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The new generation of 3D imaging systems based on laser radar (ladar) offers significant advantages in defense and security
applications. In particular, it is possible to retrieve 3D shape information directly from the scene and separate a target from
background or foreground clutter by extracting a narrow depth range from the field of view by range gating, either in the sensor
or by postprocessing. We discuss and demonstrate the applicability of full-waveform ladar to produce multilayer 3D imagery, in
which each pixel produces a complex temporal response that describes the scene structure. Such complexity caused by multiple and
distributed reflection arises in many relevant scenarios, for example in viewing partially occluded targets, through semitransparent
materials (e.g., windows) and through distributed reflective media such as foliage. We demonstrate our methodology on 3D image
data acquired by a scanning time-of-flight system, developed in our own laboratories, which uses the time-correlated single-photon
counting technique.

1. Introduction

In general, laser range finding can be achieved on the basis of
triangulation or time-of-flight, of which the latter method
is more suited to long-range measurement. In the context
of time-of-flight, the principal methodologies include mea-
surement of phase-shift in an amplitude-modulated signal,
measurement of frequency shift in a frequency modulated
signal, or measurement of transmit-receive pulse separation
in a pulsed system [1]. To build a 3D image, either the laser
beam must be scanned across the scene, or a static laser beam
diverges to encompass the target, and a focal plane array of
independent pixels records the received radiation.

Full waveform ladar [2, 3] requires the analysis of
multiple returns that occur within a single measurement
or pixel. One of the major applications for full waveform
topographic ladar analysis is in the survey of forest canopies
to monitor environmental changes [4, 5], but this analysis
also has important applications in defense and security
[6]. One key application is the detection and classification
of targets on the ground under tree cover using airborne
imagery, which is related to environmental mapping and is

the focus of the Jigsaw [7] and Swedish Defence Research
[8] systems. However, full waveform analysis is also required
in many other situations where single pixel returns are
composed of multiple reflections within the laser footprint.
For example, this occurs at an occluding boundary, that
is, one object behind another, where objects are partially
obscured, for example, behind foliage, camouflage, or blinds,
when imaging through semitransparent surfaces, or where a
single surface may be distributed in depth or moving during
exposure. If selected infrared wavelengths are used, then
these can penetrate better through the atmosphere or glass
[6], and if multiple wavelengths are used, then this be can
more informative in surface classification [9, 10].

In many defense and security applications, it is also
desirable that the active laser pulse is eye-safe and “covert”,
that it be of short duration and low energy. To that end,
we have developed a 3D imaging ladar system based on a
low-power pulsed laser source and a time-correlated single
photon counting detector, for which the detailed optical
design is described in [11].

The twin demands of low power and multiwaveform
analysis place significant demands on the signal processing
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methodology. Typical techniques within the frequentist
framework are to calculate the maximum likelihood esti-
mates (MLE) of parameters for every possible number of
signal returns, and then use information theoretic crite-
ria, such as akaike (AIC), bayesian information criterion
(BIC) and minimum description length (MDL) [12], to
determine the signal number. One popular tool for finding
MLE is expectation-maximization (EM) [13]. Compared
with centroid method and matched filter, this algorithm is
computationally more expensive, but it may give estimates
of higher accuracy. However, EM holds a potential risk
in that it might converge to a local maximum likelihood
[14] or diverge to an infinite value [15]. Additionally,
it is sensitive to initial values and not efficient for data
set containing numerous observed events, in our case the
timing information for the received photons. Moreover,
even though AIC, BIC, and MDL introduce penalty terms
to avoid overfitting the data, that is adding more returns
to increase the likelihood, they still have the tendency to
produce more complicated models which correspond to
more signal returns [14].

In [16], a hybrid approach is proposed, which first applies
a deterministic nonparametric bump-hunting process for
initial estimates of signal returns, and second Poisson-MLE
to refine the estimates. Although it is effective in many cases,
it fails to resolve two closely separated peaks and is not able to
produce satisfactory results when the background noise level
is comparable or higher than the signal amplitudes.

In order to detect multiple, small returns embedded in
background, noise, and clutter, we have been developing con-
currently ladar signal analysis methods within the Bayesian
framework based on reversible-jump Markov chain Monte
Carlo (RJMCMC) techniques for both single pixel and image
data [14]. In this paper, we report the development and
application of these methods to process images from the new
covert, depth imaging sensor, and compare our results with
conventional cross-correlation and peak detection applied to
the same data.

