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a b s t r a c t

Accurate computation of time-dependent well bore pressure is important in well test anal-
ysis – a branch of petroleum engineering where reservoir properties are estimated by com-
paring measured pressure responses at an oil well to results from a mathematical model.
Similar methods are also used in groundwater engineering. In this paper we present the
new approach of decoupled overlapping grids for accurately computing time-dependent
pressure at the oil well. Our method is implemented in two stages: a global stage with a
simple point or line source well approximation, and a local post-process stage with the
well modeled correctly as an internal boundary. We investigate the accuracy of our method
for a representative 2D problem in both homogeneous and heterogeneous isotropic
domains, and compare our results with the widely used Peaceman well index solution
(in the homogeneous case), and the approximate solution on locally refined grids. We also
present a theoretical analysis that explains the observed Oðh2Þ behavior of the error in our
method for the homogeneous case.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models that can accurately reproduce dynamic early-time pressure behavior at the well bore are important
in well test analysis. Well test analysis is a reservoir assessment technique used to estimate reservoir properties, for instance
reservoir size and permeability, and well bore properties like effective well radius and exact well location. The process in-
volves matching field measurements of the pressure response due to changing production or injection rates taken at well
bore to the output of a mathematical model. An introduction to well test analysis can be found in standard texts like [1–3].

Transient well test analysis uses a broad spectrum of models, ranging from the linear pressure equation in homogeneous
reservoirs through to full multiphase flow in reservoirs with the heterogeneous ‘‘highly detailed medium parameters’’ of [4].
However, much (perhaps most) practical transient well test analysis is based on the linear pressure equation in a homoge-
neous or mildly heterogeneous medium. Established well testing techniques rely heavily on analytic models. For example,
the exponential integral function solution for the pressure generated by a fully penetrating line source in a homogeneous
infinite reservoir appears in many standard texts on well test analysis. This model is usually combined with the method
of images to account for the reservoir boundaries. Another method often used to model arbitrary well configurations is
the integration of appropriate source functions along the well length, as seen in [5–10]. However these models are derived
for simple reservoir properties and shapes, and are difficult to adapt to the complex heterogeneity and geometry of realistic
reservoirs.

An alternative approach is to match the measured pressure response to the well bore pressure from a numerical simu-
lation. This offers more flexibility as complex reservoir features can be incorporated into the numerical simulation. One
difficulty in this approach comes from the difference in scale between the diameter of a well bore (�10 cm) and the size
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of a reservoir (typicallyOð1Þ � Oð10Þ km). Pressure gradients are largest in the region closest to the well bore, and this region
is typically smaller than the spatial size of the grid blocks used in reservoir simulation. Standard reservoir simulations
approximate a well by a point source (in 2D) or a line source (in 3D) and then post-process the results to get the pressure
at the well bore surface. The Peaceman [11,12] well index is the widely accepted standard for computing steady-state well
bore pressure from coarse grid simulations, but it performs poorly for initial transient well bore pressure. Transient well in-
dex models such as in [13,14], and by Peaceman [11], extend the steady-state Peaceman well index concept to computing
early-time dynamic well bore pressure. Because these models rely on analytic solutions, they can be difficult to formulate for
general heterogeneous bounded reservoirs.

It is also possible to model the full detail of the reservoir and well bore in a finite element approximation, using a highly
refined mesh in the well vicinity. However this would significantly increase computational cost since many model evalua-
tions are usually required in the parameter fitting process involved in well test analysis, and the computational mesh would
have to be regenerated in the entire domain to deal with model parameter changes in well properties such as radius, location
or orientation. This is especially true for 3D field-scale simulations with a large number of wells.

The method of decoupled overlapping grids presented in this work is an attractive alternative to the well modeling tech-
niques described above. A schematic representation of the method for a 2D problem is shown in Fig. 1. The method is imple-
mented in two stages. In the first (global) stage, the problem is solved in the entire reservoir with the well approximated by a
point source or a line source. This stage can be implemented in standard reservoir simulators. In the second (local) stage, the
problem is solved in a smaller near-well region with the well modeled as an internal boundary. This stage is a post-process
stage since it carried out at the end of the first stage, and the local domain external boundary data is interpolated from the
first stage results. This is conceptually similar to Peaceman post-processing, but it is much more flexible since there are no
built-in assumptions about the form of the solution or properties of the medium in the vicinity of the well. Note that the
shapes of the domains and their grids in Fig. 1 are for illustration and various types are used in practice.

The method of decoupled overlapping grids offers advantages over analytic well models and numerical well modeling by
local grid refinement. First, since a fine local mesh can be fitted to the well bore, we are able to recover the high level of accu-
racy associated with analytic and locally refined numerical models. However while the analytic models are restricted to sim-
ple reservoir configurations, the method of decoupled overlapping grids, being purely a numerical model, can be applied to
any well configuration and reservoir geometry and heterogeneity. Second, by decoupling the local fine mesh calculations
from the global simulation, we are able to modify the properties of the well, like well location and shape, without the need
to regenerate the mesh in the entire reservoir domain, in contrast to well modeling by local grid refinement. Third, both glo-
bal and local effects are accurately accounted for. Complex reservoir features can be incorporated into the computations in a
fast and efficient manner by solving the first stage in already existing reservoir simulators built for this purpose, while locally
varying well properties which are of a significantly smaller spatial scale than can be captured by these reservoir simulators
are incorporated into the post-process stage. The decoupling of global and local simulations also has the advantage that the
local stage can be implemented as an add-on to existing reservoir simulators to improve results in the near-well region, and
the local stage mesh can be easily adapted to the well shape for accurate and efficient computation of solutions.

Our method is different from the traditional composite overlapping grids method in the literature, for example in [15–17].
In composite overlapping grids, the equations are solved simultaneously on a grid system composed of component meshes
that overlap in some regions. Duncan and Qiu [17] applied the composite overlapping grids method to solve the pressure
equation within the context of well test analysis. They gave theoretical proofs of stability and convergence for a 1D problem,
and demonstrated numerically that convergence for a 2D problem appears to behave in a similar manner as the 1D problem.

