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A novel Bayesian strategy for the identification of spatially
varying material properties and model validation: an application to

static elastography

Phaedon-Stelios Koutsourelakis*,†

Center for Applied Mathematics, Cornell University, Ithaca, NY, USA

SUMMARY

The

Q1

present paper proposes a novel Bayesian, a computational strategy in the context of model-based
inverse problems in elastostatics. On one hand, we attempt to provide probabilistic estimates of the mate-
rial properties and their spatial variability that account for the various sources of uncertainty. On the other
hand, we attempt to address the question of model fidelity in relation to the experimental reality and par-
ticularly in the context of the material constitutive law adopted. This is especially important in biomedical
settings when the inferred material properties will be used to make decisions/diagnoses. We propose an
expanded parametrization that enables the quantification of model discrepancies in addition to the constitu-
tive parameters. We propose scalable computational strategies for carrying out inference and learning tasks
and demonstrate their effectiveness in numerical examples with noiseless and noisy synthetic data. Copyright
© 2012 John Wiley & Sons, Ltd.

Received 28 February 2011; Revised 14 October 2011; Accepted 28 November 2011
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1. INTRODUCTION

The extensive use of large-scale computational models poses several challenges in parameter iden-
tification in the context of system identification or performing predictive simulations. Medical
imaging represents such an application, which has attracted significant interest in recent years as
the correct identification of material properties can reveal various pathologies [1, 2] as well as
quantitatively assess the progress of various treatments.

Ultrasound elasticity imaging (elastography) has gained prominence in the context of perform-
ing medical diagnosis because of its accuracy and low cost. It is based on ultrasound tracking of
precompression and post-compression images to obtain a map of position changes from which
deformations can be inferred. The pioneering work of Ophir and coworkers [3] followed by several
clinical studies [4–13] have demonstrated that the resulting strain images typically improve the
diagnostic accuracy over ultrasound alone.

Broadly speaking, there are two approaches that are utilized for calculating the constitutive
parameters. In the direct approach, the equations of equilibrium are interpreted as equations for the
material parameters of interest, where the inferred strains and their derivatives appear as coefficients
[14–16]. Although such an approach provides a computationally efficient strategy that does not
require solution over the whole domain nor knowledge of the boundary conditions, it has certain
drawbacks. More importantly perhaps, it does not use the raw data (i.e., noisy displacements) but
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2 P.-S. KOUTSOURELAKIS

transformed versions, that is, strain fields which arise by applying sometimes ad hoc filtering and
smoothing operators. Although these might be plausible, in general alter the informational content
of the data and make difficult the quantification of the effect of observation noise.

Q2
This is amplified

when strain derivatives are computed, although not all such approaches require them for example,
[17]. Furthermore, the smoothing employed can smear regions with sharply varying properties and
hinder proper identification. Finally, it is nontrivial to determine appropriate boundary conditions in
terms of the material parameters of interest.

The alternative to direct methods, that is, indirect, or iterative, as they are most commonly referred
to, admit an inverse problem formulation where the discrepancy (in various norms, [18,19]) between
observed and model-predicted displacements is minimized with respect to the material fields of
interest [20–30]. Although these approaches utilize directly the raw data, they generally imply
an increased computational cost as the forward problem and potentially derivatives have to be
solved/computed several times. This effort is amplified when stochastic/statistical formulations are
employed as those arising from the Bayesian paradigm, whose cost is comparable with that of a
deterministic global optimization technique [31].

Bayesian techniques are advocated in this paper because of their ability to quantify the effect
of various sources of uncertainty to the hypotheses tested or the inferences made. One source of
uncertainty is obviously the noise in the data, which constitutes probabilistic estimates more ratio-
nal. This is particularly important when multiple hypotheses are consistent with the data or the
level of confidence in the estimates produced needs to be quantified. Another source of uncertainty
which is largely unaccounted for, is model uncertainty [32]. Namely, the parameters, whose values
are estimated, are associated with a particular forward model about the behavior of the medium
(in our case, a system of PDEs consisting of equilibrium and constitutive equations), but one cannot
be certain about the validity of the model employed. In general, there will be deviations between
the physical reality, where measurements are made and the idealized mathematical/computational
description. Especially in the context of medical applications, it is crucially important to account for
the model discrepancy or inadequacy in order to infer the right material properties and make accurate
diagnoses.‡ Nonintrusive Bayesian strategies, that is, those that basically make use of the forward
model as a black-box, capture model discrepancy with regression models (e.g., Gaussian processes)
which are not easily physically interpretable and cumbersome or impractical when they depend on
a large number of input parameters [32, 33]. In contrast, our approach is intrusive. This enables us
to overcome the aforementioned limitations and allows us to directly infer the stresses/pressure in
the context of elastostatics.

The rest of the paper is organized as follows. Section 2 is devoted to the presentation of the
novel Bayesian framework proposed in the context of elastostatics. Section 2.1 discusses com-
putational aspects related to inference techniques for sampling from the posterior and learning
schemes for estimating parameter values. Finally, Section 3 presents numerical results under static
plane stress conditions using noiseless and noisy data with particular emphasis on quantifying
model discrepancy.