The organisation of the paper is as follows. In Section 2,
we describe briefly the 3D image sensor, and the conditions
for data acquisition. In Section 3, we describe the processing
methodology. In Section 4, we apply this methodology to
images acquired by the sensor to detect wholly visible and
partially concealed targets at a moderate range of 325 meters,
using our own test facility. We also show how the RJMCMC
method can improve our interpretation of the data. Finally,
in Section 5, we conclude and summarise some of the
key issues that must be addressed to develop these ideas
further.

2. The Ladar Imaging System

In a time-correlated single photon counting (TCSPC) rang-
ing system, the general principle is to direct a pulsed laser
beam towards the target and to collect and record the
times of arrival (since pulse transmission) of the back-
scattered photons. Hence, the distance to the target (z) can
be computed, and knowing the geometry of the imaging
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Figure 1: (a) Schematic diagram indicating the principal com-
ponents of the scanning system. Electrical paths are denoted by
solid lines, optical paths by dashed lines. Si-SPAD is a silicon
single-photon avalanche diode. (b) The transceiver head assembly.
The system dimensions are approximately 275 mm by 275 mm by
175 mm. The two galvanometer servo-control circuit boards (not
visible) are on the underside of the slotted baseplate.

system the direction of the transmitted laser signal can be
used to compute the (x, y) coordinates. This basic principle
is applicable to both scanning systems, such as our own,
and to arrays of single photon counting detectors such
as that reported by Sudharasan et al. [17]. While arrayed
detectors provide parallel data acquisition, which has clear
advantages in acquiring data from moving targets and in
eliminating scanning components, there are problems with
crosstalk and fill-factor. In general, we can achieve better
temporal response and sensitivity with a single element
detector, which is of considerable importance for covert,
low-power operation. The system of interest is illustrated in
Figure 1(a).

The system uses a pulsed semiconductor diode laser, of
pulse half-width 90 ps, operating at 842 nm wavelength, that
emits low energy pulses (<30 pJ). The laser is capable of
operating at repetitions rates in excess of 10 MHz, although
2 MHz was the maximum rate used in these measurements.
Scene scanning is performed by a pair of galvanometer
mirrors. The optical system is used to direct the outgoing
laser pulses onto each optical field position of the target,
and also to efficiently collect the scattered photons returned
from each corresponding pixel of the imaged scene. The
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collected return photons are routed using polarisation optics
to an individual, high performance single-photon detector
module via a single mode optical fiber. The signal from the
single-photon detector is recorded as a timed photon event,
equivalent to range (z) which can be associated with an
(x, y) coordinate that is known from the calibrated scanning
optics. For the particular optical configuration and scanning
parameters used in these measurements, the maximum field
of view was 55 mrad and the beam width and scanning
resolution were both approximately 23 mm at a standoff
distance at 325 m. In general, each detector event records
a photon arrival of which some will be returned from the
target, some from stray events (other light sources), and
some will be due to detector, dark counts. To reduce the
stray photon events, our system includes spatial filtering (by
coupling into the single mode optical fiber), spectral filtering
(by narrowband filtering at the known laser wavelength)
and temporal filtering (by the TCSPC technique, as there is
finite window in which to record a photon event). Timing
uncertainty is introduced by jitter in the master clock, the
laser driver, the detector (silicon SPAD) and the timing
electronics. For all those reasons, we use many pulses to
build up a statistical distribution of the number of recorded
photon arrivals as a function of the arrival time. This can
be interpreted as a range measurement, and by scanning and
recording distributions at each pixel, as a depth image. An
example of a measurement that records data from more than
one surface in the field of view of a single pixel is shown in
Figure 2.

3. Full Waveform Ladar Analysis
Based on RJMCMC

3.1. Bayesian Modelling of Ladar Signals. In previous work,
we have shown how Bayesian analysis (using the reversible
jump markov chain monte carlo (RJMCMC) computational
methodology [18]) can be used to construct multilayered
3D images [14] when the laser return consists of multiple
peaks due to the footprint of the beam impinging on a
target with surfaces distributed in depth. In dense ladar
images, one can improve the quality of the 3D data by
considering spatial context through a markov random field
(MRF) [19]. We have also shown how multispectral LiDAR
can be used to classify different types of surface response on
the basis of different colour responses, using a maximum
of six wavelengths [10]. We have applied these techniques
successfully to both Burst Illumination Laser (BIL) [20] and
TCSPC [21] ladar systems. As pointed out by Mallet and
Bretar [3] in their survey on full waveform LiDAR for remote
sensing, our RJMCMC method is robust (finding a global
minimum in a multimodal distribution), no initialization
or gradient computations are required, and the grammar of
instrumental models is extensible.