A key feature of the method in this paper is that data at the external boundary of the post-process stage is obtained from a
global simulation where the well is modeled as a point or line source. The error in this boundary data as a result of the well
approximation is the modeling error, and it decreases with increased distance away from the point source, as will be shown
in Section 3. So by measuring at a sufficient distance away from the point source, the modeling error in the external bound-
ary data of the post-process stage can be kept within acceptable bounds. A possible alternative approach to reducing the
modeling error is to iterate the first and second stage processes, but we have not investigated this. Apart from the modeling
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reRecord pressure at
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First stage with point source well
approximation

Second stage with external

Fig. 1. Schematic representation of decoupled overlapping grids method for the model problem.
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error, the numerical methods that are used in the first and second stage simulations also contribute to the final error in the
well bore pressure. We will refer to the error contribution from the numerical methods as the numerical error.

We will restrict our discussion to a 2D domain. We start by describing the model problem and its analytic solution. We
then investigate the error in the method by considering numerical examples in homogeneous and heterogeneous domains.
We also present a theoretical analysis of the observed error convergence behavior for the transient problem in a homoge-
neous domain.

2. Governing equations

A schematic representation of the proposed method for a 2D problem is shown in Fig. 1. In the global (first stage) sim-
ulation the well is approximated by a point source. We assume a no-flow outer boundary condition for the global domain.
During the global stage simulation, the time-dependent pressure is recorded at the points corresponding to the outer bound-
ary of the local second stage simulation domain. These recorded data form the external boundary data for the local (second
stage) simulations.

We assume single-phase slightly compressible fluid flow. For a homogeneous, isotropic reservoir, and a well producing at
constant rate, the global (first stage) equations are:

1
g
@pps

@t
ðx; tÞ ¼ r2ppsðx; tÞ þ Qdðx� x0Þ; in X� ð0; T�; ð1aÞ

@pps

@n
ðx; tÞ ¼ 0; in @X� ð0; T�; ð1bÞ

ppsðx;0Þ ¼ 0; in X: ð1cÞ

Here X is the global computational domain, pps represents the pressure draw-down for a point source well, g is the diffu-
sivity coefficient, d is the Dirac delta function with x0 representing the point source location, and Q = ql/k is the scaled flow
rate at the well bore (k is the domain permeability and l is the fluid viscosity). The normal direction in (1b) is out of X. Like-
wise the local (second stage) equations are:

1
g
@pfw

@t
ðx; tÞ ¼ r2pfwðx; tÞ; in C� ð0; T�; ð2aÞ

@pfw

@n
ðx; tÞ ¼ � Q

j@Cwj
¼ � Q

2prw

� �
; in @Cw � ð0; T�; ð2bÞ

pfwðx; tÞ ¼ ppsðx; tÞ; in @Co � ð0; T�; ð2cÞ
pfwðx;0Þ ¼ 0; in C: ð2dÞ

Here pfw is the pressure draw-down for a well of finite diameter, and C is the local post-process domain with the internal
(well) and external domain boundaries represented by @Cw and @Co respectively. The normal direction in (2b) is out of the
well. In this work wells are assumed to be of circular cross-section. Hence in (2b), j@Cwj = 2prw where rw is the radius of the
well bore.

In the rest of the paper we set g = 1, Q = 1 without loss of generality, and carry out illustrative calculations on a unit
square domain X with well radius rw = 10�3.

3. Analytic solution

We begin with a discussion of analytic solutions for two reasons. First, a comparison of the analytic solutions for the point
source well and the finite radius well problems demonstrates the modeling error. Second, the analytic solutions discussed
here are the benchmark for the numerical example in Section 4.

The analytic solution in X (unit square) will be obtained by applying the method of images to the infinite domain solu-
tions which we give next. A point source well producing at a constant rate in an infinite, homogeneous, isotropic domain
induces a radially symmetric pressure distribution described by:

1
g
@pps

@t
¼
@2pps

@r2 þ
1
r
@pps

@r
; ð3aÞ

ppsðr;0Þ ¼ 0; ð3bÞ
ppsðr !1; tÞ ¼ 0; ð3cÞ

2p lim
r!0

r
@pps

@r

� �
¼ �Q : ð3dÞ

The solution to (3) is the well known exponential integral function:

ppsðr; tÞ ¼ �
1
2

Q
2p

Ei � r2

4gt

� �� �
: ð4Þ
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Likewise for a well of finite radius rw, we have the following equations:

1
g
@pfw

@t
¼ @

2pfw

@r2 þ
1
r
@pfw

@r
; ð5aÞ

pfwðr;0Þ ¼ 0; ð5bÞ
pfwðr !1; tÞ ¼ 0; ð5cÞ
@pfw

@r
ðrw; tÞ ¼ �

Q
2prw

: ð5dÞ

A closed form solution is given in [2], but it is very difficult to evaluate or to approximate and we instead use Laplace trans-
form methods. In Laplace space:

p̂fwðr; sÞ ¼
Q
2p

ffiffiffigp K0 r
ffiffiffiffiffiffiffiffi
s=g

p� �
rwð

ffiffi
s
p
Þ3K1ðrw

ffiffiffiffiffiffiffiffi
s=g

p
Þ

0
@

1
A; ð6Þ

where s is the Laplace transform variable and K0, K1 are modified Bessel functions of the second kind. The numerical inver-
sion of (6) to the real time domain is carried out using the Iseger [18] algorithm , which is very accurate.

The modeling error in the pressure at fixed radii from the well is plotted in Fig. 2. The markers represent the modeling
error in an infinite domain, while the broken lines represent the modeling error in the finite (unit square) computational
domain X with the well at its center. Fig. 2 shows that the error measured in both finite and infinite domains are the same
initially since the influence of the boundary is insignificant at early times, but as the simulation progresses the error in the
finite domain settles to a near-constant value due to boundary effects. The maximum error occurs during an initial transient
phase except when the measurement radius is close to the domain boundary, in which case the initial transient phase is ab-
sent and the maximum error occurs at steady-state (see rD = 300 in Fig. 2). Also it is seen that the maximum modeling error
decreases as the measurement radius increases.