2. PROPOSED METHODOLOGY

The presentation of the ideas in this paper is centered around solid mechanics, in particular elas-
tostatics, but the framework introduced can be directly transitioned to other continua. We discuss
first the formulation of the probabilistic model proposed and in subsection 2.1, the inference and
learning tasks associated with this description. We adopt a physically inspired strategy that focuses
on quantifying model discrepancies in the context of the constitutive equation. From a deterministic
point of view, it resembles techniques such as constitutive relation error or error in the constitutive
equation that have been developed for a posteriori error estimation and the solution of over specified
inverse problems [30, 34–37]. We use the term constitutive equations to refer in general to relations

‡“I remember my friend Johnny von Neumann used to say, ‘with four parameters, I can fit an elephant and with five, I
can make him wiggle his trunk.” A meeting with Enrico Fermi, Nature 427, 297; 2004.
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A BAYESIAN STRATEGY FOR MODEL VALIDATION 3

between conjugate thermodynamic variables, that is, stress and strain in solid mechanics or velocity
and pressure in flow through permeable media or flux and temperature in heat diffusion.

In the formulations proposed, the constitutive relation supplements the observables and an
augmented state space is used that includes all conjugate variables. As it is demonstrated in the
sequence, the addition of these unknown parameters simplifies inference tasks and enables the quan-
tification of model errors. The motivation for such an approach stems from the fact that inverse
problems in the context of continuum models consist of

� a conservation law that arises from physical principles that are generally well-founded and
trusted. In the case of single-phase flow through a porous medium, this amounts to the conser-
vation of mass in solid mechanics to the conservation of linear momentum. In elastostatics in
particular, this is written as

r � Q�.x/C b.x/D 0, x 2�, (1)

where Q�.x/ is the stress tensor, b the body force, and � the problem domain. Discretized ver-
sions of the aforementioned PDE are employed, which naturally introduce discretization error.
This is generally well-studied in the context of linear problems and several a priori (and a
posteriori) error estimates are available. In this work, we will ignore the discretization error
in Equation (1), which corresponds to the verification stage and focus on the validation and
calibration aspects.
� a constitutive law that is by-and-large phenomenological and therefore provides the primary

source of model uncertainty. This is represented by the conductivity tensor in heat dif-
fusion, the permeability tensor in flow through porous media or the elasticity tensor D in
solid mechanics

� .x/D D.x/�.x/, 8x 2�, (2)

where � .x/ is the vector of stress, and �.x/ is the vector of strains.
� boundary/initial conditions or observables in general (which might include interior

displacements). The available data are contaminated by noise and represent the main source of
observation errors.

In the Bayesian setting advocated, the goal is to evaluate the posterior density for the material
parameters (i.e., D.x/) as well as quantitatively assess the validity of the aforementioned constitutive
relation (Equation (2)).

The numerical implementation requires discretization of the aforementioned equations. For
economy of notation, we consider the simplest perhaps discretization consisting of a finite element
triangulation T of the problem domain � using nel constant-strain/stress elements §.

If e denotes the element number, the parameters in the formulation proposed are

� the stress vectors � e , e D 1, : : : ,nel (3� dimensional under plane stress/strain condi-
tions or 6-dimensional in general three-dimensional problems), which are jointly denoted by

� D
�
� 1, : : : , � nel

�T
.

� the global displacement vector u. If ue denotes the nodal displacement vector of element e,
then we represent by Le the Boolean matrices that relate local and global displacement vectors,
that is, ue D Leu. We further denote by �e the element strain vector, which is related to ue as
�e D Beue where Be is the well-known strain-displacement matrix.
� the local constitutive matrices De that relate stress and strains over element e, that is,
� e D De�e . These are assumed constant over each element, but they could be assigned different
values at the nodes of the mesh or integration points of each element.

We will further assume that noisy displacement data (at interior or boundary points) are pro-
vided and will be denoted by uQ 2 RnQ . It is assumed that the observed nodal displacements are

§For more complex elements/discretizations, the ensuing formulations can be readily applied if instead we consider each
integration point in the element

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
DOI: 10.1002/nme
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4 P.-S. KOUTSOURELAKIS

given by Q u, where Q is an appropriate Boolean matrix (if all displacements are observed at all
the nodes, then QD I). Assuming Gaussian noise with variance �2, the likelihood of uQ given u is
normal and

p.uQ j u//
1

�nQ
exp

²
�
1

2�2
.uQ �Qu/T .uQ �Qu/

³
. (3)

The observation noise variance �2 can be known or unknown in which case we propose employing
a conjugate inverse �Gamma hyperprior with hyperparameters .˛� ,ˇ�/, that is,

p
�
�2
�
/
�
��2

�˛��1
e�ˇ�=�

2

. (4)

Naturally, more complex models that can capture perhaps the spatial dependence of � can
be employed.