To interpret this data, we use a piecewise, exponential
model for the Si-SPAD return, first introduced in [22]
because it has the appropriate shape parameters to model
the physical transport processes within the Si-SPAD detector.
The parametric form of the expected temporal variation of
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Figure 2: Multiple returns recorded from a distributed target in the
field of view of a single pixel. The horizontal axis is equivalent to the
round-trip distance, and the vertical axis a measure of the strength
of signal return.

the photon count distribution is given by

fsystem = β

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−(t1−t0)2/2σ2
e(i−t1)/τ1 , i < t1

e−(i−t0)2/2σ2
, t1 ≤ i < t2

e−(t2−t0)2/2σ2
e−(i−t2)/τ2 , t2 ≤ i < t3

e−(t2−t0)2/2σ2
e−(t3−t2)/τ2e−(i−t3)/τ3 , i ≥ t3,

(1)

where β is an amplitude factor, t0 is the time of the
peak maximum, and t1, t2, and t3 are the points at
which the changeovers between functions occur as shown
in Figure 3(b). In this study, we assume that the shape
parameters are fixed and known from the instrumental
response. Hence, we only need to compute the amplitude
and time of arrival, measures of reflectance and distance,
respectively.

For full waveform ladar, multiple returns are observed
against a background level whose expected value is constant
across all bins of the photon (intensity) histogram, y. This is
considered as a sample of a nonnormalized statistical mixture
distribution with density

F
(
i; k,φ

) =
k∑

j=1

fsystem

(

i;βj , t0 j
)

+ B, (2)

where k is the number of peaks, B is the background and φ is
the set of parameters of each signal and the background: φ =
(β, t0,B) with β = (β1,β2, . . . ,βk) and t0 = (t01 , t02 , . . . , t0k ).
fsystem is defined by (1). The number of photons recorded,
yi, in each channel i is considered as a random sample of a
Poisson distribution with intensity F(i; k,φ),

P
(
yi | k,φ

) = e−F(i;k,φ) F
(
i; k,φ

)yi

yi!
. (3)

Assuming that the observations recorded in each channel
i of the histogram are conditionally independent given the
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value of the parameters, the joint probability distribution of
y is defined as

L
(
y | k,φ

) =
imax∏

i=1

e−F(i;k,φ) F
(
i; k,φ

)yi

yi!
. (4)

In the Bayesian paradigm, our goal is to find the posterior
distribution of the number, positions, and amplitudes of
the multiple returns in the full waveform ladar signal. The
posterior distribution is defined as

π
(
k,φ | y) = L

(
y | k,φ

)
f
(
k,φ

)

∫
L
(
y | k,φ

)
f
(
k,φ

)
d
(
k,φ

)

∝ L
(
y | k,φ

)
f
(
k,φ

)
,

(5)

where the likelihood function, L(y | k,φ) is defined by (4)
and the full joint prior distribution is given by f (k,φ).

3.2. RJMCMC Methodology for Ladar Signal Analysis. We
follow the methodology described in [14] by constructing
a Markov chain whose transitions involve changes to the
number, positions, and amplitudes of peaks in the return
signal. Hence, we consider the histogram as a discrete
representation of a spatially heterogeneous Poisson process
whose intensity is a linear superposition of the scaled and
shifted returns as defined in (2). In the RJMCMC paradigm,
the transitions of the Markov chain involve several moves
within a single “sweep”.

(1) Updating the positions t0.

(2) Updating the amplitudes β.

(3) Updating the background B.

(4) Random birth or death of a peak.

(5) Random splitting of a peak into two peaks or merging
of two peaks into a single peak.

At each iteration of the chain, we follow the Metropolis-
Hastings algorithm. Moves of type (1), (2), and (3) allow
the posterior distribution to be explored within a state space
with a fixed dimension, k. The Metropolis-Hastings method
draws the proposed values from an arbitrary proposal
probability distribution q(·, ·). These values are accepted
with probability α(·, ·), otherwise they are rejected and the
existing values are retained. The acceptance probability is
expressed as

α
(
φ,φ′

) = min

{

1,
π
(
φ′ | y)q(φ′,φ)

π
(
φ | y)q(φ,φ′

)

}

. (6)

In this case, φ can be β, t0, or B dependent on whether it is a
move of type (1), (2) or (3).