4. Numerical Example 1

For this example the well is located at the center of a unit square isotropic and homogeneous reservoir. The quantity of
interest in the calculations is the spatially averaged well bore pressure, which is simply an average in the angle variable in
standard 2D polar coordinates. The local second stage domain is the annulus illustrated in Fig. 1. For this and all the other
numerical examples the equations are first semi-discretized in space, and then time integration is performed using ode15s,
a Matlab variable order initial value ODE solver. More details of the two stages of the simulation are given below.

4.1. First stage simulation

The first stage equations in (1) are semi-discretized on a finite element mesh using linear Lagrange elements. The mesh is
uniform, that is, there is no local refinement near the point source well. In addition the location of the point source is not
constrained to a vertex, rather the vertices of the enclosing triangle are defined to be point sources whose strengths are
weighted depending on the location of the point source.

At the end of the first stage simulation the average pressure is measured at fixed radii re = 0.1, 0.2, 0.3. These radii form
the outer boundaries for the second stage simulations. The average pressure is calculated by first linearly interpolating the
first stage solution to points on re and then taking the average.

Fig. 2. Absolute error in pressure draw-down against dimensionless time. Markers: Infinite domain. Lines: Finite domain.
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Fig. 3 shows the maximum absolute error in the pressure at re taken over dimensionless time 4tD 2 [10�2,104] where
tD ¼ gt=r2

e . The maximum error is plotted against the degrees of freedom (d.o.f) of the underlying finite element mesh.
The average pressure measurement at re is compared against the analytic point source solution in Section 3 to get the numer-
ical error, and against the analytic finite radius well solution in Section 3 to get the sum of the modeling and numerical error.
It is seen that the modeling error at these re is noticeable only for significantly fine mesh sizes. Also plotted in Fig. 3 is a line of
slope -1, which by comparison indicates an Oðh2Þ convergence of the maximum absolute error at re, where h denotes the
mesh size. A proof of this convergence rate is given in Section 7.1.

4.2. Second stage simulation

The computational domain for this example is the annulus illustrated in Fig. 1 and it is isotropic and homogeneous. Work-
ing in standard r � h polar coordinates centered at the well, the quantity of interest is the angular (h) average of the pressure
at the well bore. Because of the properties of this domain, one can replace the full 2D problem in (2) by the equivalent 1D
problem below for the angular average pressure at distance r from the well center. Note that this is not an essential part of
the method, but, when it can be used for this and similar problems, it gives a cost saving.

To refine the grid near the well bore, the coordinate transformation

r ! ln r ¼def
R ð7Þ

is applied. The transformation is chosen to accurately capture the steady state behavior [19], but more sophisticated mesh
adaptation could of course be used in its place. Using (7) we have the following equations for the second stage:

1
g
@pfw

@t
¼ e�2R @

2pfw

@R2 ; Rw < R < Re; t > 0; ð8aÞ

@pfw

@R
¼ � Q

2p
; R ¼ Rw; t > 0; ð8bÞ

pfwðRe; tÞ ¼ ppsðRe; tÞ; R ¼ Re; t > 0; ð8cÞ
pfwðR;0Þ ¼ 0; Rw < R < Re; ð8dÞ

where pps(Re, t) is the average pressure at radius Re measured from the global solution. Space discretization of (8) is per-
formed using the vertex-centered finite volume method.

Numerical experiments for different refinement levels of the radial mesh were carried out. From these we found that set-
ting Drmax = h, where Drmax is the maximum radial mesh size and h is the average triangle size of the underlying global sim-
ulation, gives maximum absolute errors in well bore and external boundary pressure that are within the same order of
magnitude. The maximum absolute error in the well bore pressure is plotted in Fig. 4 against the number of radial grid points
for Drmax = h, h/2, h/4. It is seen that while there is a marked decrease in the absolute error in refining from Drmax = h to
Drmax = h/2, there is little gain in accuracy in refining further to Drmax = h/4. Also shown in Fig. 4 is a line of slope �2 which
by comparison indicates an OððDrmaxÞ2Þ convergence of the maximum absolute error at rw. A proof of this convergence rate is
given in Section 7.2.

In Fig. 5 the absolute maximum error in the well bore pressure and external boundary pressure of the local domain are
plotted against the degrees of freedom (d.o.f) of the underlying global FEM mesh. It can be seen that for Drmax 6 h/2, the error

Fig. 3. Maximum absolute error in pressure drawdown at rD = re/rw. Analytic solution = point source well solution (solid lines) and finite radius well
solution (broken lines).
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in the well bore pressure is bounded above by the error in the external boundary pressure, Therefore as a guideline we pro-
pose that Drmax should be set to h/2. We note here that the same trend was observed when the first stage was semi-discret-
ized using the finite difference method on a rectangular mesh. This is the implementation often found in commercial
reservoir simulators.

4.3. Comparison with solution on locally refined grids

We compare the well bore pressure calculated by decoupled overlapping grids to that calculated on two types of locally
refined meshes. The first, shown in Fig. 6(a), is a triangular mesh with local grid refinement (LGR) used to resolve the well
bore. Spatial discretization is by the finite element method using linear Lagrange elements. The second, shown in Fig. 6b, is a
hybrid grid with a polar mesh close to the well bore and a rectangular mesh in the rest of the domain. Spatial discretization is
by cell-centered finite volume method. The polar and rectangular sections of the mesh are connected by irregularly shaped
blocks. This method was proposed by Pedrosa and Aziz [20] for use in reservoir simulation, and has been subsequently
adopted in numerical reservoir simulation studies for instance in [21–23]. The benchmark solution is the analytic solution
for a finite radius well calculated in Section 3.

A comparison of the maximum absolute error in well bore pressure for the locally refined meshes and the decoupled over-
lapping grids method is shown in Fig. 6c and d. For the decoupled overlapping grids solution in Fig. 6c, the first stage com-
putation is on a triangular mesh using the finite element method (linear Lagrange elements) and in Fig. 6d, the first stage
computation is on a rectangular mesh using cell-centered finite volume method. In both examples the second stage simu-
lation is by the vertex-centered finite volume method. The external radius for the second stage simulation is re = 0.1 and the
maximum mesh size Drmax = h/2. Note that re = 0.1 gives the least accurate results for the example in Section 4.2. For con-
sistency, the radius of the largest circle in the polar inset of the hybrid grid is also set to 0.1. The plots in Fig. 6c and d clearly
illustrate that the decoupled overlapping grids method performs significantly better for similar degrees of freedom.