In general, nonessential boundary conditions might be available as well, that is, tractions might
be prescribed at part of the boundary @�N � @�, that is,

n � Q�.x/ j�ND �.x/, x 2 @�. (5)

Noise in these observations could also be added, but we omit this to simplify the notation.
In the proposed framework, apart from the aforementioned observations, the data or likelihood

consist also of model-related equations, that is, the conservation law (Equation (1)) which in the
case of standard Bubnov–Galerkin finite element schemes is enforced weakly asZ

�

�.w/ � �dxD
Z
�

w � b d�C
Z
@�N

w � � d� , (6)

where �.w/ denote the strains associated with the weighting functions w 2 H 1
0 .�/. It is noted that

other discretization schemes such as finite volume or discontinuous Galerkin can also be used to
enforce the conservation law with small alterations. In the triangulation T adopted for discretizing,
the solution and the weighting functions w, this reduces to

OBT � D f, (7)

where f is the force vector and

OBT D
nelX
eD1

.Le/T
Z
�e

.Be/T dxD
nelX
eD1

Ve.Le/T .Be/T , (8)

where Ve is the volume of element e.
The second model equation relates to the constitutive law which we propose enforcing for every

element probabilistically. If the true constitutive law (which is unknown) is different from the one
prescribed in Equation (2), then there will be a discrepancy/error ce between the actual stresses � e
and the model-predicted stresses De�e D DeBeue

ce D � e �DeBeue (9)

Because ce is unknown and in accordance with the Bayesian formulation advocated, we propose
a hierarchical prior model where

ce j � e , ue ,†e �N .� e �DeBeue ,†e/

or

p.ce j � e , ue ,†e// 1

j†e j1=2
exp

®
�1
2
.� e �DeBeue/T†�1e .� e �DeBeue/

¯
.

(10)

In this work, we consider a special form of the covariances †e D �2eI.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
DOI: 10.1002/nme
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A BAYESIAN STRATEGY FOR MODEL VALIDATION 5

The hyperparameters �2e express the variability of the constitutive error and their magnitude quan-
tifies the model discrepancy over each element e. The inferred values �2e will reveal elements,
where the model error is high and refinement/improvement is needed. Note for example that if the
elastic properties vary within an element e, the corresponding �2e will be nonzero even if no noise
exists in the data. When different discretization schemes are used, which might employ higher-order
shape functions, distinct �2e for each integration point can be introduced. The normal prior for ce
(Equation (10)) is not the only option and was selected here for computational convenience because
of its conjugacy with the other distributions as it will be seen in the sequel. It would certainly be
worthwhile to investigate alternative prior models.

Because the hyperparameters �2e are unknown, prior models can be employed as well. In this
study, we make use of a Gaussian Markov Random Field ([38, 39]) prior, which accounts for the
fact that the magnitude of the model errors are expected to be spatially correlated. In particular,
and because �2e > 0, we define the prior implicitly through the vector Z D ¹´eº

nel
eD1, where

´e D log�2e

p.ƒ// exp

²
�
1

2
ZTWZ

³
(11)

The precision matrix is given by WD 1

�2´
H, where �2´ is a scale parameter and HD ŒHe1,e2 �

He1,e2 D

´ Pnel
e2D1

he1,e2 if e1 D e2

�he1,e2 otrherwise
, (12)

where he1,e2 > 0 is a measure of proximity between elements e1 and e2. In this work, this was
defined with respect to the distance de1,e2 between the element centroid as he1,e2 D e�de1 ,e2=d0 ,
where d0 is a correlation-length parameter. The aforementioned model represents an intrinsic
autoregressive prior [40, 41], which is an improper distribution (because W is semi-positive defi-
nite) that has been extensively used in spatial statistics. In particular, because

P
e2
We1,e2 D 0 8e1,

it can be easily established that p.ƒ/ penalizes the ‘jumps’ in Z at neighboring elements, that is,

p.ƒ// exp

´ X
e1<e2

We1,e2.´e1 � ´e2/
2

μ
. (13)

It is noted finally that values for the parameters .d0, �2´ / are provided in the numerical
results section.

The combination of Equations (3), (4), (7), (10), and (11) leads to the posterior density on the
model parameters ‚ D

�
�2, � , ¹Deº

nel
eD1, u,ƒD ¹�2eº

nel
eD1

�
. In addition to the observations uQ, the

posterior on ‚ is explicitly conditioned on the model equations, that is, the discretized equation of
equilibrium and the constitutive law ¶

�.‚/D p.‚ j uQ,M/D p
�
uQ j u, �2

�
p.�2/

1¹ OBT �Dfº.‚/

nelY
eD1

p
�
ce j � e , ue ,�2e

�
p.ƒ/

p.u/.

(14)

The indicator function 1¹ OBT �Dfº.‚/ implies that the support of the distribution includes only
stress vectors that satisfy the (discretized) equilibrium equations in Equation (7).

¶This conditioning is denoted by M in 14

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
DOI: 10.1002/nme
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6 P.-S. KOUTSOURELAKIS