For full waveform ladar, we do not know the value of
k, so the state space becomes a set of parameter subspaces
with different dimensionality. Since both k and φk are subject
to inference, it is necessary to compare the different models
while learning about the parameters within each model.
Therefore, we use the RJMCMC algorithm, which allows
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Figure 3: (a) A single magnified selected peak from Figure 2. (b)
Instrumental response of TCSPC ladar signal (dotted line) and
fitting result (solid line) using piecewise exponential model with
fitting errors (dashed line). The parameter sets corresponding to
(1) are: β = 5.41, t0 = 2128.70, (t1, t2, t3) = (2111.15, 2146.36,
2193.93), (τ1, τ2, τ3) = (6.32, 10.04, 292.79).

jumps between subspaces for different k in addition to
within-model parameter updates for a particular k, that
is steps (4) and (5) above. Still following the Metropolis-
Hastings procedure, the target distribution now becomes
π(k,φ | y) and the acceptance probability becomes

α = min

{

1,
π
(
k′,φ′ | y)rm

(
φ′
)

π
(
k,φ | y)rm

(
φ
)
q(u)

∣
∣
∣
∣
∣

∂
(
φ′
)

∂
(
φ,u

)

∣
∣
∣
∣
∣

}

, (7)

where rm(φ) is the probability of move type m when in
state φ, q(u) is the density function of a continuous random
vector u and the Jacobian term |∂(φ′)/∂(φ,u)| arises from
deterministic transfer from variable (φ,u) to φ′.

3.3. Convergence Assessment. A properly designed Markov
chain Monte Carlo sampler should generate a convergent
Markov sequence whose limiting distribution is the true
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joint posterior distribution of interest [23]. However, in
practical applications, only a finite number of samples can
be produced, and it is therefore important to choose the
chain length appropriately and assess the convergence of the
Markov chain to the stationary distribution.

Three separate but related issues need to be considered
when determining the chain length [24, 25]. First, evaluate
the length of the burn-in period, which is to determine from
which observation point the chain has “forgotten” its starting
value and escaped from its influence. At this point, the chain
has reached the stationary distribution and the previous
samples should be discarded to eliminate the estimation bias
introduced by the transient period. Second, determine if
the chain is long enough to fully represent the underlying
distribution and conclude its convergence to an asymptotic
distribution. Third, evaluate if the samples are adequate to
achieve a certain precision of estimation.

Over the last two decades, a number of different
convergence diagnostics have been proposed, which can be
classified into two categories. For theoretical approaches, the
attempt is to predetermine the number of iterations required
to ensure convergence by analyzing the Markov transition
kernel and stationary distribution; a collection of approaches
can be found in [26, 27] and references therein. Although
they hold formal guarantees, these algorithms are not feasible
in practice due to sophisticated mathematical calculation and
loose convergence bounds. Therefore, as pointed out in [26],
empirical methods are almost always applied, relying on the
outputs of MCMC samplers and diagnostics computed from
the produced sequence to check convergence. On the one
hand, they provide evidence of convergence; on the other
hand, all the diagnostics are unreliable since in practice the
target limiting distribution always remains unknown and it is
impossible to conclude with certainty that the finite MCMC
samples are sufficient to cover the whole support of the
underlying stationary distribution. From this point of view,
we should be cautious about the diagnostic results.

In the literature, empirical methods seek to conclude
the convergence through bias and/or variance evaluation.
The Gelman and Rubin diagnostic methodology presented
in [23, 28] compares the samples drawn from several
independent sequences with different starting points and
quantitatively evaluates mixing by analyzing the within-
sequence and between-sequence variance. The estimation
bias arising from the produced samples is uncovered by
multiple separate chains rather than a single chain, and
therefore it has comparatively higher diagnostic reliability in
terms of detecting if the underlying stationary distribution
has been fully explored and the chains have converged to
the same limiting distribution. This is particularly significant
when applied to multimodal posterior distributions.

