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Abstract:  In the Architectural-Engineering-Construction & Facility Management industry, project progress 
tracking is an important management task.  Currently, this task still requires a significant amount of non 
value-adding manual effort that interferes with value-adding work.  Additionally, current practice may lead 
to approximate or unreliable results.  In this paper, the authors present an approach fusing three-
dimensional (3D) Computer-Aided Design (CAD) modeling and time-stamped 3D laser scanned data for 
non intrusive automated project progress tracking.  This approach robustly and efficiently recognizes all 
3D CAD model elements in project 3D laser scans.  Its applicability and performance with respect to 
automated construction progress tracking are investigated.  Real-life data obtained during the 
construction of a green field power plant project is used for the investigation. 

1. Background 

The Architectural-Engineering-Construction & Facility Management (AEC&FM) industry needs to conduct 
many performance control activities that require the assessment of the life-cycle three-dimensional (3D) 
status of projects.  Such activities include construction progress and productivity tracking and dimensional 
quality assessment and quality control (QA/QC).  The authors note that, currently, these activities are 
performed using means that are labour-demanding and provide incomplete and sometimes erroneous 
results.  For instance, construction progress is often controlled by using foremen daily reports to estimate 
the current progress and comparing this estimated progress against the scheduled progress; and 
dimensional QA/QC is performed using tools such as measurement tapes, levels, total stations and by 
comparing the measurements against written specified dimensions.  The focus of this paper is on 
construction progress control. 

Research has been and is being conducted in investigating the use of new technologies for more 
efficient, reliable and automated construction progress control.  These research efforts have focused on: 
Construction progress visualization tools (Poku and Arditi 2006); as well as Progress information 
collection systems using digital pictures (Abeit and Arditi 2003; Brilakis and Soibelman 2005), Global 
Navigation Satellite Systems (GNSSs) (Caldas et al. 2006; Navon 2007), barcodes (Chen et al. 2005; 
Echeverry 1996; Navon 2007) and/or RFID tags (Ergen et al. 2006; Razavi et al. 2008).  The approach 
developed by the authors and presented here can be used as an alternative or complementary approach 
to the latter ones for acquiring site 3D information.  It especially enables the automated tracking of project 
3D information. It is expected to be very robust and fully automated. 
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The use of 3D Computer-Aided Design (CAD) modeling is spreading in the AEC&FM industry.  With 
respect to 3D project status assessment, it can be noted that a project 3D CAD model is a representation 
of the project 3D specifications that is «3D-organized».  Then, laser scanning (also referred to as LADAR 
scanning) is being introduced to the industry as an efficient and robust means to acquire comprehensive 
and high quality site 3D status information that is also 3D-organized.  By taking advantage of this 
correspondence, 3D laser scans and 3D CAD models could be compared – more exactly, 3D model 
information could be recognized in the 3D laser scans – enabling as-built 3D status tracking. 

The authors have developed a novel approach for automated recognition of project 3D CAD model 
objects in site 3D laser scans.  The approach is summarized in Section 2.  A more complete description 
(although it is still being improved) can be found in (Bosche and Haas 2008).  Section 3 describes how 
this approach can be used to perform automated 3D progress tracking.  Section 4 presents an 
experiment conducted with real-life data to investigate the feasibility and performance of this application. 

2. The 3D Data Fusion Approach 

The developed approach considers the entire 3D CAD model of a project in order to recognize all the 3D 
objects that constitute it, so that occlusions of CAD objects due to other CAD objects, referred to as 
internal occlusions, are taken into account, which increases the performance of the approach.  This 
approach consists of a series of five consecutive steps: 

1 Convert the 3D CAD model.  In order to use the 3D information contained in the 3D CAD model, 
full access to the model description is required, in particular the 3D description.  3D CAD models 
are generally stored in protected proprietary 3D CAD engine formats (e.g. DXF, DWG, DGN, 
etc.).  An adequate open-source format thus had to be identified for this research.  Many open-
source CAD formats exist such as the Industry Foundation Classes (IFC).  Here, the 
STereoLithography (STL) format is chosen.  The STL format is a 3D data representation based 
on triangular facet approximation.  It is chosen because it not only allows the conversion of the 
3D model without the loss of too much 3D information, but it also enables a significant 
simplification of the step 3 of this approach. 