A prior model could also be adopted with respect to the constitutive parameters De . Such priors
apart from improving the regularity of posterior are also physically plausible as one would expect
the constitutive properties at neighboring locations to be correlated. Naturally, several such models
have been proposed in the literature [31]. In this work, however, this was found unnecessary as the
formulation proposed provides a natural correlation between De through the displacements u and
stresses � , which are themselves spatially correlated because of the equilibrium and constitutive
equations. This is evident in the conditional posteriors presented in the sequence. In contrast, a prior
model was adopted for the displacement vector denoted by p.u/ in Equation (14). This can be use-
ful when the observed displacements are sparse or restricted to a portion of the problem domain,
but its primary utility in the examples contained in Section 3 was found to be the regularization of
the displacement field in the presence of noise. In particular, we adopted an intrinsic autoregressive
model as the one employed for ƒ in Equation (11)

p.u// exp

²
�
1

2
uTVu

³
, (15)

where V D 1

�2u
J. The matrix J defined exactly as H in Equation (12) with proximity between two

arbitrary entries ui , uj defined with respect to the nodal distance.
It is worth emphasizing that the proposed model and associated posterior contain two sets of

additional parameters as compared with traditional Bayesian formulations of the inverse problem:
(1) the stress vector � ; and (2) the model discrepancy parameters �2e . The introduction of the for-
mer enables the quantification of the model discrepancy. Despite the augmented set of parameters,
these additional vectors play the role of auxiliary variables that expedite the exploration of the pos-
terior using Gibbs sampling [42] as discussed in subsection 2.1. One can readily obtain, conditional
posterior densities for all the parameters appearing in‚. In particular,

� For �2:

��2 j u�Gamma
�
˛� C

nq

2
,ˇ� C

1

2
k uQ �Q u k2

�
(16)

� For u:

u j �2, � , ¹De ,�2eº
nel
eD1 �N .	u, Cu/, (17)

where

C�1u D CTƒ�1CC
1

�2
QTQCV

	u D Cu

�
CTƒ�1� C

1

�2
QT uQ

�
.

(18)

The aforementioned matrices C andƒ arise from the model discrepancy terms in Equation (14)
as follows:

CD

2
6664

D1B1L1
D2B2L2
: : :

DnelBnelLnel

3
7775

ƒD

2
64
�21I 0 : : : 0

0 �22I : : : : : :

0 0 : : : �2nel I

3
75

(19)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
DOI: 10.1002/nme
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A BAYESIAN STRATEGY FOR MODEL VALIDATION 7

� For � :

� j u, ¹De ,�2eº
nel
eD1 �N .�� , C� /, (20)

where

C� DƒC . OBTƒ/T
�
OBTƒ OB

	�1
. OBTƒ/

�� D CuC . OBTƒ/T
�
OBTƒ OB

	�1
.f� OBTCu/

(21)

� For De assuming we are interested in the elastic modulus Ee such that De D Ee ODe (where ODe
is known):

Ee j � e , ue ,�2e �N .	E , �2E /, (22)

where

�2E D
�2e

k ODe�e k2

	E D
�Te
ODTe � e

k ODe�e k2

(23)

In the following, we propose a hybrid scheme based on the expectation–maximization algorithm
[43] that provides maximum a posteriori point estimates for the model discrepancy parameters
ƒ D ¹�2eº while fully sampling from the posterior of Equation (14) for the remaining parameters
� D

�
�2, � , ¹Deº

nel
eD1, u

�
(Figure 1). F1

2.1. Inference and learning

We advocate a scalable procedure for carrying out inference and learning with respect to the
posterior �.‚/ (Equation (14)), which is a common practice in pertinent probabilistic models [44].
We compute point estimates for the vector ƒ D ¹�2eº, which correspond to maxima ƒ� of the
log-posterior.

C
olor

O
nline,B

&
W

in
Print

Figure 1. Schematic illustration of the expectation–maximization scheme.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
DOI: 10.1002/nme
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8 P.-S. KOUTSOURELAKIS

L.ƒ/D logp.ƒ j uQ,M/D log
Z

p.ƒ,� j uQ,M/„ ƒ‚ …
posteriorEquation .14/

d�

D log
Z
�.ƒ,�/ d�

(24)

while the remaining parameters � D
�
�2, � , ¹Deº

nel
eD1, u

�
are sampled from the full posterior

�.� ,ƒ�/.
Maximization of L.ƒ/ is more complex than a standard optimization task as it involves integra-

tion over the unobserved variables � . We propose therefore, adopting an expectation–maximization
framework (EM) which is an iterative, robust scheme that is guaranteed to increase the log-posterior
at each iteration [43, 44]. It is based on constructing a series of increasing lower bounds of the
log-posterior using auxiliary distributions q.�/

L.�/D D log
Z
�.ƒ,�/ d�

D log
Z
q.�/

�.ƒ,�/

q.�/
d�

>
Z
q.�/ log

�.ƒ,�/

q.�/
d� (Jensen’s inequality)

D F.q,�/.

(25)

It is obvious that this inequality becomes an equality when in place of the auxiliary distribution
q.�/, the conditional posterior �.� j ƒ/ D p.� j ƒ, uQ,M/ is selected. Given an estimate ƒ.j /

at step j , this suggests iterating between an Expectation step (E-step), whereby we average with
respect to q.j /.�/D �.� jƒ.j /, uQ,M/ to evaluate the lower bound

E-step:F .j /.q.j /,ƒ/D
Z
q.s/.�/ log�.ƒ,�/ d�

�

Z
q.j /.�/ log q.j /.�/ d�

(26)

and a Maximization step (M-step) with respect to F .j /.q.j /,ƒ/ (and in particular, the first part in
Equation (26) because the second does not depend on ƒ)

M-step:ƒ.jC1/ D argmax
ƒ
F .j /.q.j /,ƒ/

D argmax
‚
Eq.j/.�/ Œlog�.ƒ,�/�

D argmax
ƒ
Q.ƒ.j /,ƒ/.