The accuracy of the finite element solution with local refinement near the well bore can be improved by using quadratic
Lagrange elements instead of linear Lagrange elements. Fig. 7 shows the absolute error in well bore pressure on a locally

Fig. 4. Maximum absolute error in average well bore pressure over time interval 4tD 2 [10�2,104].

Fig. 5. Broken lines: Maximum absolute error in well bore pressure. Solid lines: Maximum absolute error in external boundary pressure. The maximum
error is measured over time interval 4tD 2 [10�2,104].
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refined mesh using quadratic Lagrange elements, together with the absolute error in well bore pressure calculated by the
decoupled overlapping grids method for different refinement levels of the underlying global mesh and with re = 0.1,
Drmax = h/2. The quadratic Lagrange elements simulation has the same degrees of freedom as the most accurate point of
the linear Lagrange FEM simulation in Fig. 6c.

Fig. 6. Maximum absolute error in average well bore pressure over time interval 4tD 2 [10�2,104]. For decoupled overlapping grids simulation, re = 0.1 and
Drmax = h/2.

Fig. 7. Comparison with finite element method solution using quadratic Lagrange elements on mesh with LGR at well bore. For decoupled overlapping grids
simulation, re = 0.1 and Drmax = h/2.

N. Ogbonna, D.B. Duncan / Journal of Computational Physics 231 (2012) 135–151 141



Although the solution from quadratic Lagrange elements is very accurate as seen in Fig. 7, this method could potentially
become highly computationally intensive for a well test study. For instance a change in well position will require a regen-
eration of the mesh in the entire simulation domain for a well bore resolved by local grid refinement. On the other hand for
the decoupled overlapping grids method only the position of the point source need be changed in the global problem, to-
gether with a possible regeneration of the mesh on the significantly smaller local region surrounding the well bore for
the post-process stage.

4.4. Comparison with Peaceman well index solution

The well index is used to calculate well bore pressure from well block pressure according to

pw ¼ pb �
q

WI
; ð9Þ

where pw is the well bore pressure, pb is the well block pressure and WI is the well index. The conventional well index pro-
posed by Peaceman [11] for a fully-penetrating vertical well in a reservoir of thickness H takes the form

WI ¼ 2pkH
ln req

rw

; ð10Þ

where req is an equivalent radius defined such that the pressure at this radius is equal to the numerically computed wellblock
pressure. For a finite difference simulation on square gridblocks, Peaceman [11] gave the equivalent radius as:

req ¼ 0:14
ffiffiffi
2
p

Dx; ð11Þ

for steady-state flow and:

req ¼ Dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gt
Dx2 exp �c� 4pkH

ql
pb

� �s
ð12Þ

for unsteady-state flow. In (12), c � 0.5772 is Euler’s constant and pb is the well block pressure draw-down.
Fig. 8 shows a comparison of the maximum absolute error in well bore pressure calculated by the decoupled overlapping

grids method and from the Peaceman well index with equivalent radius given in (11) and (12). The same global solution is
used in all cases. This global solution is evaluated on a rectangular mesh using finite difference discretization in space. The
benchmark solution is the analytic solution for a finite radius well calculated in Section 3.

For lines 2 and 3, the well bore pressure is calculated using the decoupled overlapping grids method with Drmax = h/2 and
the external radius of the local post-process domain initially re = 0.1. For line 2, re remains constant as the underlying global
grid is refined, while for line 3, re = Ch as the underlying global grid is refined, where C is a positive constant.

For line 4 the well bore pressure is calculated from the Peaceman well index with req given in (11). For line 5, the equiv-
alent radius is given by (12) at early time and settles to (11) at steady-state. Also plotted in Fig. 8 is the maximum absolute
error at re, and a line of slope = �1 which represents Oðh2Þ convergence rate.

Fig. 8 clearly shows the better performance of the decoupled overlapping grids method compared to the Peaceman well
index solutions. For the decoupled overlapping grids simulation, an Oðh2Þ convergence of the maximum absolute error is
observed for both well bore pressure and the pressure at the external boundary of the local domain when the size of the
post-process domain re ¼ Oð1Þ as the global grid is refined. Also the maximum absolute error in the well bore pressure is
bounded above by that of the external boundary pressure. On the other hand setting re ¼ OðhÞ means that the error in
the external boundary pressure gets worse as the global grid is refined since measurements are made closer to the point

Fig. 8. Comparison of maximum absolute error in well bore pressure from the decoupled overlapping grids method and using Peaceman well index.
Maximum taken over 4tD 2 [10�2,104].
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source. From line 3 in Fig. 8, it is seen that the maximum absolute error in the well bore pressure remains fairly constant in
this case, similar to the error obtained for the Peaceman well index calculations.

5. Numerical Example 2

In this example the well is moved close to the impermeable reservoir boundary, so that the post-process domain bound-
ary intersects the global domain boundary. This example illustrates the relative ease with which the method of decoupled
overlapping grids can be applied to compute transient well pressure in complex reservoir geometry. The principle extends to
other similar problems such as a well close to a fault or a fracture.

We maintain the parameter values in the homogeneous case study in Section 4 with the exception of the well center
which is now at (0.85,0.5). A representation of the model problem is shown in Fig. 9. As before the local post-process domain
is defined from the center of the well bore to a fixed radius re. As shown in Fig. 9 the external boundary of the local domain is
intersected by the global impermeable boundary when re is big enough and the local problem must be treated as fully 2D.

The local problem is solved in the transformed lnr – h coordinate system. The solution domain in this coordinate system is
rectangular if the local domain is not intersected by the global domain boundary; otherwise it has a curved edge. Taking
advantage of the symmetry of this case study along y = 0.5, the local solution is computed only in h = 0:p, applying a no-flow
boundary condition at h = 0 and h = p. We semi-discretize both global and local problems using the finite element method on
a triangular mesh, which is easy to adapt to the irregular shape of the local computational domain. Sample meshes in the
transformed second-stage domain, together with the computed solution at the end of the simulations, are shown in Fig. 10.

