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Sufficient stochastic maximum principle in a

regime-switching diffusion model

Catherine Donnelly∗ ETH Zurich, Switzerland

November 8, 2010

Abstract

We prove a sufficient stochastic maximum principle for the optimal control of a regime-
switching diffusion model. We show the connection to dynamic programming and we apply
the result to a quadratic loss minimization problem, which can be used to solve a mean-
variance portfolio selection problem.

Keywords: Sufficient maximum principle, regime-switching, optimal control, mean-variance
portfolio selection.

Subject classification: Primary: 49K21

1 Introduction

The aim of this paper is to prove a sufficient stochastic maximum principle for optimal control
within a regime-switching diffusion model. This extends the result of Framstad et al. (2004),
which is in a jump-diffusion setting. To prove this, we follow the method in Framstad et al.
(2004). As in their paper, we show the connection to dynamic programming and show how to
apply the result to a quadratic loss minimization problem.

An early maximum principle for a diffusion model is in Bismut (1973), where a necessary
maximum principle is derived in a model which is somewhat structurally similar to our own and,
as we also find in our set-up, this results in jumps in the adjoint variables of the Hamiltonian.

For a hidden Markovian regime-switching diffusion model, Elliott et al. (2010) apply, though
do not state explicitly, a sufficient maximum principle to a mean-variance portfolio selection
problem. However, their model is not the same as the one we consider and hence they do not
obtain jumps in the adjoint variables.

In Section 2 we detail the regime-switching diffusion model and in Section 3 we set out the
control problem. The sufficient stochastic maximum principle is given in Section 4. This is
followed by demonstrating in Section 5 the connection with dynamic programming. Finally,
in Section 6 we illustrate the use of the sufficient stochastic maximum principle by solving a
quadratic loss minimization problem.

∗(catherine.donnelly@math.ethz.ch). Mailing address: ETH Zurich, Ramistrasse 101, 8092 Zurich, Switzer-
land. Phone: +41 44 632 4763. Fax: +41 44 632 1523.
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2 The regime-switching diffusion model

Let T ∈ (0,∞) be a fixed, deterministic time. We assume that we are given an N -dimensional
Brownian motion W = (W1, . . . ,WN ) and a continuous-time, finite state space Markov chain α
defined on the same probability space (Ω,F ,P).

The filtration is generated jointly by the Brownian motion W and the Markov chain α,

Ft := σ{(α(s),W (s)), s ∈ [0, t]} ∨ N (P), ∀t ∈ [0, T ], (2.1)

where N (P) denotes the collection of all P-null events in the probability space (Ω,F ,P).
We assume that the Markov chain takes values in a finite state space I = {1, . . . , D} and it

starts in a fixed state i0 ∈ I, so that α(0) = i0, a.s. The Markov chain α has a generator G
which is a D×D matrix G = (gij)

D
i,j=1. Denote by 1 the zero-one indicator function. Associated

with each pair of distinct states (i, j) in the state space of the Markov chain is a point process,
or counting process,

Nij(t) :=
∑

0<s≤t

1{α(s−)=i} 1{α(s)=j}, ∀t ∈ [0, T ]. (2.2)

The process Nij(t) counts the number of jumps that the Markov chain α has made from state i
to state j up to time t. Define the intensity process

λij(t) := gij 1{α(t−)=i}. (2.3)

If we compensate Nij(t) by
∫ t

0
λij(s) ds, then the resulting process

Mij(t) := Nij(t)−
∫ t

0

λij(s) ds (2.4)

is a purely discontinuous, square-integrable martingale which is null at the origin (for example,
see Rogers and Williams (2000, Lemma IV.21.12)). Note that the set of martingales {Mij ; i, j ∈
I, i 6= j} are mutually orthogonal.

3 The control problem

Suppose for some P ∈ N we are given a set U ∈ RP and a control process u(t) = u(ω, t) :
Ω× [0, T ]→ U . We assume that the control u(t) is {Ft}-adapted and càdlàg. Consider the state
variable X(t) = (X1(t), . . . , XN (t))> whose nth component satisfies the stochastic differential
equation

dXn(t) = bn(t,X(t), u(t), α(t−)) dt+

N∑
m=1

σnm(t,X(t), u(t), α(t−)) dWm(t), (3.1)

where bn : [0, T ]×RN ×RP × I → R and σnm : [0, T ]×RN ×RP × I → R are given continuous
functions for n,m = 1, . . . , N . Using A> to denote the transpose of a matrix A, set b(t) :=
(b1(t), . . . , bN (t))> and σ(t) := (σnm(t))Nn,m=1.