(27)

Given the expression of the (unormalized) posterior in Equation (14), the aforementioned objective
function Q.ƒ.j /,ƒ/ becomes

Q.ƒ.j /,ƒ/DEq.j/.�/ Œlog�.ƒ,�/�

DEq.j/.�/

"
log

nelY
eD1

p.ce j � e , ue ,�2e/ p.ƒ/

#

DEq.j/.�/

"
nelX
eD1

logp
�
ce j � e , ue ,�2e

�#
CEq.j/.�/ Œlogp.ƒ/�

D

nelX
eD1

Eq.j/.�/
�
logp

�
ce j � e , ue ,�2e

��
C logp.ƒ/.

(28)
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A BAYESIAN STRATEGY FOR MODEL VALIDATION 9

Although the second term in the expression previously mentioned is essentially a penalty term
arising from the prior on ƒ (Equation (11)), the first term from Equation (10) leads to

Eq.j/.�/
�
logp

�
ce j � e , ue ,�2e

��
D�

n�

2
log�2e

�
1

�2e
Eq.j/.�/

�
k � e �DeBeue k2

�
.

(29)

It is evident that the M-step requires computation of the sufficient statistics ˆe

ˆ.j /e DEq.j/.�/
�
k � e �DeBeue k2

�
, (30)

that is, the expected values (with respect to q.j /) of the constitutive relation discrepancy in each of
the elements e D 1, : : : ,nel . Given the dependence amongst the components ofƒ in the prior model,
we propose an incremental version of the EM scheme ([45, 46]), where rather than maximizing
Q.ƒ.j /,ƒ/ in the M-step, we set ƒ.jC1/ such that

Q.ƒ.j /,ƒ.jC1//>Q.ƒ.j /,ƒ.j //. (31)

To that end, we propose maximizing Q.ƒ.j /,ƒ/ with respect to a single component of ƒ (i.e.,
�2e , e D 1, : : : ,nel ) at a time while keeping the rest fixed. At each step, all the components of ƒ
were scanned and details on the computations entailed are provided in the Appendix.

The critical task is that of inference, that is, the calculation of the expectations with respect to
q.j /.�/ in the E-step (Equation (26) or Equation (29)). As mentioned earlier, the optimal choice
for q.j /.�/ is the (conditional) posterior �.� j ƒ.j //, which is analytically intractable as it can
readily be established from Equation (14). Although suboptimal variational approximations can be
employed (e.g., [47–49]), in this work, we explore asymptotically exact approximations based on
MCMC sampling from the posterior [50]. If ¹�.i ,j /ºNiD1 denote N samples from such a Markov
chain with the (conditional) posterior q.j /.�/ D �.� j ƒ.j // at iteration j as the target, then the
E-step in Equation (26) can be substituted by

Q.ƒ.j /,ƒ/D
Z
q.j /.�/ log�.ƒ,�/ d� � OQ.ƒ.j /,ƒ/D

1

N

NX
iD1

log�.ƒ,�.i ,j //. (32)

The unavoidable noise introduced in these estimates by MCMC might necessitate an exuberant
number of samples N to obtain a robust algorithm particularly close to the maximum of L.ƒ/
(Equation (24)). For that purpose, we propose employing a stochastic approximation variant of the
Robbins & Monro scheme [51, 52]. Rather than increasing the simulation size N in order to reduce
the variance, we compute a weighted average at the current and previous iterations. By employing a
decreasing sequence of weights, information from the earlier iterations gets discarded gradually and
more emphasis is placed on the recent iterations. As it is shown in [53], this method converges with a
fixed sample sizeN (even whenN D 1). Convergence results that take into account the dependence
of the Markov chains at each EM-step have been obtained by constraining the sequence of ƒ.j / to
some compact set C by means of a reprojection onto C [54]. Even though this does not pose much
problems in computational practice, weakened conditions have been established in [55, 56].

In particular, rather than using OQ.ƒ.j /,ƒ/ (which according to Equation (32) approximates
Q.ƒ.j /,ƒ/) in the M-step (Equation (27)), we use

QQ.ƒ.j /,ƒ/D .1� 
j / QQ.ƒ
.j�1/,ƒ/C 
j OQ.ƒ

.j /,ƒ/, (33)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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10 P.-S. KOUTSOURELAKIS

where the sequence of weights ¹
j º is such that
P1
jD1 
j D1 and

P1
jD1 


2
j <1

||. As it can be
seen from Equations (28)–(30) in order to estimate the weighted average in Equation (33), it suffices
to keep track of the weighted averages Q̂ .j /e of the sufficient statistics ˆ.j /e (Equation (30))

Q̂ .j /
e D .1� 
j /

Q̂ .j�1/
e C 
jˆ

.j /
e . (34)

The MCMC steps can be carried out using Gibbs sampling with respect to each of the compo-
nents of � , that is, �2 u, � , and ¹Deº

nel
eD1, which require the conditional distributions enumerated

in the previous subsection (i.e., Equations (16), (17), (20) and (22)). It is worth pointing out that
the n 	 n system of linear equations does not need to be solved (which has a cost of O.n3/
operations) at any stage as in traditional inverse problems. If J is the total number of EM iterations
and N is the number of MCMC steps at each iteration, then sampling from the aforementioned
conditionals implies

� the inversion and Cholesky factorization of Cu in order to generate samples of u. This must
be repeated at every MCMC step because ¹Deº are updated. The cost of this operation is
O.J N n3/.
� the Cholesky factorization of C� in order to generate samples of � . This must be repeated at

every EM iteration and not at every MCMC step because C� solely depends on ƒ. The cost
of this operation is O.J .neln� /3/, where n� is the number of stress components (n� D 6 in
three dimensions, n� D 3 in plane stress/strain, etc.).