The idea of the Gelman and Rubin method is that
as the number of samples increases, each individual chain
will explore larger parts of the parameter space, and con-
sequently, the overall and within-sequence variances will
both converge to the true model variance. Assume that we
simulate I > 2 independent sequences initialized with over
dispersed starting points, each of length 2T , and discard the
first T samples as the burn-in period. For any scalar function

x(θ), we label the tth observation in chain i as xti and calculate
the between-sequence variance B

B = T

I − 1

I∑

i=1

(
x·i − x··

)2
, (8)

where

x·i =
1
T

2T∑

t=T+1

xti , x·· =
1
I

I∑

i=1

x·i . (9)

The within-sequence variance W is estimated by

W = 1
I

I∑

i=1

s2i , (10)

where

s2i =
1

T − 1

2T∑

t=T+1

(
xti − x·i

)2
. (11)

The variance of x in the target distribution, V is estimated by

V̂ = T − 1
T

W +
(

1 +
1
I

)
B

T
. (12)

The convergence of the Markov chain is monitored by the
estimated potential scale reduction factor (PSRF)

√

R̂ =
√

V̂

W
. (13)

As T → ∞, the total variance estimation V̂ should
decrease while the within-sequence variance W should
increase, and finally the PSRF should theoretically decline to
1. If R̂ is large, it indicates the posterior distribution should
be further explored. Once the PSRF is close to 1, we assume
the Markov chain has converged to the target distribution.

4. Experimental Comparison:
Cross-Correlation, MCMC and RJMCMC

In this section, we present the analysis of images acquired
under bright daylight conditions of two distant outdoor
scenes, comparing methods based on cross-correlation and
fixed and variable dimension Markov chain Monte Carlo
analysis. Our images are of a life-sized mannequin (a human
figure) in full view of the sensor, and of the same mannequin
partially concealed behind a fence. The data were acquired
at a range of approximately 325 meters. The equivalent
scene dimensions were 0.8 m width by 2.0 m height, and the
scanned image resolution was 32 by 128 pixels for the whole
mannequin. The pulse repetition frequency was 2 MHz,
resulting in an average optical power of 40 μW. The pixel
dwell time was 1.0 s.

To assess the ability of RJMCMC algorithm for multiple
peak detection and particularly the resolution capacity for
closely separated peaks, we set up a remote target containing
several distributed surfaces with known separations, which
provides the ground truth and allows us to compare the
performance with cross-correlation method.
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Figure 4: Analysis of time-of-flight ladar data, in which the histogram bins have been converted to relative depth in meters. The first column
shows the raw pixel data (in blue). The second column magnifies the plots of signal peaks in the first column. The third column shows the
normalized cross-correlation values (blue curves) and the frequencies of positions (black bars) obtained from the MCMC samplers. The last
column tracks the corresponding PSRF values against the number of samples. The final fit estimations (from MCMC) are the red curves in
the first column.

4.1. Mannequin in Full View: Cross-Correlation and MCMC.
In the first example, the mannequin is in full view, standing
in front of a concrete pillar, as shown in Figure 5. It was
anticipated that the majority of pixels would have clear
and distinct, single returns from the surface of either the
mannequin or the pillar. Given the divergence of the beam
there may be some mixed pixels at the occluding boundary
of the mannequin, and there may be pixels with no return as
they miss the targets all together. In short, this is a situation
in which a cross-correlation detector based on the system
instrumental response should perform well and there should
be questionable need for the added complexity of Markov
chain Monte Carlo analysis. Further, since the expectation
in processing this data set is to estimate the range of a
single surface return from either the mannequin or the pillar,
we apply the fixed dimension Markov chain Monte Carlo
(MCMC) approach to avoid redundant computation caused

by trans-dimension jumps. Accordingly, only the first three
steps in Section 3.2 are used.

The unknowns (t0,β,B) subject to inference have inde-
pendent priors. To completely eliminate any prior knowledge
of the peak position, t0 is drawn from a uniform distribution
on [1, imax]. The peak amplitudes (β) and background
(B) follow Gamma distributions Γ(C,D) and Γ(E,F) with
the shape parameters C, E set to be 6 and 1.5, while
the scale parameters D, F are (max(y)/2)/6 and mean(y),
respectively, where y is the histogram of photon counts.
The previously unspecified proposal distributions are set as
follows: all of the parameter updates employ the Gaussian
random walk whose proposal means are the current sample
values. The standard deviations for amplitude (σβ) and
background (σB) are both 0.3. For position updates, a delayed
rejection step [14] is carried out to allow movement between
posterior estimates that correspond to more widely separated
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(a) (b) (c)

Figure 5: 32 × 128 pixel image of a life-sized mannequin scanned at a distance of 325 m in daylight conditions. (a) Photograph of the 1.8 m
tall mannequin in the scan position. (b) and (c) Three-dimensional plots of the processed depth information using the cross-correlation and
MCMC methods, respectively. Empty pixels in the plots contained depth values outside the displayed range. The lower number of missing
pixels in (c) on noncooperative target surfaces with low reflectance, especially the mannequin’s trousers, demonstrate the MCMC algorithm’s
advantage in resolving low-intensity returns.

channels. When using delayed rejection, the scale in each step
is characterized by σ

step1
t0 = 1000 and σ

step2
t0 = 10, respectively.