We consider a performance criterion defined for each x ∈ RN as

J (u)(x) := J (u)(x, i0) := E

(∫ T

0

f(t,X(t), u(t), α(t)) dt+ h(X(T ), α(T ))

∣∣∣∣X(0) = x, α(0) = i0

)
,
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where for each i ∈ I we have that f(·, ·, ·, i) : [0, T ] × RN × U → R is continuous and h(·, i) :
RN → R is C1(R) and concave.

We say that the control process u is admissible and write u ∈ A if, for each x ∈ RN , (3.1)
has a unique, strong solution X(t) = X(u)(t), t ∈ [0, T ] satisfying both X(0) = x, a.s., and

E

(∫ T

0

f(t,X(t), u(t), α(t)) dt+ h(X(T ), α(T ))

)
<∞.

The stochastic control problem is to find an optimal control u? ∈ A such that

J (u?)(x) = sup
u∈A

J (u)(x). (3.2)

Define the Hamiltonian H : [0, T ]× RN × U × I × RN × RN×N → R by

H(t, x, u, i, p, q) := f(t, x, u, i) + b>(t, x, u, i)p+ tr(σ>(t, x, u, i)q), (3.3)

where tr(A) denotes the trace of the matrix A. We assume that the Hamiltonian H is differen-
tiable with respect to x.

The adjoint equation corresponding to u and X(u) in the unknown, adapted processes p(t) ∈
RN , q(t) ∈ RN×N and η(t) = (η(1)(t), . . . , η(N)(t))>, where η(n) ∈ RD×D for n = 1, . . . , N , is the
backward stochastic differential equation{

dp(t) = −∇xH(t,X(t), u(t), α(t), p(t), q(t)) dt+ q>(t) dW (t) + η(t) • dM(t)
p(T ) = ∇xh(X(T ), α(T )), a.s.

(3.4)

where ∇xH(t,X(t), u(t), α(t), p(t), q(t)) denotes ∇xH(t, x, u(t), α(t), p(t), q(t))|x=X(t),
∇xh(X(T ), α(T )) denotes ∇xh(x, α(T ))|x=X(T ) and, for notational convenience, we define

η(t) • dM(t) :=

∑
j 6=i

η
(1)
ij (t) dMij(t), · · · ,

∑
j 6=i

η
(N)
ij (t) dMij(t)

> ,
for all t ∈ [0, T ). Note that we use throughout this paper

∑
j 6=i as shorthand for

∑D
i=1

∑D
j=1,
j 6=i

.

Remark 3.1. Notice that there are jumps in the adjoint equation (3.4) even though there are
no jumps in the equation (3.1) which governs the state variable X(t). This is a consequence of
the coefficients b(t) and σ(t) being functions of the Markov chain α(t). Moreover, the unknown
process η(t) in the adjoint equations (3.4) does not appear in the Hamiltonian (3.3).

4 Sufficient stochastic maximum principle

Here we state and prove the sufficient stochastic maximum principle. In Section 6, we apply it
to a quadratic loss minimization problem.

Theorem 4.1 (Sufficient stochastic maximum principle). Let û ∈ A with corresponding solution
X̂ = X(û) and suppose that there exists a solution (p̂(t), q̂(t), η̂(t)) of the corresponding adjoint
equation (3.4) satisfying

E

∫ T

0

∥∥∥∥(σ(t, X̂(t))− σ(t,X(u)(t))
)>

p̂(t)

∥∥∥∥2

dt <∞, (4.1)
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E

∫ T

0

∥∥∥∥q̂>(t)
(
X̂(t)−X(u)(t)

)∥∥∥∥2

dt <∞, (4.2)

and
N∑
n=1

∑
j 6=i

E

∫ T

0

∣∣∣∣ (X̂n(t)−X(u)
n (t)

)
η̂

(n)
ij (t)

∣∣∣∣2 d〈Mij〉(t) <∞, (4.3)

for all admissible controls u ∈ A. Further suppose that

1. H(t, X̂(t), û(t), α(t), p̂(t), q̂(t)) = supv∈U H(t, X̂(t), v, α(t), p̂(t), q̂(t)), ∀t ∈ [0, T ],

2. h(x, i) is a concave function of x for each i ∈ I, and

3. for each fixed pair (t, i) ∈ [0, T ] × I, Ĥ(x) := maxv∈U H(t, x, v, i, p̂(t), q̂(t)) exists and is a
concave function of x.