2 Register both data sets. Scanner and 3D model registration information is used to reference the 
STL-formatted project 3D model in the scanner's spherical coordinate frame. 

3 Calculate the as-planned scan. For each as-built scanned range point, a corresponding as-
planned range point is calculated.  It is first assigned the same pan and tilt angles as the ones of 
the as-built point.  Its range is then calculated by performing the virtual single point scan defined 
by this direction and the 3D CAD model as the virtually scanned world.  If the scanning direction 
intersects an object STL facet, the range is calculated as the distance between the scanner and 
the intersection point.  The as-planned point is additionally assigned as an IDobject feature, the 
name or ID of the object to which the intersected facet belongs.  A point that does not intersect 
any STL facet is assigned an infinite range and a null IDobject value. 

A rapid analysis of this process may lead to the conclusion that the calculation of each as-
planned point requires investigating the intersection of its scanning direction with each object, or 
more exactly each object STL facet, and consequently that its complexity is linearly proportional 
to the product of the number of model STL facets and the number of scanned points, which can 
be significant.  However, it can be shown that a scanning direction can only intersect a facet 
whose bounding pan and tilt angles surround the scanning direction angles, so that the 
calculation of all the as-planned point ranges can be performed with a complexity independent 
from the number of model STL facets (and thus of the number of model objects).  This complexity 
reduction is enabled by the use of the STL format. This format in fact not only enables reducing 
the amount of calculations to be done, but it also enables a simpler calculation of each as-
planned point range.  Indeed, with this format, the calculation of each as-planned point range 
simply requires the calculation of the intersections of a line (the point scanning direction) with 
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triangles (STL facet).  If other 3D formats based on primitive forms were used, the calculation of 
each as-planned point range would require the calculation of the intersections of the point 
scanning direction with primitive forms (or combinations of primitive forms) , which is far more 
complex. 

4 Recognize the as-planned points.  Once this as-planned scan is completed, the as-planned 
points can be sorted by their IDobject feature, so that each object is assigned an as-planned 
range point cloud.  Then, for each object, each as-planned point can be matched to its 
corresponding as-built point.  This requires a point recognition metric.  Since the two 
corresponding points share the same pan and tilt angles, only their ranges need to be compared.  
The chosen point recognition metric is the comparison of the difference between the as-built and 
as-planned point ranges, Δρ, with a pre-defined threshold, Δρmin.  If the absolute value of Δρ is 
smaller than Δρmin, then the point is recognized; it is not otherwise. 

The estimation of Δρmin could be automatically customized for each point by considering many 
scanning parameters including: the point as-planned pan angle, tilt angle and range, reflection 
angle (angle between the scanning direction and the scanned surface normal vector) and 
reflectivity (the reflectivity of the surface from which the as-planned point is obtained); the scanner 
pan and tilt angle measurement uncertainties; and the model-scan registration error.  However, 
this would require the estimation of the relations between Δρmin and all these parameters a priori.  
For this, multiple experiments with complex setups would need to be conducted, which is out of 
the scope of this research. 

A simpler, but still robust, Δρmin threshold estimation is used in the research.  One of the above 
characteristics is retained:  for each scan, Δρmin is set so that it is greater than the mean 
registration error, εReg (Equation 1).  εReg is the mean distance between the tie points in the model 
and in the scan once the model-scan registration has been performed, so that it provides a 
general idea of the expected alignment between the scan and the model.  The formula in 
Equation 1 also takes into account possible construction location errors by adding 50 mm to εReg. 

[1] Δρmin = εReg + 50 mm 

5. Recognize the objects. For each object, once all its as-planned cloud points have been matched 
to their corresponding as-built points, it can be inferred whether the object is itself recognized or 
not.  This requires an object recognition metric.  The chosen metric is based on the object 
recognized surface.  For each object, the recognized surface, SurfR, is calculated as the weighted 
sum of its recognized points, where each point weight is its as-planned covered surface.  The 
covered surface of an as-planned point is roughly defined as the area delimited by the equidistant 
boundaries between it and its immediate neighboring points.  It is calculated as a function of the 
scan angular resolution, the as-planned point range and the as-planned point reflection angle – 
the angle between the point scanning direction and the normal to the STL facet from which it is 
obtained (see (Bosche et al. 2008) for more details).  Then, the object recognition metric 
compares SurfR to a threshold Surfmin.  If SurfR is larger Surfmin, then the object is recognized; it is 
not otherwise.   

