev. A 71, 062310 (2005).

[21] P. J. Lee, K.-A. Brickman, L. Deslauriers, P. C. Haljan, L.-M.
Duan, and C. Monroe, J. Opt. B 7, S371 (2005).

[22] S. Gulde, M. Riebe, G. P. Lancaster, C. Becher, J. Eschner,
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