Then û is an optimal control.

Proof. Fix u ∈ A with corresponding solution X = X(u). For notational ease, denote the quadru-
ple (t, X̂(t−), û(t−), α(t−)) by (t, X̂(t−)) and similarly denote the quadruple (t,X(t−), u(t−), α(t−))
by (t,X(t−)). Then

J(û)− J(u) = E

(∫ T

0

(
f(t, X̂(t))− f(t,X(t))

)
dt+ h(X̂(T ), α(T ))− h(X(T ), α(T ))

)
.

We use the concavity of h(·, i) for each i ∈ I and (3.4) to obtain the inequalities

E
(
h(X̂(T ), α(T ))− h(X(T ), α(T ))

)
≥ E

((
X̂(T )−X(T )

)>
∇xh

(
X̂(T ), α(T )

))
≥ E

((
X̂(T )−X(T )

)>
p̂(T )

)
.

This gives

J(û)− J(u) ≥ E

∫ T

0

(
f(t, X̂(t−))− f(t,X(t−))

)
dt+ E

((
X̂(T )−X(T )

)>
p̂(T )

)
. (4.4)

To expand the first term on the right-hand side of (4.4), we use the definition of H in (3.3) to
obtain

E

∫ T

0

(
f(t, X̂(t))− f(t,X(t))

)
dt

= E

∫ T

0

(
H(t, X̂(t), û(t), α(t), p̂(t), q̂(t))−H(t,X(t), u(t), α(t), p̂(t), q̂(t))

)
dt

− E

∫ T

0

((
b(t, X̂(t))− b(t,X(t))

)>
p̂(t) + tr

(
σ(t, X̂(t))− σ(t,X(t))

)>
q̂(t)

)
dt.

(4.5)

To expand the second term on the right-hand side of (4.4) we begin by applying integration-by-
parts to get(
X̂(T )−X(T )

)>
p̂(T ) =

∫ T

0

(
X̂(t)−X(t)

)>
dp̂(t)+

∫ T

0

p̂>(t) d
(
X̂(t)−X(t)

)
+
[
X̂ −X, p̂

]
(T ).
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Substitute for X, X̂ and p̂ from (3.1) and (3.4) to find(
X̂(T )−X(T )

)>
p̂(T )

=

∫ T

0

(
X̂(t)−X(t)

)> (
−∇xH(t, X̂(t), û(t), α(t), p̂(t), q̂(t)) dt+ q̂>(t) dW (t) + η̂(t) • dM(t)

)
+

∫ T

0

p̂>(t)

((
b(t, X̂(t))− b(t,X(t))

)
dt+

(
σ(t, X̂(t))− σ(t,X(t))

)>
dW (t)

)
+

∫ T

0

tr
(
q̂>(t)

(
σ(t, X̂(t))− σ(t,X(t))

))
dt.

Due to the integrability conditions (4.1)-(4.3), the Brownian motion and Markov chain martingale
integrals in the latter equation are square-integrable martingales which are null at the origin.
Thus taking expectations we obtain

E

((
X̂(T )−X(T )

)>
p̂(T )

)
= E

∫ T

0

(
−
(
X̂(t)−X(t)

)>
∇xH(t, X̂(t), û(t), α(t), p̂(t), q̂(t))

)
dt

+ E

∫ T

0

(
p̂>(t)

(
b(t, X̂(t))− b(t,X(t))

)
+ tr

(
q̂>(t)

(
σ(t, X̂(t))− σ(t,X(t))

)))
dt.

Substitute the last equation and (4.5) into the inequality (4.4) to find after cancellation that

J(û)− J(u) ≥ E

∫ T

0

(
H(t, X̂(t), û(t), α(t), p̂(t), q̂(t))−H(t,X(t), u(t), α(t), p̂(t), q̂(t))

−
(
X̂(t)−X(t)

)>
∇xH(t, X̂(t), û(t), α(t), p̂(t), q̂(t))

)
dt.