The value of Surfmin is automatically estimated using the formula presented in Equation 2.  This 
formula takes into account the scan angular resolution (Resφ and Resθ) and the maximum 
distance between the scanner and the model (Model.ρmax), so that this object recognition metric is 
invariant with the scan angular resolution and the scanner-object distance.  The calculation of 
Surfmin also requires a value for n be chosen a priori.  n is the minimum number of points to be 
recognized at a distance Model.ρmax so that their total covered surface equals Surfmin. This 
ensures that no object can be recognized if less than n of its as-planned points are recognized.  
The authors chose for their experiments a value of n=5 points.  This value should result in a good 
compromise between a high recall, precision and specificity performance rates. 

[2] Surfmin = n · tan(Resφ) · tan(Resθ) · (Model.ρmax)2 
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In (Bosche et al. 2008), the authors demonstrate that these methods for the automated estimations of 
Δρmin and Surfmin (Equations 1 and 2) are very efficient and lead to high recognition performances.  
Additionally, this approach enables the recognition of partially built or occluded objects, so that it is suited 
to recognize not only full non-occluded objects (e.g. non-occluded built-in-place or pre-fabricated 
elements), but also objects being highly occluded as well as objects being progressively built in place, 
(e.g. brick walls), which are very common cases in site laser scans. 

3. Automated 3D Progress Tracking Strategy and Performance Assessment 

The developed approach enables the efficient and automated recognition of 3D CAD model objects in site 
laser scans.  As a result, if laser scans are obtained from a given site at different construction stages, it is 
theoretically possible to automatically infer, from the recognition results obtained with them, the 
construction progress between two stages.  

As an example, consider a project with its 3D model.  Scans may be conducted at different days but also 
in a same day from different locations and in different directions.  Consider {S}d1 and {S}d2, the sets of 
scans conducted at respectively day d1 and d2, where d1 precedes d2.  The developed approach can be 
used to recognize the 3D model objects in each scan of {S}d1 and {S}d2, and construction progress 
between the days d1 and d2 can then be inferred by identifying the objects that are recognized in {S}d2 but 
not in {S}d1.  Note that this is only an estimation of the true progress. In fact, three levels of progress must 
be distinguished:  

� The true progress of the project,  

� The scanned progress, which is the portion of the true progress that is captured with {S}d1 and 
{S}d2,  and  

� The recognized progress which the portion of the scanned progress that is inferred from the 
object recognition results obtained using the developed approach with {S}d1 and {S}d2.   

There are therefore two sources of errors that may impact the performances of a progress tracking 
system based on the developed approach: (1) the incomplete capture of the progress with the different 
scans, and (2) the limited object recognition performances of the developed approach.  Section 4 
presents an experiment, using real-life data, investigating the feasibility and performance of using the 
developed approach for automated construction 3D progress tracking. 

4. Experiment 

In this experiment, data obtained from the construction of a building that is part of a power plant project in 
downtown Toronto is used (see acknowledgements in Section 6). The building is 60m long by 15m wide 
by 9.5m high. It has a steel structure, the construction of which was the focus of the conducted 
experiments. Figure 1 presents a picture, the 3D CAD model, and one scan of the building steel structure. 
The complete 3D model, once STL-formatted, contains 612 objects with a total of 19,478 facets. The 
laser scanned data used in the experiments was obtained with a TrimbleTM GX 3D scanner that uses 
time-of-flight technology.  The scanned data consists of five scans conducted from different locations and 
on two different days about one week apart. The days are referred to as d1 and d2, where d1 precedes d2.  
Two scans were obtained at d1 and three at d2.  Information about these scans is provided in Table 1. 