A comparison of the maximum absolute error at the well bore and external boundary of the local domain is plotted in
Fig. 11 against the degrees of freedom for the global stage simulation. Here h denotes the maximum mesh size in the global
domain and D rmax denotes the maximum mesh size in the original (untransformed) local domain. The error at the external

Fig. 9. Model problem. Well position: (xw,yw) = (0.85,0.5). Broken lines show post-process domain for re = 0.1, 0.2, 0.3.

Fig. 10. Meshes in transformed local domain and approximate solution at end of the simulation. Global refinement level = 2, Drmax = h.
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boundary is computed only for the Dirichlet boundary portion, which has data interpolated linearly from the underlying glo-
bal solution. The benchmark solution in this case is calculated on a locally refined finite element mesh using quadratic La-
grange elements. The plots show that for the irregular local domains (re = 0.2,0.3), the maximum error in the well bore
pressure is bounded above by the maximum error in the boundary pressure for Drmax = h, h/2. For re = 0.1 this property is
true for Drmax = h/2, while for Drmax = h the errors are within the same order of magnitude. The plots also show an Oðh2Þ
convergence of the error. Therefore the results for a well near an impermeable boundary agree with those obtained for
an isolated well in Section 4. Also out of the 23 simulations that were carried out for this case study, 17 had less than half
the degrees of freedom of the benchmark solution, and the solution with the highest degree of freedom out of these 17 sim-
ulations comes withinOð10�3Þ of the benchmark solution. Therefore a high level of accuracy can be achieved for significantly
less computational effort.

6. Numerical Example 3

In this section, we apply the method of decoupled overlapping grids to domains with discontinuous permeability. We
consider the following cases (shown in Fig. 12): radial, angular, and random permeability discontinuity. For the radially dis-
continuous case, a circular region extending a fixed radial distance from the center of the well is assigned a constant perme-
ability k, and the region outside this circle is assigned a constant permeability k2 where k/k2 = 0.1. For the angular
discontinuous case, the domain is divided into four quadrants. The north-east and south-west quadrants are assigned a con-
stant permeability value k, and the north-west and south-east quadrants are assigned a constant permeability value k2

where k/k2 = 0.1. For the fully heterogeneous case, the domain is assigned an isotropic, correlated, log-normal random per-
meability distribution, which is a closer representation of a realistic reservoir permeability distribution. The permeability
distribution is generated using the method outlined by Eberhard [24].

The well is located at the center of the unit square computational domain. In all cases the first stage simulation results are
calculated as explained in Section 4.1, (again there is no local refinement near the point source well), and at the end of the
first stage simulation the average pressure is measured at fixed radii re = 0.1, 0.2, 0.3. A full 2D simulation is used in the local,
second stage calculations except in the special radial case. Simulation results are compared against benchmark solutions cal-
culated on a finite element mesh (using quadratic Lagrange elements) that is locally refined around the well bore. Fig. 13
shows a comparison of maximum absolute error in the dimensionless average well bore pressure and dimensionless average
external boundary pressure of the post-process domain, plotted against the degrees of freedom of the finite element mesh
used to compute the global solution.

6.1. Radial discontinuity

For the radial permeability discontinuity case, the radius of the permeability discontinuity rk = 0.15. The local problem
satisfies the condition in Section 4 which allows it to be solved in one (radial) dimension only. The local equations are dis-
cretized using the finite volume method. In order to get consistent results, it is necessary for the location of the permeability
discontinuity to coincide with a control volume interface.

The simulation results are shown in Fig. 13a. (No simulation was carried out when Drmax > re or D rmax > re � rk, hence
some lines do not have data for coarser levels of refinement.) It is seen that for Drmax 6 h/2 the error in the well bore pressure

Fig. 11. Broken lines: Maximum absolute error in dimensionless well bore pressure. Solid lines: Maximum absolute error in dimensionless external
boundary pressure. Maximum taken over simulation time tD 2 [10�2,103].
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is bounded above by the error in the boundary condition. Even for Drmax � h, the maximum error in the well bore and bound-
ary pressure are of similar magnitude (for refinement levels of the global simulation P1). These results are similar to those
observed for the homogeneous case study in Section 4. We also note that there is only a slight deterioration in the Oðh2Þ
convergence rate that was observed for the homogeneous case. The most expensive computation using the decoupled over-
lapping grids method required a total degree of freedom that is only a third of that of the benchmark solution, and despite
this significant difference in computational effort the solution comes within a dimensionless absolute error of Oð10�4Þ with
respect to the benchmark solution.

6.2. Angular discontinuity

For the angular permeability discontinuity case, a full 2D problem in lnr – h is solved in the circular post-process domain
using the finite volume method. The simulation results are shown in Fig. 13b. The plot for Drmax = h shows that the maxi-
mum error in well bore pressure is above that of the boundary pressure for all refinement levels of the underlying global
simulation. Refining the mesh for the local problem by setting Drmax = h/2 results in maximum errors of similar magnitude,
especially for re = 0.2 and 0.3. Further refinement to Drmax = h/4 yields better results, with the maximum error in well bore
pressure strictly bounded above by the maximum error in boundary pressure for re = 0.2. An Oðh2Þ convergence rate is ob-
served for the results.

Out of the 31 simulations that that were carried out for this case study, 26 had less than half the degrees of freedom of the
benchmark solution. The solution with the highest degrees of freedom out of these 26 simulations comes within Oð10�4Þ of
the benchmark solution.

It is also interesting to note that the maximum absolute error in well bore pressure is bounded above by, or of a similar
magnitude to, the maximum absolute error in boundary pressure for the local problem only when the plots of the absolute
error versus time show the maximum occurring during an initial transient phase (in a similar manner to Figs. 2 and 7) for
both global and local simulations. While most of the plots for the absolute error in boundary pressure over time show the
characteristic property of reaching a maximum during an initial transient phase before settling to a steady-state value (with
the exceptions occurring in the coarser simulation cases), the plots of the absolute error in the well bore pressure over time
show this property only for the very refined grids. This is because the strong heterogeneity present at the well bore makes
the use of a very fine mesh at the well bore necessary in order to obtain this property of the absolute error.