(4.6)

We can show that the integrand on the right-hand side of (4.6) is non-negative a.s. for each
t ∈ [0, T ] by fixing the state of the Markov chain and then using the assumed concavity of Ĥ(x)
to apply the argument of Framstad et al. (2004, pages 83-84). This gives J(û) − J(u) ≥ 0 and
hence û is optimal.

5 Connection to Dynamic Programming

In a jump-diffusion setting, the connection between the stochastic maximum principle and dy-
namic programming principle is shown in Framstad et al. (2004, Section 3). We show a similar
connection in Theorem 5.1, between the value function V (t, x, i) of the control problem and
the adjoint processes p(t), q(t) and η(t). The main difference is that, in the regime-switching
diffusion model, the adjoint process ηij(t) represents the jumps of the x-gradient of the value
function due to the Markov chain switching from state i to state j. In the non-regime-switching
jump-diffusion model, this adjoint process represents the jumps of the x-gradient of the value
function due to the jumps in the state process X(t).

To put the problem in a Markovian framework so that we can apply dynamic programming,
define

Ju(s, x, i) := E

(∫ T

s

f (t,X(t), u(t), α(t)) dt+ h(X(T ), α(T ))

∣∣∣∣X(s) = x, α(s) = i

)
, ∀u ∈ A,
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and put
V (s, x, i) := sup

u∈A
Ju(s, x, i), (5.1)

for all (s, x, i) ∈ [0, T ]× RN × I.

Theorem 5.1. Assume that V (·, ·, i) ∈ C1,3([0, T ]×RN ) for each i ∈ I and that there exists an
optimal Markov control u?(t, x, i) for (5.1), with corresponding solution X? = X(u?). Define

pn(t) :=
∂V

∂xn
(t,X?(t), α(t)), (5.2)

qnm(t) :=

N∑
l=1

σlm(t,X?(t), u?(t), α(t))
∂2V

∂xn∂xl
(t,X?(t), α(t)), (5.3)

η
(n)
ij (t) :=

∂V

∂xn
(t,X?(t), j)− ∂V

∂xn
(t,X?(t), i). (5.4)

Then p(t), q(t) and η(t) solve the adjoint equation (3.4).

Remark 5.2. To prove the above theorem, we require Itô’s formula, which is given next. Itô’s
formula can be found in Protter (2005, Theorem 18, page 278).

Theorem 5.3 (Itô’s formula). Suppose we are given an N -dimensional process X = (X1, . . . , XN )>

satisfying for each n = 1, . . . , N

dXn(t) = bn(t,X(t), α(t−)) dt+

N∑
m=1

σnm(t,X(t), α(t−)) dWm(t)

Xn(0) = x
(n)
0 , a.s.,

for some x
(n)
0 ∈ R, and functions V (·, ·, i) ∈ C1,3([0, T ]× RN ) for each i = 1, . . . , D. Then

V (t,X(t), α(t)) = V (0, X(0), α(0)) +

∫ t

0

ΓV (s,X(s), α(s−)) ds

+

N∑
n=1

∫ t

0

∂V

∂xn
(s,X(s), α(s−))

N∑
m=1

σnm(s,X(s), α(s−)) dWm(s)

+
∑
j 6=i

∫ t

0

(V (s,X(s), j)− V (s,X(s), i)) dMij(t),

for

ΓV (t, x, i) :=
∂V

∂t
(t, x, i) +

N∑
n=1

∂V

∂xn
(t, x, i)bn(t, x, i)

+
1

2

N∑
n=1

N∑
m=1

∂2V

∂xn∂xm
(t, x, i)

N∑
l=1

σnl(t, x, i)σml(t, x, i)

+

D∑
j=1

gij (V (t, x, j)− V (t, x, i)) ,

for all (t, x, i) ∈ [0, T ]× RN × I.
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Proof of Theorem 5.1. From general dynamic programming theory, the Hamilton-Jacobi-Bellman
equation holds:

∂V

∂t
(t, x, i) + sup

u∈U
{f(t, x, u, i) +AuV (t, x, i)} = 0,

where Au is the infinitesimal generator and the supremum is attained by u?(t, x, i). Define

F (t, x, u, i) :=
∂V

∂t
(t, x, i) + f(t, x, u, i) +AuV (t, x, i).