The experiment described here includes two parts.  First, the performance of the developed approach for 
the recognition of the 3D model objects in the five scans is analyzed.  Then, the results are used to 
investigate its resulting performance for recognizing project 3D progress.  In these two experiments, 
recognition performance is evaluated using recall, specificity and precision rates.  It must be noted that 
the calculation of these performance measures required the manual estimation of which objects are 
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actually present in each scan as well as which objects are actually part of the progress between d0 and d1 
,and d1 and d2., where d0 is the day zero of construction when no project element is yet built or installed. 
This manual estimation, the results of which are presented in Table 1, might have resulted in some errors. 
Nonetheless, it has been performed conservatively — if there is a doubt on the presence of an object, this 
one is considered present — so that the results can only be biased toward lower performances. 

            
(a) 3D CAD model      (b) Site 3D laser scan 

 
(c) Site picture 

Figure 1: the 3D Model, one site 3D laser scan and a site picture of the investigated PEC building. 

Table 1: Scans identification and characteristics 
Scan 
day 

Scan 
Number 

Number 
of points 

Angular 
resolution 

Number of search CAD 
objects observable in scan 

d1 1 691,906 Pan: 582 μrad 
Tilt: 582 μrad 321 

d1 2 723,523 Pan: 582 μrad 
Tilt: 582 μrad 286 

d2 1 810,399 Pan: 582 μrad 
Tilt: 582 μrad 302 

d2 2 650,941 Pan: 582 μrad 
Tilt: 582 μrad 271 

d2 3 134,263 Pan: 300 μrad 
Tilt: 300 μrad 38 
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4.1 Object Recognition 

Figure 2 displays, as an example, the object recognition results obtained with the scan 2 of day d2.  Table 
2 summarizes the results and performances obtained with the five scans.  In this table, object recognition 
performance is measured using recall, specification and precision rates.  For a given scan, these 
performance measures are defined as: 

� Recall rate: the number of search objects that are recognized and truly are in the scan divided by 
the total number of search objects that truly are in the scan.   

� Specificity rate: the number of search objects that are not recognized and are truly not in the scan 
divided by the total number of search objects that are truly not in the scan.   

� Precision rate: the number of search objects that are recognized and truly are in the scan divided 
by the total number of search objects that are recognized in the scan. 

It appears in Table 2 that the approach achieves very high specificity and precision rates in all cases.  
The underlying performance is that it is very robust not to recognize an object that is not in a scan.  Then, 
the approach achieves slightly lower, but still good, recall rates.  A more detailed analysis of the results 
actually shows that low recall rates are particularly obtained with small objects (e.g. wall panel braces), 
while high recall rates are obtained with larger objects (e.g. column, beam).  These small objects are also 
the reason for the false positive recognitions.  Indeed, a small object next to a big object can be easily 
mis-recognized, especially if significant 3D registration errors are observed (see discussion below).  It 
must be noted that, in the investigated problem of 3D progress control, the mis-recognition of small 
objects is not necessarily a critical issue, since these would often not significantly impact the overall 
progress estimation. 

 

Figure 2: Example with the scan 2 from day d2 of object recognition results (the recognized objects are 
colorized and are opaque.  Those that are not recognized are light grey and transparent). 

Another significant source of error for this approach, and particularly in this set of experiments, is 3D 
model-scan registration.  Indeed, the mean registration error observed for the five scans is in average 
equal to 30 mm.  While the estimation of Δρmin partially takes this error into account, this error remains 
significant and has a considerable impact on the object recognition results.  Note that the reason for these 
high mean registration error values is that registration was performed by manual point matching was 
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used.  In the industry, scan registration error specifications are far more stringent with values of a couple 
of millimetres.  For achieving such accuracies, precisely located project tie points are used. With mean 
registration errors of a couple of millimetres, it is expected that the recognition results presented here 
would have resulted in far better performances.  

Finally, It can be noted in the results presented in Table 2 that combining the object recognition results of 
different scans from a same day increases, sometimes significantly, the overall recall rate without 
considerably impacting the specificity and precision performances. 