Fig. 12. Mesh for refinement level 2.
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6.3. Random permeability

For the random permeability discontinuity case, the original permeability distribution is generated at the vertices of the
coarse mesh (refinement level 0), and extended to new vertices in subsequent refinement levels by linear interpolation. Also
a full 2D problem in lnr – h is solved in the post-process stage using the finite volume method, with the permeability dis-
tribution interpolated linearly from the original coarse permeability distribution on refinement level 0. The simulation re-
sults shown in Fig. 12c show that with the exception of rD = 300 (that is, re = 0.3), the maximum errors are within the
same order of magnitude. A look at the absolute error plots over time revealed that although there is an initial transient per-
iod followed by a steady-state error, the maximum error hardly ever occurs during the initial transient phase. A possible rea-
son for this is the fact all permeabilities are interpolated from a base coarse permeability distribution on refinement level 0,
and so are approximations of the original rather than being exactly equal as in the previous case studies. Nevertheless, the
maxima are not far apart, and Fig. 12c shows an Oðh2Þ convergence rate. (Also a comparison of the peak errors that occur

Fig. 13. L ? R: Drmax = h, h/2, h/4. Broken lines: Maximum absolute error in average well bore pressure. Solid lines: Maximum absolute error in average
external boundary pressure. The maximum error is measured over time interval 4tD 2 [10�2,104].
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before steady-state is reached shows that the initial peak well bore error is bounded above by the initial peak error at the
boundary.)

26 out of the 31 simulations that were carried out for this case study had less than half the degrees of freedom of the
benchmark solution, still the solution with the highest degrees of freedom out of these 26 simulations comes within
Oð10�4Þ of the benchmark solution.

6.4. Discussion

The examples in this section show that the decoupled overlapping grids method can be used to accurately compute tran-
sient well bore pressure in the presence of some types of permeability heterogeneities within the reservoir. The simulation
results support the suggestion in the previous sections of setting Drmax = h/2 to get a maximum error in average well bore
pressure that is at least within the same order of magnitude as the maximum error in the average boundary pressure of the
local post-process domain.

In these and more severe cases of heterogeneity, care must be taken to represent the geometry of the medium accurately
enough in the local problem. Also, the interpolation from the global to local grid may have to cope with rapid changes in the
global solution. This is partly addressed by having a fine enough local grid spacing on the outer boundary of the local prob-
lem, and some alignment of the local grid with the global is also advantageous. There is evidence from steady state problems
in [19] that the lnr � h regular grid we have used gives good results unless the flow pattern around the well is very distorted
by heterogeneity (say by high permeability channels). Then more sophisticated grid adaptation in the local problem will be
required to achieve optimal results.

7. Theoretical analysis

The numerical results in Figs. 3 and 4 indicate an Oðh2Þ convergence of the maximum absolute error in the average pres-
sure measured at a fixed radius from the point source in the first stage simulations and at the well bore in the second stage
simulations respectively. In this section, theoretical error bounds for the maximum error in the first and second stage tran-
sient computations for homogeneous isotropic porous media are derived. They support the observed convergence behavior
in the simulations. Dealing with the analysis when the porous media is highly heterogeneous would be much more difficult,
and we note the sophisticated multiscale analysis in [4] for steady state problems in that case.

7.1. Finite element error in first stage

The global solution in Section 4.1 is obtained by solving the following equations:

@

@t
pðx; tÞ � r2pðx; tÞ ¼ dðx� x0Þ; x 2 X; t > 0; ð13aÞ

rpðx; tÞ � n ¼ 0; x 2 @X; t > 0; ð13bÞ
pðx;0Þ ¼ 0; x 2 X; ð13cÞ

where X is a bounded domain in R2. Let Sr
h denote a space of C0 piecewise polynomial functions of degree r � 1 P 1 on glob-

ally quasi-uniform partitions of X of mesh size h that fit the boundary exactly. The semi-discrete finite element approxima-
tion to (13) is:

Find phðtÞ 2 C0 ½0; T�; Sr
h

	 

such that

ðph;t ;vÞ þ ðrph;rvÞ ¼ vðx0Þ 8v 2 Sr
h; t > 0; ð14aÞ

with phð0Þ ¼ 0 2 Sr
h; ð14bÞ

where (�, �) represents the L2(X) inner product.
We wish to find error estimates j(p � ph)(x⁄, t⁄)j at a fixed point away from the point of singularity x0. Maximum norm

error estimates for parabolic initial boundary value problems with Neumann boundary conditions have been studied by
Schatz et al. [25] and Leykekhman [26]. However their results do not directly apply here (see [27] for details). We instead
write p ¼ U þ Gx0 , where U is a smooth function and Gx0 is a Green’s function that satisfy:

@

@t
Uðx; tÞ ¼ r2Uðx; tÞ; x 2 X; t > 0; ð15aÞ

rUðx; tÞ � n ¼ 0; x 2 @X; t > 0; ð15bÞ
Uðx;0Þ ¼ �Gx0 ðxÞ; x;x0 2 X; ð15cÞ

and

�r2Gx0ðxÞ ¼ dðx� x0Þ; x;x0 2 X; ð16aÞ
rGx0ðxÞ � n ¼ 0; x 2 @X;x0 2 X: ð16bÞ
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The semi-discrete finite element approximation to p is then phðtÞ ¼ UhðtÞ þ Gx0
h where

ðUh;t ;vÞ þ ðrUh;rvÞ ¼ 0; 8v 2 Sr
hðXÞ; t > 0; ð17aÞ

Uhð0Þ ¼ �Gx0
h ; ð17bÞ

and

rGx0
h ;rv

	 

¼ vðx0Þ; 8v 2 Sr

hðXÞ: ð18Þ
So

jðp� phÞðx�; t�Þj ¼ jðU � UhÞðx�; t�Þ þ Gx0 � Gx0
h

	 

ðx�Þj

6 jðU � UhÞðx�; t�Þj þ j Gx0 � Gx0
h

	 

ðx�Þj: ð19Þ

We consider j(U � Uh)(x⁄, t⁄)j and j Gx0 � Gx0
h

	 

ðx�Þj independently by applying theorems by Solo [28] and Schatz and Wahlbin

[29] respectively. We briefly state the theorems below for completeness.