We first generate multiple chains for each pixel and eval-
uate the convergence. After finding a safe convergence length,
we then run single MCMC chains with k = 1 on all the
pixels with a bounded number of iterations (5000) including
the 500 samples burn-in period. This is consistent with the
initial estimate. Subsequently, to assess the convergence of
the MCMC chains, we produce four independent sequences
for each pixel, and monitor the Gelman and Rubin diagnostic
statistic (PSRF) defined in Section 3.3 every 100 samples.
The chain generation is terminated when the convergence
is concluded, that is when the PSRF reduces to less than a
preset threshold 1.002, at which the posterior distributions
p(t0 | y, k = 1) obtained from all the sample trajectories
becomes approximately the same.

Figure 4(a) presents a representative pixel with a single
distinct return. For this type of pixel data, there is a clear,
sharp peak in the normalised cross correlation plot and a
distinct preference in the frequency of positions obtained
from MCMC sequences. Their maximum values are both
located in the same channel index as shown in Figure 4(c).
In this circumstance, the cross-correlation approach can
easily detect the surface return, and according to Figure 4(d),
MCMC chains can converge rapidly with a small number of
samples (about 500 samples after the burn-in period) due to
the simplicity of parameter space.

For the low-amplitude return in Figure 4(e), the cross-
correlation approach gives several extrema as displayed in
Figure 4(g). Such low amplitude may be caused primarily by
lower reflectance back towards the receiver, either because of
the material properties or its angle to the beam direction.
In this case, it is difficult to decide with certainty where
the surface return is located, although we can always define
it to be the one corresponding to the maximum cross-
correlation value. In comparison, the power of the MCMC
methodology lies in supplying Bayesian evidence of the final
answer. In other words, the histogram of t0 indicates the
posterior distribution of the estimates. As the parameter
space becomes more complex, the posterior distribution is
spread over a wider channel range and becomes bimodal,
which in turn results in a slower convergence rate and an
increased chain length in excess of 4000 samples.

Another example is shown in Figure 4(k). For this pixel,
the bin index for the maximum cross-correlation does not
equal the one for the p(t0 | y, k = 1) posterior mode. Hence,
the MCMC chain gives a different and better substantiated
estimate of the true value, further demonstrating the power
of the Bayesian approach.

3D images based on these two methods are provided in
Figure 5, where a target range gate is set and those pixels with
with target position estimates beyond this preset gate are
treated as zero return. It is observed that there are a few more
pixels beyond the target range with cross-correlation, which
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Figure 6: Close-up photograph of the upper half of the mannequin
positioned at 1 m behind a wooden fence. The scene was scanned at
a standoff distance of 325 m in daylight.

implies the maximum values do not always correspond to
the correct surface position. This is consistent with the
discussion of illustrative pixel data showing the strength
of the MCMC method in processing low amplitude ladar
signals hidden in backgrounds in that the posterior mode is
more informative, robust, and reliable.

4.2. Mannequin Concealed by Fence: Cross-Correlation and
RJMCMC. In the next example, a wooden fence is placed
approximately 1 meter in front of the mannequin, as shown
in Figure 6. The image resolution of the scanned upper half
mannequin is 32 by 48 pixels. Because of the area of the laser
footprint, it is highly likely that some pixels may observe
multiple reflections composed of some or all of the fence,
the mannequin, and the pillar behind, where the beam hits
occluding boundaries. In this situation, determination of the
number of surfaces is an additional crucial issue and so we
apply the RJMCMC method to obtain varying-dimensional
ladar signal analysis.

In one sweep of the RJMCMC algorithm, the fixed-
dimensional parameter updates (steps 1–3 of Section 3.2)
follow the MCMC sampler settings. Jumps between param-
eter subspaces with different dimensions are accomplished
by steps 4 and 5 in the same manner as [14]. Although our
expectation would be that the number of surface returns
in any single pixel would not be greater than three in
this example, we are conservative in allowing the varying
dimension sampler to explore k values from 0 to 5.