Table 2: Object recognition results for the different scans of day d1 (values are numbers of objects). 
Objects Scanned 

(manually observed 
in scan) 

Scan 
Day – N° 

Objects 
Automatically 
Recognized No Yes 

Recall Specificity Precision 

d1 – 1 No 
Yes 

266 
24 

76 
255 79% 92% 91% 

d1 – 2 No 
Yes 

301 
23 

72 
216 75% 93% 90% 

d1 – Combined No 
Yes 

200 
33 

64 
315 83% 86% 91% 

d2 – 1 No 
Yes 

284 
26 

81 
221 73% 92% 89% 

d2 – 2 No 
Yes 

321 
19 

60 
212 78% 94% 92% 

d2 – 3 No 
Yes 

568 
6 

9 
29 76% 99% 83% 

d2 – Combined No 
Yes 

216 
30 

60 
306 84% 88% 91% 

4.2 Progress Recognition 

The second stage of this experiment is to assess the feasibility and performance of using the results 
obtained with the developed approach to recognize progress.  Table 3 summarizes the progress 
recognition results and performances using the results obtained with the developed approach for the 
periods d0-d1, and d1-d2.  In this experiment, the scanned progress and recognized progress, defined 
earlier, are estimated, for a period di-di+1, as: 

� Scanned progress: An object is considered part of the scanned progress if it is not found by 
manual observation in any scan of day di and is manually observed in at least one scan of day 
di+1. 

� Recognized progress: An object is considered part of the automatically recognized progress if it is 
automatically recognized in any scan of day di+1 and is not found by manual observation in any 
scan of day di. 

It is acknowledged that the latter definition should be “an object is considered part of the automatically 
recognized progress if it is automatically recognized in any scan of day di+1 and is not automatically 
recognized in any scan of day di”. However, in order to properly assess the performance of inferring 
progress using the object recognition results obtained with the developed approach, it is important that 
the status of the project at the beginning of each investigated period, at di, be known accurately. While the 
object recognition results of di should be used in practice for that purpose, the object recognition results 
obtained with the data sets used here are not sufficiently good – for the reasons discussed in Section 4.1.  
As a result, visually identified objects of di are used as the estimation of the project 3D status at di.   
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Then, the recall, specification and precision rates calculated in Table 3 are defined as: 

� Recall rate: the number of search objects that are recognized as part of the scanned progress 
(recognized progress) and truly are in scanned progress divided by the total number of search 
objects that truly are in the scanned progress.  

� Specificity rate: the number of search objects that are not recognized as part of the scanned 
progress and are truly not in the scanned progress divided by the total number of search objects 
that are truly not in the scanned progress.   

� Precision rate: the number of search objects that are recognized as part of the scanned progress 
and truly are in the scanned progress divided by the total number of search objects that are 
recognized as part of the scanned progress. 

Table 3: Progress recognition results for the period d0 to d1 (values are numbers of objects). 
Objects Scanned As Part 

of the Progress 
(manually observed in 

scans) 
Period° 

Objects 
Automatically 

Recognized As 
Part of the 
Progress No Yes 

Recall Specificity Precision 

d0 – d1 
No 
Yes 

200 
33 

64 
315 83% 86% 91% 

d1 – d2 
No 
Yes 

576 
27 

2 
7 78% 96% 21% 

The results in Table 3 show that progress is quite successfully automatically recognized (high recall 
rates). For the period d0–d1, the results are actually those obtained for the object recognition in the scans 
of {S}d1 (see Table 2).  They are good, but cannot be used to arguably conclude with respect to the 
performance of the proposed approach for automated construction progress. The results obtained for the 
period d1–d2 are more meaningful in that regard. First, it appears that most of the scanned progress over 
that period is automatically recognized (high recall rate). Only two of the visually identified nine objects 
are not recognized. These two objects are actually both visually identified in Scan 3 but not recognized in 
that scan. Further analysis shows that these two objects are small.  Additionally, their recognized surface 
in Scan 3 is 0.002 m2 and 0.008 m2.  The fact that these are not null means that some of their as-planned 
range points are in fact recognized in the scan, but their covered surfaces are smaller that Surfmin that 
equals 0.011 m2. So, not only these two objects are almost recognized, but they are both small, so that 
the fact that they are not recognized has a small impact on the overall progress recognition performance. 