In order to reduce the cost associated with these operations, one can employ block-Gibbs updates
with respect to each of the components of u (or blocks of u) rather than updating the whole vector
at once. As it is demonstrated in the sequence, the cost of such a scheme is O.J N n.neln� //.
The mixing is obviously slower than the full updates and as a consequence, the variance in the
MCMC estimates is larger. In general, therefore, more EM iterations (assuming the same number
of samples N are used at each iteration) are needed to converge. Nevertheless, the linear scaling
with J constitutes such a scheme more efficient. Similar block-Gibbs updates can be carried out
for � reducing the cost associated with this task to J N n.neln� //. The conditional posteriors for
performing block-Gibbs moves are described in the sequence.

Let



ui
u�i

�
be a partitioning of u with respect to component i**. Let also Q D ŒQi jQ�i �,

C D ŒCi j C�i � the corresponding partitioning of the matrices appearing in Equations (3) and (19).
Then, the conditional posterior of ui from Equation (14) is

ui j u�i , �2, � , ¹De ,�2eº
nel
eD1 �N .	ui , �2ui /, (35)

where

��2ui D CTi ƒ
�1Ci C

1

�2
QT
i Qi (36)

	ui D �
2
ui

�
CTi ƒ

�1.� �C�iu�i /C
1

�2
QT
i .uQ �Q�iu�i /

�
. (37)

It is noted that the leading order of computational operations for updating successively all com-
ponents of u as previously mentioned isO.n.neln� //. This is approximately one order less than the

||A family of such sequences that was used in this work is �j D 1

jp
with 1=2 < p 6 1. The value of p D 0.51

was employed
**An identical procedure can be followed when ui corresponds to a block of u

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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A BAYESIAN STRATEGY FOR MODEL VALIDATION 11

O.n3/ cost associated with the full update (Equation (17)), considering that the dimension of the
stress vector neln� is comparable with n.

3. NUMERICAL EXAMPLES

In this section, we report results on the accuracy and performance of the algorithm on two-
dimensional elastography problems on synthetic data obtained for the configuration depicted in
Figure 2 [14, 16], where the boundary displacements normal to the walls are prescribed. We intend F2
to provide a clinical validation of the approach in a future study.

We assume an isotropic elastic material with Poisson’s ratio � D 0.5 (incompressible) and employ
the selective reduced integration quadrilateral elements for the forward problem [57, 58].

We examine two distributions for the elastic modulus occurring in elliptic and circular inclusions.
In the first problem (Figure 3), the emphasis is on demonstrating the capabilities of the proposed F3
method in identifying the ground truth as well as providing probabilistic confidence metrics par-
ticularly in the presence of noise. In the second case (Figure 8), the emphasis is on detecting and
quantifying model discrepancies in the sense described in Section 2. It is noted that in all cases

C
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1 =1

2 =1

Figure 2. Problem configuration used in both examples 1 and 2 [16].
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Figure 3. Example 1 - Elastic modulus E spatial distribution: In the inclusions, E D 5, whereas in the rest
of the domain, E D 1.
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12 P.-S. KOUTSOURELAKIS

apart from the identification of material properties, a direct output of the computations is the stress
distribution. It is finally noted that in order to generate the displacement data, the forward problem
was solved with a randomly generated mesh consisting of 10, 000 elements.

The following values were used for the parameters appearing in prior models described
previously

� �2´ D 100 (Equation (11)), which corresponds to a diffuse prior and �2u D 1 in Equation (15).
The latter was selected based on the magnitude of the prescribed boundary displacements in
Figure 2.
� d0 D 0.1 for the correlation-length parameter appearing in the H (Equation (12)) and V

(Equation (15)). Numerical evidence suggested that the effect of this parameter was minimal
when varied in the range Œ0.01, 0.5� given that the characteristic dimension of the problem
domain is 1.
� an uninformative Jeffry’s prior was adopted for the observation noise variance �2

(Equation (16)) with ˛� D 2 and ˇ� D 0.

With regards to the EM scheme, at each iteration N D 10, MCMC updates of all model
parameters were performed and iterations were terminated when the relative increase in
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(a) 5x5: 5% quantile (b) 5x5: posterior mean (c) 5x5: 95% quantile

(d) 10x10: 5% quantile (e) 10x10: posterior mean (f) 10x10: 95% quantile

(g) 20x20: 5% quantilea (h) 20x20: posterior mean (i) 20x20: 95% quantile

Figure 4. Example 1: Posterior statistics of the elastic modulus distribution for noiseless data.
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A BAYESIAN STRATEGY FOR MODEL VALIDATION 13

the objective Q.ƒ.j /,ƒ/ in Equation (28) was less than or equal to � D 0.001, that is,
jQ.ƒ.j/,ƒ/�Q.ƒ.j�1/,ƒ/j

jQ.ƒ.j�1/,ƒ/j
< �.