Figure 7 illustrates representative pixels containing zero,
one (either mannequin or fence), two (fence and man-
nequin) or three returns (fence, mannequin, and pillar), with
the corresponding photon counts histogram, unified cross-
correlation values, p(k | y) estimates and fitting results from
the RJMCMC sampler.

The first row of Figure 7 illustrates a pixel in which
the beam misses all three targets, so that no surface return
exists. The use of the cross-correlation method is difficult
when there is no surface return as shown in Figure 7(a) to
7(d). In comparison with Figure 4(g) from a small signal-
to-background ratio pixel, Figure 7(c) shows the probable
existence of at least one surface return. However, according
to the asymptomatic posterior probability estimate of p(k |
y), no target return is the most probable conclusion. If we
examine the second and third rows of Figure 7 then we
see the situations analogous to Figure 4(e) in that there are
single returns from fence and mannequin, respectively. The
difference in this case is that we have applied full RJMCMC
chains, so that the posterior probability estimate, p(k | y),
shows one return.

Of more interest are those pixels containing more than
one return, shown in Figures 7(m)–7(x). The fourth row
has distinct returns from the fence and mannequin, and
the RJMCMC sampler has a very strong preference for
two returns. The fifth row is far less distinct, but the
sampler again shows a strong posterior probability estimate
of two peaks, although the second one might be difficult
to detect automatically on a cross-correlation detector, for
example, using a fixed (or even proportional) threshold. Due
to the varying surface reflectances and angles, pixels can
have different photon intensities, which makes it a difficult
problem to choose a reliable threshold. The corresponding
parameter estimates of the two surface returns shown in
Figure 7(q) correspond in depth to the known ground truth
of the relative separation. Finally, the last row shows one
of the pixels in which the beam partially reflects from the
fence, partially transmits through a gap and hence reflects
from the mannequin, but near an occlusion boundary so that
part reflects from the pillar behind. The posterior estimate
of k favours 3 surfaces but it is by no means as clear cut
as the earlier examples, and the parameter estimates of the
3 surface positions shown in Figure 7(u) correspond to the
fence, mannequin, and pillar separations at this point.

To better illustrate the posterior estimates of the number
of surfaces, p(k | y), Figure 8 shows those pixels in which
0, 1, 2 and 3 surfaces were estimated. Physically, one expects
no returns when the laser hits no surface, or where the
surface angle is so oblique (e.g., at the extremities of the
pillar) that no return is likely. In this image, these are
primarily where the beam goes through the fence but above
both mannequin and pillar. When k = 1 it hits a single
surface, and when k = 2, two surfaces, as described above.
There are only a few pixels for which k = 3, where the beam
grazes the left arm, and no estimates of k > 3. Figure 9
shows a surface plot of the meshed (X ,Y ,Z) data for the
3D image of the partially concealed mannequin behind the
fence. As the mannequin surface has been interpolated and
smoothed from the raw data values it should be considered
as illustrative, but there was no necessity for outlier removal,
and the shape of the upper body is relatively well defined.

4.3. Real Data with Known Geometry: Cross-Correlation
and RJMCMC. We set up a remote target at a range of



EURASIP Journal on Advances in Signal Processing 9

0

0.5

1

1.5

2

2.5

3
P

h
ot

on
co

u
n

ts

1 2 3 4 5 6 7 8

Depth (m)

(a) (b)

0

0.2

0.4

0.6

0.8

1

C
ro

ss
-c

or
re

la
ti

on

0 2 4 6 8

Depth (m)

(c)

0

1000

2000

3000

4000

5000

Fr
eq

u
en

cy

0 1 2 3

Number of peaks

(d)

0

2

4

6

8

10

12

P
h

ot
on

co
u

n
ts

1 2 3 4 5 6 7 8

Depth (m)

(e)

3.8 4

Depth (m)

(f)

0

0.2

0.4

0.6

0.8

1

C
ro

ss
-c

or
re

la
ti

on
20 4 6 8

Depth (m)

(g)

0

1000

2000

3000

4000

5000

Fr
eq

u
en

cy

0 1 2 3

Number of peaks

(h)

0

1

2

3

4

5

6

P
h

ot
on

co
u

n
ts

1 2 3 4 5 6 7 8

Depth (m)

(i)

5 5.2 5.4

Depth (m)

(j)

0

0.2

0.4

0.6

0.8

1

C
ro

ss
-c

or
re

la
ti

on

20 4 6 8

Depth (m)