Using Itô’s formula (Theorem 5.3) to expand AuV (t, x, i), we find

F (t, x, u, i) = f(t, x, u, i) +
∂V

∂t
(t, x, i) +

N∑
n=1

∂V

∂xn
(t, x, i)bn(t, x, i)

+
1

2

N∑
n=1

N∑
m=1

∂2V

∂xn∂xm
(t, x, i)

N∑
l=1

σnl(t, x, i)σml(t, x, i)

+

D∑
j=1

gij (V (t, x, j)− V (t, x, i)) .

Differentiate F (t, x, u?(t, x, i), i) with respect to xk and evaluate at x = X?(t) and i = α(t). For
notational ease denote the quadruple (t,X?(t), u?(t,X?(t), α(t)), α(t)) by (t, α(t)). We get

0 =
∂f

∂xk
(t, α(t)) +

∂2V

∂xk∂t
(t,X?(t), α(t)) +

N∑
n=1

∂2V

∂xk∂xn
(t,X?(t), α(t)) · bn(t, α(t))

+

N∑
n=1

∂V

∂xn
(t,X?(t), α(t)) · ∂bn

∂xk
(t, α(t))

+
1

2

N∑
n=1

N∑
m=1

∂3V

∂xk∂xn∂xm
(t,X?(t), α(t))

(
N∑
l=1

σnlσml

)
(t, α(t))

+
1

2

N∑
n=1

N∑
m=1

∂2V

∂xn∂xm
(t,X?(t), α(t))

∂

∂xk

(
N∑
l=1

σnlσml

)
(t, α(t))

+

D∑
j=1

gα(t),j

(
∂V

∂xk
(t,X?(t), j)− ∂V

∂xk
(t,X?(t), α(t))

)
.

(5.5)

Next define

Yk(t) :=
∂V

∂xk
(t,X?(t), α(t)), for k = 1, . . . , N.
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Using Itô’s formula (Theorem 5.3) to obtain the dynamics of Yk(t), we find

dYk(t) =

{
∂2V

∂t∂xk
(t,X?(t), α(t)) +

N∑
n=1

∂2V

∂xn∂xk
(t,X?(t), α(t)) · bn(t, α(t))

+
1

2

N∑
n=1

N∑
m=1

∂3V

∂xn∂xm∂xk
(t,X?(t), α(t))

(
N∑
l=1

σnlσml

)
(t, α(t))

+

D∑
j=1

gα(t),j

(
∂V

∂xk
(t,X?(t), j)− ∂V

∂xk
(t,X?(t), α(t))

)}
dt

+

N∑
n=1

∂2V

∂xn∂xk
(t,X?(t), α(t))

N∑
m=1

σnm(t, α(t)) dWm(t)

+
∑
j 6=i

(
∂V

∂xk
(t,X?(t), j)− ∂V

∂xk
(t,X?(t), i)

)
dMij(t).

Substituting for ∂2V
∂t∂xk

from (5.5), we get

dYk(t) =−
{
∂f

∂xk
(t, α(t)) +

N∑
n=1

∂V

∂xn
(t,X?(t), α(t)) · ∂bn

∂xk
(t, α(t))

+
1

2

N∑
n=1

N∑
m=1

∂2V

∂xn∂xm
(t,X?(t), α(t))

∂

∂xk

(
N∑
l=1

σnlσml

)
(t, α(t))

}
dt

+

N∑
n=1

∂2V

∂xn∂xk
(t,X?(t), α(t))

N∑
m=1

σnm(t, α(t)) dWm(t)

+
∑
j 6=i

(
∂V

∂xk
(t,X?(t), j)− ∂V

∂xk
(t,X?(t), i)

)
dMij(t).

(5.6)

Note that

1

2

N∑
n=1

N∑
m=1

∂2V

∂xn∂xm

∂

∂xk

(
N∑
l=1

σnlσml

)
=

1

2

N∑
n=1

N∑
m=1

∂2V

∂xn∂xm

N∑
l=1

(
∂σnl
∂xk

σml + σnl
∂σml
∂xk

)

=

N∑
m=1

N∑
l=1

(
N∑
n=1

σnl
∂2V

∂xn∂xm

)
∂σml
∂xk

.