3.1. Example 1

The first scenario involves two elliptical inclusions centered at .0.25, 0.25/ and .0.75, 0.75/ with
principal axes 0.1 and 0.2. with a contrast ratio 5 W 1 in the elastic modulus (Figure 3). A useful out-
come of the numerical investigations was the fact that the overall inference and learning process can
be greatly accelerated by operating on a sequence of discretizations with increased refinement. In
particular, initially, a coarse mesh is adopted with few nodes and elements, where the proposed EM
scheme is applied. The parameter values learned (i.e., ƒ) are used as the initial values for a refined
mesh. The MCMC chains with respect to the other model parameters at the new mesh are initiated
from samples drawn at the coarser mesh. It was found that this led to a reduction of the number of
EM iterations needed to achieve convergence and significant acceleration because the order of oper-
ations at coarse meshes is smaller. For that purpose, we report in this problem the results obtained
at three different resolutions employing a regular mesh with 5 	 5 , 10 	 10 and 20 	 20 elements.
A potentially important implication involves the possibility of adaptive refinement, where the mesh
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(a) 5x5: 5% quantile (b) 5x5: posterior mean (c) 5x5: 95% quantile

(d) 10x10: 5% quantile (e) 10x10: posterior mean (f) 10x10: 95% quantile

(g) 20x20: 5% quantilea (h) 20x20: posterior mean (i) 20x20: 95% quantile

Figure 5. Example 1: Posterior statistics of the elastic modulus distribution for noisy data with SNR=40 dB .
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14 P.-S. KOUTSOURELAKIS

can be refined at selected regions of the problem domain where further information is needed as
determined by the inferences produced at coarser resolutions [28].

Figure 4 depicts the posterior mean as well as the posterior quantiles at 5% and 95% for the elasticF4
modulus at these three resolutions and in the absence of noise in the data. It is readily observed that
the proposed scheme can identify the ground truth as well as provide posterior credible intervals
on the inferences made. These are more clearly depicted in Figure 6(a), which presents the results
along the diagonal from .0, 0/ to .1, 1/.

We also investigated the performance of the algorithm in the presence of zero mean, Gaussian
noise, and in particular with a signal-to-noise-ratio (SNR) SNR D 40dB , which is typical for
ultrasound systems [21,23]. The results are shown in Figure 5 in terms of posterior mean and poste-F5
rior quantiles. As it can also be seen in Figure 6(b), the algorithm is able to quantify the uncertaintyF6
introduced by the presence of noise and posterior bounds provided enclose the ground truth. Finally,
Figure 7 depicts randomly selected samples drawn at various iterations of the EM scheme (for theF7
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(a) no noise

(0.0) 0.25 0.5 0.75 1 (1.1) 1.5
0

5
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(0.0) 0.25 0.5 0.75 1 (1.1) 1.5

posterior mean

5% posterior quantile

95% posterior quantile

reference

distance along diagonal

(b) SNR=40

Figure 6. Example 1: Posterior statistics of the elastic modulus distribution along the diagonal from .0, 0/
to .1, 1/.
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(a) no noise, iteration=10 (b) no noise, iteration=30 (c) no noise, iteration=1000

(d) SNR=40, iteration=10 (e) SNR=40, iteration=30 (f) SNR=40, iteration=1000

Figure 7. Samples of the elastic modulus distributions obtained from the posterior at various iteration
numbers of the proposed expectation–maximization framework scheme.
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A BAYESIAN STRATEGY FOR MODEL VALIDATION 15

finest resolution 20	 20) that demonstrate the evolution of the learning algorithm proposed.

3.2. Example 2

The primary goal in the second example is to demonstrate the capability of quantifying model dis-
crepancy in the constitutive equation. In particular, we consider the synthetic data generated by
the material distribution in Figure 8. The circular inclusion centered at .0.5, 0.5/ with radius 0.2 is F8
assumed to have an elastic modulus that is 5 times larger than the rest of the domain. We further
assumed a square region on the top left corner Œ0, 0.2�	Œ0.8, 1�, where rather than an isotropic, elastic

material, we employed an anisotropic constitutive matrix D D

2
4 10 �5 �5
�5, 20. �5
�5 �5 100

3
5. Although

this is a valid constitutive model (i.e., D is positive definite), it is obviously inconsistent with the
isotropic assumption made in the model used to identify material properties. Although other inver-
sion schemes might be able to find an elastic modulus corresponding to an isotropic material that fits
adequately the observed displacements, they would be unable to identify that the model employed
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Figure 8. Example 2: Elastic modulus E spatial distribution: In the circular inclusion, E D 5, in the

subdomain Œ0, 0.2� 	 Œ0.8, 1�, we employed a constitutive matrix D D

"
10 �5 �5
�5, 10. �5
�5 �5 100

#
,whereas in

the rest of the domain, E D 1.
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(a) no noise (b) SNR=40

Figure 9. Example 2: Model discrepancies/errors
®
�2e
¯nel
eD1

for (a) no noise, and (b) SNR=40 dB

(in log-scale).
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16 P.-S. KOUTSOURELAKIS

is inadequate. As a result, erroneous conclusions would be drawn about the state of the material at
this portion of the problem domain.