Then, most of the scanned non-progress (objects not part of the progress) is also automatically 
recognized (high specificity rate). However, 27 objects are recognized as part of the progress during the 
period d1–d2 although they are truly not. This means that they are recognized in at least one of the scans 
of {S}d2, and are not visually identified in any scan of {S}d1. This is actually to be related to the object 
recognition results obtained with the scans of d2. Indeed, as can be seen in Table 2, 30 objects are 
recognized in at least one scan of {S}d2 although they are not in any of these scans. The reasons for 
these Type II errors have been identified in Section 4.2: 

� The small sizes of these objects, which implies that they are generally not critical in terms of 
progress tracking. 

� The poor 3D registration quality, which has more impact on smaller objects. 

So, overall, it can be concluded that, considering the lower quality of the data sets used in these 
experiments, the 3D progress recognition results obtained are fairly good and prove the feasibility of 
using the developed approach for tracking construction 3D progress. 
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However, as discussed earlier, this feasibility analysis uses manually observed information about which 
objects are in the scans at day di in order to evaluate the accuracy of the estimate of the progress at day 
di+1.  In order to fully automate 3D progress tracking in practice, another method must be used.  The 
authors propose to take advantage of 4D models instead of 3D models.  A project 4D model is the result 
of the fusion of its 3D model and its CPM schedule.  Using a 4D CAD model and the physically derived 
precedence relationships from the CPM schedule, the 4D model at day di can be used to provide a good 
estimate of the objects that are already built at that day. 

This approach is beneficial only if the CPM schedule is sufficiently detailed and well updated.  From 
current practice, it is however clear that most projects proceed only in the most general form with respect 
to their schedules and most individual activities are generally offset by days and weeks from their original 
schedule dates.  But, it must be noted that, if the proposed approach using the 4D model is used from 
day d0, then this problem can be overcome.  Indeed, since the progress at d0 is well known – nothing is 
yet built, the developed approach can achieve good object and progress recognition results at day d1.  
These results can be used to update the CPM schedule (and consequently the 4D model) at d1, enabling 
better automated 3D progress recognition results at day d2. This procedure is then reiterated at day d2 
and until the end of the project, enabling good 3D progress recognition performances during the entire 
length of the project. 

Note, one other source of a priori information may be used from the 4D model, further increasing the 
object and progress recognition results.  For each 3D laser scan acquired at a day di, the corresponding 
virtual scan used for the object recognition can be calculated using the 4D model at day di.  The virtual 
scan obtained this way would more likely match the real scan, in particular with regard to model internal 
occlusions.  

Finally, the physically derived precedence relationships from the CPM schedule can also be used to 
recognize with reasonable confidence objects which are not recalled in day’s fused scans and yet can be 
inferred to exist due to the recognition of successor elements. 

4.3 Scanned Progress vs. True Progress 

It must be noted that only the scanned progress can be recognized.  Therefore, if the scanned progress 
significantly differs from the true progress, the recognized progress will be misleading.  It is thus important 
to ensure that the scanned progress actually reflects the true progress.  This can be done by conducting 
many scans from many locations and in many directions.  However, this would also require the 
processing of many scans, with often redundant results. 

The developed approach actually enables a better solution to this problem.  Indeed, it builds a virtual scan 
to be compared to the actual scan.  Therefore, before the construction of a project is even started, 
scanners could be virtually positioned and scans virtually conducted.  The results of these virtual scans 
could be used to optimize the number and positions of scans to effectively capture relevant project 3D 
status information for tracking the project 3D progress during its entire construction. In other words, the 
developed approach enables planning for scanning. 

Finally, another means to improve the overall tracking of project 3D status is data fusion.  Fusing with the 
laser scanned data, field data obtained with other technologies, such as Radio Frequency and 
IDentification (RFID) tags – these are already used to track prefabricated elements, would help improve 
the quality and quantity of collected field information and thus improve the overall performance of object 
and progress recognition. 
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5. Conclusion 

In this paper, the authors investigate the feasibility and performance of using a new approach for 
automated project 3D CAD model object recognition in construction site laser scans for conducting 
automated construction 3D progress tracking.  First, the recognition approach performs well for 
automatically recognizing 3D model objects in laser scans. Then, it has been shown that it can provide 
sufficiently good results to enable automated construction 3D progress tracking.  Since the developed 
object recognition approach can robustly recognize 3D model objects that are partially built or occluded, it 
enables the tracking of the progress of the construction of not only pre-fabricated and installed project 
elements, but also elements that are progressively built in place.  
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