(5.7)

Next, from (3.3) we find that

∂H
∂xk

(t,X(t), u(t), α(t), p(t), q(t)) =
∂f

∂xk
(t, α(t)) +

N∑
n=1

∂bn
∂xk

(t, α(t))pn(t)

+

N∑
n=1

N∑
m=1

∂σnm
∂xk

(t, α(t))qnm(t).

Substituting (5.2) - (5.4), (5.7) and the last equation into (5.6) gives

dYk(t) = − ∂H
∂xk

(t,X(t), u(t), α(t), p(t), q(t)) dt+

N∑
m=1

qkm(t) dWm(t) +
∑
j 6=i

η
(k)
ij (t) dMij(t),
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and as Yk(t) = pk(t) for each k = 1, . . . , N , we have shown that p(t), q(t) and η(t) given by
(5.2)-(5.4) solve the adjoint equation (3.4).

6 Application: quadratic loss minimization problem

We demonstrate the use of the maximum principle by solving a quadratic loss minimization
problem. Consider a regime-switching financial market that is built upon one traded asset,
which we call the risky asset, and a risk-free asset. The risk-free asset’s price process S0 =
{S0(t), t ∈ [0, T ]} is given by

dS0(t)

S0(t)
= r(t, α(t−)) dt, ∀t ∈ [0, T ], S0(0) = 1, (6.1)

where the risk-free rate of return r(t, i) is a bounded, deterministic function on [0, T ] for i =
1, . . . , D.

The price process S1 = {S1(t), t ∈ [0, T ]} of the risky asset is given by

dS1(t)

S1(t)
= b(t, α(t−)) dt+ σ(t, α(t−)) dW (t), ∀t ∈ [0, T ], (6.2)

with the initial value S1(0) being a fixed, strictly positive constant in R. We assume that the
mean rate of return b(t, i) and the volatility process σ(t, i) are bounded, non-zero, deterministic
functions on [0, T ] for i = 1, . . . , D. Here, W is a 1-dimensional standard Brownian motion and
b and σ are scalar processes.

A portfolio process π(t) is a {Ft}-previsible scalar process which gives the amount invested
in the risky asset at time t. Denote by π0(t) the amount invested in the risk-free asset at time
t. The corresponding wealth process Xπ(t) is then given by

Xπ(t) = π0(t) + π(t).

We assume that at time 0, Xπ(0) = x0, a.s. Define the market price of diffusion risk θ(t, i) :=
σ−1(t, i)(b(t, i)− r(t, i)). Under the self-financing condition, the dynamics of the wealth process
satisfy

dXπ(t) = (r(t)Xπ(t) + π(t)σ(t)θ(t)) dt+ π(t)σ(t) dW (t), Xπ(0) = x0. (6.3)

We say that π(t) is an admissible portfolio process and write π ∈ A, if it is a {Ft}-previsible,
square-integrable, scalar process.

We consider the problem of finding an admissible portfolio process π̄ ∈ A such that

E
(
X π̄(T )− d

)2
= inf
π∈A

E (Xπ(T )− d)
2
,

for some fixed constant d ∈ R.
To solve this, we use the sufficient maximum principle of Theorem 4.1. Define the real-valued

function h(x) := −(x− d)2 and consider the equivalent problem of maximizing

E (h(Xπ(T ))) = E
(
− (Xπ(T )− d)

2
)
. (6.4)

over all π ∈ A. Set the control process u(t) := π(t) and X(t) := Xπ(t). For this example, the
Hamiltonian (3.3) becomes

H(t, x, u, i, p, q) := (r(t, i)x+ uσ(t, i)θ(t, i)) p+ uσ(t, i)q, (6.5)
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and the adjoint equations (3.4) are for all t ∈ [0, T ),{
dp(t) = −r(t)p(t) dt+ q(t) dW (t) +

∑
j 6=i ηij(t) dMij(t),

p(T ) = −2X(T ) + 2d, a.s.
(6.6)

We seek the solution (p(t), q(t), η(t)) to (6.6). Since h(x) is quadratic in x and the adjoint process
p is the first derivative of the function h, a natural assumption is that p is linear in X. This
means that p is of the form

p(t) = φ(t, α(t))X(t) + ψ(t, α(t)), (6.7)

where φ(·, i) and ψ(·, i) are deterministic, differentiable functions for each i = 1, . . . , D, which
are to be found. From (6.6), φ and ψ have terminal boundary conditions