(k)

0

1000

2000

3000

4000

5000

Fr
eq

u
en

cy

0 1 2 3

Number of peaks

(l)

0
0.5

1
1.5

2
2.5

3
3.5

4

P
h

ot
on

co
u

n
ts

1 2 3 4 5 6 7 8

Depth (m)

(m)

4 4.5 5

Depth (m)

(n)

0

0.2

0.4

0.6

0.8

1

C
ro

ss
-c

or
re

la
ti

on

20 4 6 8

Depth (m)

(o)

0

1000

2000

3000

4000

5000

Fr
eq

u
en

cy

0 1 2 3

Number of peaks

(p)

0
1
2

4
3

5
6
7
8
9

P
h

ot
on

co
u

n
ts

1 2 3 4 5 6 7 8

Depth (m)

(q)

4 4.5 5

Depth (m)

(r)

0

0.2

0.4

0.6

0.8

1

C
ro

ss
-c

or
re

la
ti

on

2 4 6 80

Depth (m)

(s)

0

1000

2000

3000

4000

5000

Fr
eq

u
en

cy

0 1 2 3

Number of peaks

(t)

Figure 7: Continued.
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Figure 7: Comparison of ladar signal analysis for the concealed mannequin using RJMCMC and cross-correlation. The first column shows
the raw data and the posterior parameter estimates from the RJMCMC method, while the second column gives the magnified plot of the
signal peaks. The third column shows the cross-correlation function. The right hand column shows the posterior probability estimate of the
number of surface returns, p(k | y).

approximately 325 meters, which contained 6 distributed
surfaces with separations between adjacent surfaces of {450,
10, 200, 30, and 90 mm}. The photon counting histogram
in Figure 10 was collected with the scanning system using a
3 MHz pulse repetition frequency and 50 μW average laser
power, the bin resolution was 4 ps. The RJMCMC sampler
used here is exactly the same as the one for the fence data but
allows k to vary from 0 to 10.

According to Figure 10, both RJMCMC and cross-
correlation methods succeed in detecting distinct return
signals. For the two surfaces separated at 30 mm, they merge
to be a single peak in cross-correlation values. In comparison,
with assistance of Merge/Split updates, RJMCMC can easily
separate them. However, both methods fail to distinguish
the peaks 10 mm (17 channel bins) away from one another,
and instead place a combined return, which results in the
increased estimated distances from the combined signal to
its neighboring peaks, that is, the two peaks corresponding
to the surfaces separated by 450 and 200 mm.

5. Conclusions and Future Work

In this paper, we have demonstrated the application of
Bayesian analysis using Markov chains to analyse full-
waveform Ladar pixel and image data acquired by a new
scanning sensor. The sensor uses time-correlated photon
counting technology, and coupled with algorithmic develop-
ment, we are able to detect multiple surface returns within
the field of view of single pixels, creating multilayer images.
This has application in defence and security when objects
of interest may be partially concealed, or viewed through
semitransparent surfaces, such as through windows.

To demonstrate the method, and compare with thresh-
olded correlation analysis, we have used selected data from
two images of a distant target, the first in full view, the
second viewed through a trellis fence. In general, RJMCMC
analysis is advantageous in supplying principled estimates
of both the number of surface returns and the associated
parameter vectors (range, amplitude, and background level).
This allows us to construct multilayered 3D images. The
methodology is effective in dealing with low amplitude

Figure 8: Map of for different k values: k = 0 in navy blue, k = 1 in
Cambridge blue, k = 2 in yellow and k = 3 in carmine.

returns, a few photons at maximum in a single bin. This
adds to the covert capability of the sensor, aimed at detecting
returns from uncooperative surfaces at medium range using
a low-power source laser diode.

However, there are a number of outstanding problems
that require future work. In the long term, we need to
acquire image data at an approximate rate of one frame per
second, or better, and to process the data in comparable
time frames. Currently, we are investigating the use of
convergence diagnostics to better control the chain length,
the validity of initialising the chains by correlation data,
and multicore programming in combination with vector
processor and FPGA technology. In general, all of these can
lead to faster, single pixel processing. Another possibility is
to promote an investigation on the Dirichlet process (DP)
mixture model developed in [29] and recently studied in
[30], which provides natural estimates for Bayesian inference
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Figure 10: Analysis of TCSPC data from a real target containing
6 distributed surfaces with known separation distances: {450, 10,
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in both model number and associated parameters with
efficient simulations.
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