Figure 9 depicts the learned values of the parameters ƒ D ¹�2eº (Equation (10)), which expressF9
the magnitude of model error over each element of the domain. Both in the absence of noise and
when SNRD 40dB , the algorithm clearly identifies a significant model error in the region on the
top-left corner. It is noted that the �2e values in this region are from 2 to 4 orders of magnitude
larger than in the rest of the problem domain. Despite the model inadequacy, the algorithm correctly
identifies the presence of the circular inclusion as it can be seen in Figure 10 and more clearly inF10
Figure 11, which shows the elastic modulus variation along the diagonal from .0, 1/ to .1, 0/. It isF11
particularly interesting to note that even though the isotropic elastic constitutive model endowed in
the inversion scheme is inadequate at least for a subdomain of the problem, the proposed scheme
can correctly identify the stresses (pressure and shear) in the whole domain as it can be seen in
Figures 12 and 13. These depict the ground truth in comparison with the posterior means obtainedF12 F13
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(a) no noise - 5% quantile (b) no noise - posterior mean (c) no noise - 95% quantile

(d) SNR=40 - 5% quantile (e) SNR=40 - posterior mean (f) SNR=40 - 95% quantile

Figure 10. Example 2: Posterior statistics of the elastic modulus distribution when data have no noise and
for SNR=40 dB .
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Figure 11. Example 2: Posterior statistics of the elastic modulus distribution along the diagonal from .0, 1/
to .1, 0/.
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(a) reference (ground truth) (b) no noise - posterior mean (c) SNR=40 - posterior mean

Figure 12. Example 2: Comparison of pressure’s spatial distribution with the posterior means obtained when
data have no noise and for SNR=40 dB .
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(a) reference (ground truth) (b) no noise - posterior mean (c) SNR=40 - posterior mean

Figure 13. Example 2: Comparison of shear stress’ �xy spatial distribution with the posterior means
obtained when data have no noise and for SNRD 40 dB .

with no noise and for SNR=40 dB . The posterior quantiles (which are omitted herein for economy
of space) fully envelop the ground truth.

4. CONCLUSIONS

Although existing stochastic (Bayesian) strategies for the solution of inverse problems associated
with the identification of material properties in biomechanics are able to account for various sources
of uncertainty in the problem, they are generally deficient in terms of assessing model fidelity. We
proposed an intrusive formulation that incorporates the various model equations in the likelihood
(posterior) and is capable of inferring model discrepancies from noisy displacement data. In con-
trast to direct methods, it does not require imputations of strains nor their derivatives. It provides
probabilistic confidence metrics (credible intervals) that can be very useful to the analyst as well
as probabilistic estimates of the (unobserved) stresses/pressures. We discussed a scalable compu-
tational framework which can be greatly accelerated by employing a multiresolution strategy. The
latter could be utilized in order to propose adaptively, refinements of the discretized domain, which
we intend to explore in the future. Current investigations also involve extending this approach to
dynamic settings where the parameter vector should include velocities and accelerations in addition
to displacements, and the model equations should include the time-integration scheme adopted.

APPENDIX A: MAXIMIZATION WITH RESPECT TO ƒ

This section describes the computations involved during the maximization step of the EM algorithm
described in Section 2. In particular, according to Equations (28), (29), (30) and the prior model in
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18 P.-S. KOUTSOURELAKIS

Equation (11), this entails a maximization with respect to ƒD ¹�2eºe of

Q.ƒ.j /,ƒ/D�
n�

2

nelX
eD1

log�2e �
1

�2e

nelX
eD1

ˆ.j /e C logp.ƒ/

D�
n�

2

nelX
eD1

log�2e �
1

�2e

nelX
eD1

ˆ.j /e �
1

2
ZTWZ.

(38)

It is reminded that the vector ZD ¹´eº
nel
eD1 contains the log values ofƒ, that is, ´e D log�2e . Rather

than solving an optimization in the nel -dimensional space at each iteration j , we perform successive
updates of each �2e or ´e while keeping the remaining fixed. This incremental version of the EM
algorithm entails performing nel optimizations of one-dimensional functions. We propose carrying
out the latter task with respect to ´e (as they are allowed to take any value on the real axis in contrast
to �2e , which must be positive) and employ a standard Newton–Raphson scheme. This requires the
first-order and second-order derivatives of the objective function previously mentioned which are
given by

@Q.ƒ.j /,ƒ/

@´e
D�

3

2
C
ˆ
.j /
e

2
e�´e �

´e �	´e
�2´e

(39)

and

@2Q.ƒ.j /,ƒ/

@´2e
D�

ˆ
.j /
e

2
e�´e �

1

�2´e
, (40)

where

�2´e D 1=We,e

	´e D�
1

We,e

X
k¤e

We,k´k . (41)

It can be easily seen that the second derivative is always, strictly negative @2Q.ƒ.j/,ƒ/
@´2e

< 0 and

therefore the problem is convex.
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