φ(T, i) = −2 and ψ(T, i) = 2d, ∀i ∈ I. (6.8)

The next step is to expand the right-hand side of (6.7) and then compare it with (6.6). To do
this, we begin by noting from Itô’s formula (Theorem 5.3) that for a function f(t, α(t)) we have

df(t, α(t)) = ft(t, α(t−)) dt+
∑
j 6=i

gij (f(t, j)− f(t, i))1[α(t−) = i] dt

+
∑
j 6=i

(f(t, j)− f(t, i)) dMij(t).
(6.9)

Using (6.9) to expand the functions φ and ψ, and (6.3) to expand X (with π(t) := u(t) and
Xπ(t) := X(t)), we apply integration-by-parts to (6.7) to get

dp(t) =

D∑
i=1

1[α(t−) = i]

{
X(t−)

φ(t, i)r(t, i) + φt(t, i) +

D∑
j=1

gij (φ(t, j)− φ(t, i))


+ φ(t, i)u(t)σ(t, i)θ(t, i) + ψt(t, i) +

D∑
j=1

gij (ψ(t, j)− ψ(t, i))

}
dt

+ φ(t)u(t)σ(t) dW (t)

+
∑
j 6=i

(
X(t−) (φ(t, j)− φ(t, i)) + (ψ(t, j)− ψ(t, i))

)
dMij(t)

Comparing coefficients with (6.6), we obtain three equations

− r(t, α(t−))p(t−)

=

D∑
i=1

1[α(t−) = i]

{
X(t−)

φ(t, i)r(t, i) + φt(t, i) +

D∑
j=1

gij (φ(t, j)− φ(t, i))


+ φ(t, i)u(t)σ(t, i)θ(t, i) + ψt(t, i) +

D∑
j=1

gij (ψ(t, j)− ψ(t, i))

}
,

(6.10)
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q(t) = φ(t)σ(t)u(t), (6.11)

ηij(t) = X(t−) (φ(t, j)− φ(t, i)) + (ψ(t, j)− ψ(t, i)) . (6.12)

Let û ∈ A be a candidate for the optimal control with corresponding state process X̂ and adjoint
solution (p̂, q̂, η̂). Then for the Hamiltonian (6.5), for all u ∈ R,

H(t, X̂(t), u, α(t), p̂(t), q̂(t)) =
(
r(t)X̂(t) + uσ(t)θ(t)

)
p̂(t) + uσ(t)q̂(t).

As this is a linear function of u, we guess that the coefficient of u vanishes at optimality, which
results in the equality

q̂(t) = −θ(t)p̂(t). (6.13)

Substituting into (6.11) for q̂(t) from (6.13) and using (6.7) to replace p̂(t), we get

û(t) = −σ−1(t)θ(t)
(
X̂(t) + φ−1(t)ψ(t)

)
(6.14)

Therefore, to find the optimal control it remains to find φ and ψ. To do this, we set X(t) := X̂(t),
u(t) := û(t) and p(t) := p̂(t) in (6.10) and then substitute for p̂(t) from (6.7) and for û(t) from
(6.14). This results in a linear equation in X̂(t). Assuming that the coefficient of X̂(t) equals
zero, we obtain two equations

φ(t, i)
(
2r(t, i)− |θ(t, i)|2

)
+ φt(t, i) +

D∑
j=1

gij (φ(t, j)− φ(t, i)) = 0, (6.15)

ψ(t, i)
(
r(t, i)− |θ(t, i)|2

)
+ ψt(t, i) +

D∑
j=1

gij (ψ(t, j)− ψ(t, i)) = 0, (6.16)

with terminal boundary conditions given by (6.8). Consider the processes

φ̃(t, α(t)) := −2 E

(
exp

{∫ T

t

(
2r(s)− |θ(s)|2

)
ds

} ∣∣∣∣α(t)

)
(6.17)

and

ψ̃(t, α(t)) := 2dE

(
exp

{∫ T

t

(
r(s))− |θ(s)|2

)
ds

} ∣∣∣∣α(t)

)
. (6.18)

We aim to show that φ = φ̃ and ψ = ψ̃. It is helpful to define at this point the following
martingales:

R(t) := E

(
exp

{∫ T

0

(
2r(s))− |θ(s)|2

)
ds

} ∣∣∣∣Fαt
)