7.1.1. Localised interior estimate for parabolic problems [28]
Let X be a bounded domain in RN;Q ¼ X� ½0; T�, and @Q = @X � [0,T]. Given the problem

@u
@t
�r2u ¼ 0 in Q ; ð20aÞ

n � ru ¼ g on @Q ; ð20bÞ
uðt ¼ 0Þ ¼ u0 in X; ð20cÞ

where both g and u0 in general have low regularity ðu0 2W�s
q ðXÞ; g 2W�k;�l

q ð@QÞ for arbitrary s, k, l, and q), and its semi-dis-
crete finite element approximation:

Find uhðtÞ 2 C0 ½0; T�; Sr
h

	 

such that

ðuh;t ;vÞX þ ðruh;rvÞX ¼ hg;vi@X 8v 2 Sr
h and a:e in ½0; T�; ð21aÞ

uhð0Þ ¼ Phu0; ð21bÞ

where Phf is the L2 projection onto Sr
h, and h � , � i denotes the pairing of a linear space with its dual, then the following the-

orem holds.

Theorem 1. Assume Sr
h satisfies the required technical properties of the finite element space stated in [28] and that the

triangulations fit the boundary exactly. Then for u and uh defined above, if x⁄ 2X, dist (x⁄,@X) > d and t⁄ > d2 for d > ch, the
following estimate holds for any l and k = 0,1:

jðu� uhÞðx�; t�Þj 6 Cl;dhr�k ku0kW�k
1 ðXÞ
þ kgkW�k�l

1 ð@QÞ

� �
ð22Þ

where Cl,d = log(1/d)d�N�r�2l.

7.1.2. Pointwise interior error estimates for the Green’s function near the singularity [29]
Let X be a bounded domain in RN with smooth boundary @X, and A a bilinear form of type

Aðu; vÞ ¼
Z

X

XN

i;j¼1

aijðxÞ
@u
@xi

@v
@xj
þ
XN

i¼1

biðxÞ
@u
@xi

v þ dðxÞuv
 !

dx; ð23Þ

where A is coercive over H1, that is, there exists a constant c > 0 such that

ckuk2
H1ðXÞ 6 Aðu;uÞ 8u 2 H1ðXÞ: ð24Þ

Let Sh(X) be a one-parameter family of subspaces of W1
1ðXÞ that satisfy

inf
v2ShðXÞ

ku� vkH1ðXÞ 6 Chl�1kukHlðXÞ for 1 6 l 6 r: ð25Þ

Let x0 2X, and Gx0 ðxÞ;Gx0
h ðxÞ be the Green’s function and approximate Green’s function respectively which satisfy:

AðGx0 ;uÞ ¼ uðx0Þ 8u 2W1
1ðXÞ; ð26Þ

and A Gx0
h ;v

	 

¼ vðx0Þ 8v 2 ShðXÞ: ð27Þ

Then the following theorem holds.

Theorem 2. Given the assumptions above, let X1 		X2 		X. There exist constants C and C2 so that if h is sufficiently small, then
for x0 2X1 and x 2X2

If jx� x0jP C2h; j Gx0 � Gx0
h

	 

ðxÞj 6 Chr

jx� x0jNþr�2 ln
jx� x0j

h

� �a

ð28Þ
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If 0 6 jx� x0j 6 C2h; j Gx0 � Gx0
h

	 

ðxÞj 6 C

ln 1
jx�x0 j

þ 1 for N ¼ 2

ln 1
jx�x0 jN�2 for N P 2

(
ð29Þ

where r is the optimal order of h, and a = 1 for r = 2, a = 0 for r P 3.
We note here that Sr

h, the space of continuous piecewise polynomial functions in (14), satisfies the technical properties of
the finite element space required by Theorems 1 and 2.

Applying Theorem 1 for l = 0, k = 0, r = 2, N = 2, the following error estimate is obtained for U (see (15)):

jðU � UhÞðx�; t�Þj 6 logð1=dÞd�4h2kGx0 ðxÞkL1ðXÞ ð30Þ

6 C1 logð1=dÞd�4h2 ð31Þ

since the L1 norm of Gx0 ðxÞ is bounded.
Applying Theorem 2 for N = 2, r = 2, the following error estimate is obtained for Gx0 (see (16)):

j Gx0 � Gx0
h

	 

ðx�Þj 6 C2h2 ln

jx� x0j
h

� �
jx� x0j�2

: ð32Þ

So from (19), (31) and (32),

jðp� phÞðx�; t�Þj 6 h2 C1 logð1=dÞd�4 þ C2 ln
jx� x0j

h

� �
jx� x0j�2

� �
ð33aÞ

6 h2ðCU þ CGx0 Þ: ð33bÞ

(33) gives the pointwise error estimate for (13). It predicts Oðh2Þ behavior subject to CU and CGx0 . Since the pointwise error is
Oðh2Þ at time t⁄, the average error at a radius re away from the point source is also Oðh2Þ at t⁄. Furthermore the maximum
error of the average pressure at the radius re over the simulation time is also Oðh2Þ. This supports the observed results in
Section 4.1.

The form of the constant CGx0 implies that the pointwise error is worse when measurements are made close to the point
source, while the form of the constant CU suggests that the pointwise error is worse for measurements taken close to the
domain boundary. Numerical experiments were carried out which showed that for (13), CU gives a particularly pessimistic
error bound that is not observed in the numerical results for measurements taken close to the domain boundary. The error
bound is pessimistic because Theorem 1 covers a more general problem with low regularity Neumann boundary data,
whereas the global problem in this section has smooth Neumann boundary data. On the other hand the experiments showed
that the error is worse for measurements closer to the singularity as predicted by CGx0 .

7.2. Finite volume error in second stage

The local solution in Section 4.2 is obtained by solving the transformed equations:

@p
@t
¼ e�2R @

2p

@R2 ; Rw < R < Re; t > 0; ð34aÞ

@p
@R
¼ � 1

2p ; R ¼ Rw; t > 0; ð34bÞ

pðRe; tÞ ¼ peðtÞð¼ ppsðRe; tÞÞ; R ¼ Re; t > 0; ð34cÞ
pðR;0Þ ¼ 0; Rw < R < Re; ð34dÞ

where R = lnr. Let ph be the semi-discrete approximation to p on a grid Xh, and u the restriction of p to Xh. Then we have:

dph

dt
¼ Aph þ f ; ð35Þ

du
dt
¼ Auþ f þ rhðtÞ; ð36Þ

where rh(t) is the local truncation error. The error in the spatial discretization is e(t) = u(t) � ph(t). We show below that the
pointwise error at the well bore has Oðh2Þ convergence.

Expanding the semi-discrete approximation (35) for (34) using the vertex-centered finite volume method, we have, for
uniform mesh size h,

e2R1 p0h;1ðtÞ ¼
2

h2 ð�ph;1ðtÞ þ ph;2ðtÞÞ þ
2
h
� 1

2p

� �
; ð37aÞ

e2Rk p0h;kðtÞ ¼
1

h2 ðph;k�1ðtÞ � 2ph;kðtÞ þ ph;kþ1ðtÞÞ; 2 6 k 6 m� 2 ð37bÞ

e2Rm�1 p0h;m�1ðtÞ ¼
1

h2 ðph;m�2ðtÞ � 2ph;m�1ðtÞÞ þ
1

h2 peðtÞ: ð37cÞ
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The truncation error rh(t) is Oðh2Þ at all points except at k = 1 where

rh;1ðtÞ ¼
1
3

huRRRðRw; tÞ þ Oðh2Þ: ð38Þ

Despite this Oðh2Þ convergence of the spatial discretization error e(t) at all points can be shown using the theorems by
Hundsdorfer and Verwer [30] on refined global error estimates and the logarithmic matrix norm. We briefly state these the-
orems below for completeness.

Theorem 3 (Refined global error estimates [30, p. 85]). Consider the linear semi-discrete system

w0ðtÞ ¼ AwðtÞ þ f ðtÞ ð39Þ

where A is an m �m matrix and f ðtÞ 2 Rm represents a source term and boundary conditions in the PDE, and assume that the sta-
bility condition

ketAk 6 Keat for 0 6 t 6 T ð40Þ

holds on all grids Xh, where the constants KP1 and a 2 R are both independent of h. Suppose that for 0 6 t 6 T we can decompose
the truncation error rh(t) as

rhðtÞ ¼ AnðtÞ þ gðtÞ with knðtÞk; kn0ðtÞk; kgðtÞk 6 Chr ð41Þ

and suppose that ke(0)k 6 C0hr, where C, C0 > 0 are constants, and e(t) is the spatial discretization error. Then we have convergence
of order r with the error bounds

keðtÞk 6
KC0eathr þ 1þ Keat þ 2K

a ðeat � 1Þ
	 


Chr if a–0;0 6 t 6 T

KC0hr þ ð1þ K þ 2KtÞChr if a ¼ 0;0 6 t 6 T

(
ð42Þ

where k � k is the discrete Lp-norm.

Theorem 4 (Logarithmic matrix norm [30, p.32]). Let A 2 Cm�m and a 2 R. We have

lðAÞ 6 a () ketAk 6 eta 8t P 0 ð43Þ

where l(A) is the logarithmic matrix norm and k � k is the discrete Lp-norm.

The logarithmic matrix infinity norm of A is defined as [30]

l1ðAÞ ¼ max
i

Re aii þ
X
j–i

jaijj
 !

: ð44Þ

So for (37) we have l1(A) = 0 which implies, from Theorem 4, that ketAk 6 1.
Next we need to write the truncation error in the form rh = An(t) + g(t) (see (41)). Ignoring g(t) which represents the

Oðh2Þ terms in the truncation error and putting rh = An(t) gives, from (37) and (38),

n1 � n2 ¼ C1h3 ð45aÞ
nk�1 � 2nk þ nkþ1 ¼ 0 ð45bÞ
nm�2 � 2nm�1 ¼ 0 ð45cÞ

where C1 = uRRR(Rw, t)/6. Solving (45b) with the ansatz n = arn gives r = 1 twice so that nn = a + bn. Applying the boundary con-
ditions (45a) and (45c) gives nk = C (m � k)h3; therefore nk 6 Cmh3 = Ch2 (since h = 1/m). So kn(t)k1,kn0(t) k1,kg(t)k1 6 Ch2.
Since e(0) = 0, we set C0 = 2C so that Theorem 3 gives

keðtÞk1 6 2ð2þ tÞCh2
: ð46Þ

Therefore

jekðtÞj 6 keðtÞk1 6 2ð2þ tÞCh2
; ð47Þ

and the pointwise error has Oðh2Þ convergence at R = Rw (that is, k = 1). Since the pointwise error is Oðh2Þ at Rw, the error in
the average pressure at Rw is also Oðh2Þ. Furthermore the maximum error in the average pressure at Rw over the simulation
time is also Oðh2Þ. This supports the observed results in Section 4.2.

8. Conclusion

The descriptions and examples in this paper demonstrate the main idea and accuracy of the decoupled overlapping grids
method for the well test problem in an isotropic 2D domain. The proposed method performed better than the widely used
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Peaceman well index solutions and solutions on locally refined grids for the same spatial discretization method. An Oðh2Þ
convergence of the maximum absolute error in the average well bore and external local domain pressure was observed
numerically in a range of homogeneous and heterogeneous test cases, and proved by analysis for homogeneous problems.
In addition the numerical results suggest that the maximum absolute error in the average well bore pressure is bounded
above by the absolute maximum error in the average external local domain boundary pressure when the maximum mesh
size in the post-process stage is smaller than half the average mesh size in the global stage simulation.

The method described in this paper can be extended to well test problems in three-dimensional heterogeneous domains,
and some promising test results are shown in [27]. As mentioned earlier, the global stage can be solved in already existing
reservoir simulators, which can incorporate complex reservoir features, and the post-process simulation domain can be fit-
ted to the well geometry to give accurate and efficient pressure transient solutions at the well bore. We discuss the imple-
mentation details and results for these challenging applications in a different paper.

Highly heterogeneous porous media presents further challenges, and we have noted some outstanding issues for imple-
mentation and analysis in Sections 6.4 and 7 respectively.
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