(6.19)

and

S(t) := E

(
exp

{∫ T

0

(
r(s))− |θ(s)|2

)
ds

}∣∣∣∣Fαt
)
, (6.20)

where Fαt := σ{α(τ), τ ∈ [0, t]} ∨ N (P) is the filtration generated by the Markov chain. From
the {Fαt }-martingale representation theorem, there exists {Fαt }-previsible, square-integrable pro-
cesses νR(t), νS(t) such that

R(t) = R(0) +
∑
j 6=i

∫ t

0

νRij(τ) dMij(τ) and S(t) = S(0) +
∑
j 6=i

∫ t

0

νSij(τ) dMij(τ).
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By the positivity of R(t) and S(t), we can define the processes ν̂Rij(t) := νRij(t)R
−1(t−) and

ν̂Sij(t) := νSij(t)S
−1(t−) so that

R(t) = R(0) +
∑
j 6=i

∫ t

0

R(τ−)ν̂Rij(τ) dMij(τ) and S(t) = S(0) +
∑
j 6=i

∫ t

0

S(τ−)ν̂Sij(τ) dMij(τ).

(6.21)
From (6.17) and the definition of R in (6.19), we have the relationship

R(t) = −1

2
φ̃(t, α(t)) exp

{∫ t

0

(
2r(s))− |θ(s)|2

)
ds

}
, ∀t ∈ [0, T ]. (6.22)

Using the Itô formula expansion of φ̃(t, α(t)) (see (6.9)), we apply integration-by-parts to expand
the right-hand side of the above equation and comparing it with the martingale representation
of R(t) given by (6.21), we find that φ̃ satisfies (6.15) with φ := φ̃. We conclude that φ = φ̃.

Similarly, from (6.18) and the definition of S in (6.20), we have

S(t) =
1

2d
ψ̃(t, α(t)) exp

{∫ t

0

(
r(s))− |θ(s)|2

)
ds

}
, ∀t ∈ [0, T ]. (6.23)

Using the Itô formula expansion of ψ̃(t, α(t)) (see (6.9)), we apply integration-by-parts to expand
the right-hand side of the above equation and comparing it with S(t) given by (6.21), we find
that ψ̃ satisfies (6.16) with ψ := ψ̃. We conclude that ψ = ψ̃. Thus from (6.7), (6.11) and (6.12),
we can write down the solutions

p̂(t) = φ(t)X̂(t)+ψ(t), q̂(t) = φ(t)σ(t)û(t), η̂ij(t) = X̂(t−) (φ(t, j)− φ(t, i))+(ψ(t, j)− ψ(t, i)) .

to the adjoint equation (6.6). Substitute into (6.14) for φ = φ̃ from (6.22) and for ψ = ψ̃ from
(6.23) and use the Markov property of α to obtain the control process

û(t) = −

X̂(t)− d
E

(
exp

{∫ T
t

(
r(s))− |θ(s)|2

)
ds

} ∣∣∣∣α(t)

)
E

(
exp

{∫ T
t

(2r(s))− |θ(s)|2) ds

} ∣∣∣∣α(t)

)
σ−1(t)θ(t). (6.24)

With this choice of control process and the boundedness conditions on the market parameters r,
b and σ, the conditions of Theorem 4.1 are satisfied and hence û(t) is the optimal control process.

Remark 6.1. The above result can be used to obtain the solution to the classical problem of
mean-variance portfolio optimization. Suppose we wish to find an admissible portfolio process
which minimizes var(X(T )) = E (X(T )− E(X(T )))

2
subject to E(X(T )) = a, for some a ∈ R.

Applying a Lagrange multiplier technique, we note that for all λ ∈ R,

E
(

(X(T )− a)
2

+ 2λ(X(T )− a)
)

= E (X(T )− a+ λ)
2 − λ2.

Fix λ ∈ R and minimize E (X(T )− a+ λ)
2
. The portfolio process which minimizes this is

û(t) := û(t;λ), which is given by (6.24) with d := a − λ. Then we maximize the quadratic

function E (X(T )− a+ λ)
2 − λ2 over all λ ∈ R to find the optimal λ? ∈ R and hence we obtain

the optimal portfolio process û(t;λ?) which solves the mean-variance problem.

Remark 6.2. The optimal control process for the mean-variance problem was also found in Zhou
and Yin (2003) using a stochastic LQ control technique and completion-of-squares.
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