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1. Introduction 39 

 40 

For decades it has been worldwide industrial practice to use vibration to compact 41 

fresh concrete into formwork and around reinforcement, releasing air bubbles and 42 

producing concrete of the highest density, strength and durability [1]. Even with the 43 

increasing utilization of self-compacting concrete, vibrators are still in widespread 44 

use, so it is justifiable to seek improvements in the efficiency of the vibration process. 45 

This paper presents a new analysis of the behaviour of concrete under the action of 46 

immersed internal vibrators which has the potential to deliver those improvements. 47 

 48 

2. Previous work 49 

 50 

It has long been known that fresh concrete conforms to the Bingham model [2], 51 

confirmed by the ordinary everyday observation that it can stand unsupported without 52 

flowing under its own weight (as in the slump test). This model can be expressed as: 53 

γµττ &+= 0           (1) 54 

where concrete can support shear stresses τ < τ0, the yield stress, without flowing (i.e. 55 

shear rate γ&  = 0) but flows at higher stresses. In common with all yield stress 56 

materials fresh concrete is a weak solid below the yield stress while above the yield 57 

stress it flows as a liquid with a plastic viscosity µ. 58 

 59 

Phenomenologically, vibration appears to remove or overcome the yield stress of 60 

concrete, which then flows under its own weight. The phenomena have been 61 

described empirically and there is an extensive literature on the role of frequency, 62 

amplitude and acceleration of the imposed vibration on its efficacy [1], but in most 63 
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cases the characteristics of the concrete have taken second place in importance to 64 

those of the vibration. In research reports and practical guidelines workability has 65 

generally been defined in terms of single point tests, which, as has been pointed out 66 

before, are fundamentally incapable of reliably distinguishing different concretes [2]. 67 

Tattersall and Baker were the first to attempt to relate the rheology of fresh concrete 68 

to its behaviour under vibration. They used an electromagnetic vibrating table as a 69 

well-characterised source and found that the governing characteristic of the vibration 70 

is its peak velocity [3, 4]. They showed that the fluidity of vibrated concrete, defined 71 

as the reciprocal of its low shear rate viscosity, is proportional to peak vibrational 72 

velocity up to a critical value, above which it remains constant. With fresh concretes 73 

of different rheological characteristics the viscosity of the vibrated concrete is 74 

proportional to the plastic viscosity of the unvibrated concrete [5].  75 

 76 

When an internal poker vibrator is used there is a clearly visible liquefied region near 77 

the vibrator, from which air bubbles are released, while at greater distances the 78 

concrete seems unaffected. The radius of action of the vibrator is a parameter of 79 

considerable practical importance which governs the productivity with which concrete 80 

can be compacted. Many empirical studies on the effects of internal vibrators on fresh 81 

concrete have been reported [6-9] but knowledge of the theory and controlling 82 

mechanisms for the flow around a vibrator is limited. Taylor [9] investigated the 83 

influence of frequency and amplitude on the efficacy of internal vibrators, as shown 84 

by the radius of action within which the vibrator was capable of compacting the 85 

concrete to 2% air content, as determined by gamma ray attenuation in the hardened 86 

concrete. He found that the efficacy is influenced by frequency f and amplitude A and 87 

that for a given acceleration (∝ f2A), a vibrator with high amplitude is more effective 88 
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than one with low amplitude but higher frequency. This is consistent with the peak 89 

velocity criterion (∝ fA) mentioned above, as shown by the following example. 90 

Consider a vibrator of amplitude 0.5 mm and frequency 100 Hz. To maintain a 91 

constant acceleration when the amplitude is doubled to 1 mm the frequency must drop 92 

to 70.7 Hz, but in so doing the velocity increases by a factor of √2 and the vibrator is 93 

seen to be more effective. Similarly, to maintain a constant acceleration when the 94 

amplitude is halved to 0.25 mm the frequency must rise to 141.4 Hz, but in doing so 95 

the velocity is reduced by a factor of √2 and the vibrator is consequently less 96 

effective. 97 

 98 

Asserting that the radius of action is due to attenuation, ACI Committee 309’s state-99 

of-the-art review [1] recommends a formula first presented by Dessoff in 1937 [10] 100 

for estimating the geometrical energy distribution due to the radial generation of 101 

compressive waves around an internal vibrator: 102 






 −Ω−= )(
2
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i

or rr
r

r
uu        (2) 103 

where ur is the radial velocity at radius r, uo is the velocity of vibration of the vibrator 104 

surface and ri its radius. Ω is the coefficient of damping, and for concrete of 105 

consistency ranging from flowing to plastic, a value of between 0.04 and 0.08 is 106 

suggested [1]. Dessoff’s formula was originally presented as an approximate 107 

procedure for the study of compact soil, and its application to concrete can be 108 

criticised on the grounds that compressive waves do not propagate through liquids, 109 

and therefore its use would be restricted to the outer region where the concrete is not 110 

liquid, a restriction that is not mentioned by ACI Committee 309. The damping is due 111 

to internal friction between the solid particles (1). If the formula is not applicable to 112 



5 

the liquid region surrounding the vibrator a new approach based on shear wave 113 

propagation is needed. Teixeira et al [11] presented a preliminary analysis in terms of 114 

the propagation of shear waveforms outward from the surface of the vibrator. The 115 

amplitude of the wave decays with distance and at a critical distance has fallen to a 116 

level that is insufficient to exceed the yield stress. Beyond this distance the concrete is 117 

solid and in this region the motion is controlled by the compressive waveforms. This 118 

critical point corresponds to the radius of action of the vibrator and this paper 119 

develops this alternative analysis of wave propagation in the two regions. 120 

 121 

 122 

The main objective of this paper is therefore to analyse the radius of action of 123 

vibrators in relation to the rheology of the fresh concrete and the characteristics of the 124 

vibration. A subsidiary objective is to investigate the possibility that the decay of 125 

acceleration in the liquid region is simply a consequence of the shear wave 126 

propagation.  127 

 128 

3. Theory 129 

 130 

3.1 Problem definition and research approach 131 

 132 

In the proposed approach, the vibrational process for a poker vibrator in fresh 133 

concrete is analysed as two distinct cases, namely: (i) the oscillating two-dimensional 134 

incompressible viscous fluid motion around a cylinder in a confining volume of 135 

material, i.e. a shear waveform, and (ii) the acoustic motion of a cylindrical travelling 136 
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wave with dissipation of energy, i.e. a compressive waveform. The theoretical 137 

analysis is also investigated experimentally and a prediction approach is developed. 138 

 139 

The construction of a poker-type internal vibrator for concrete is shown schematically 140 

in Figure 1. An eccentric mass inside a fixed cylindrical casing of radius ri rotates 141 

about the point O and makes the casing oscillate. The entire assembly moves in such a 142 

way that a point P on the surface of the casing describes a circular path of a radius 143 

that is small compared to ri but the casing itself does not rotate. During operation, at 144 

any instant t, point P imparts to the surrounding medium a compressive force in the 145 

directionφ , while points P′ andP ′′ , at angles 2/πφ ± , impart a shear force in the 146 

directions φ± . Since a compressive waveform cannot propagate through a liquid 147 

medium only the shear excitation needs to be considered. 148 

 149 

3.2 Shear waveform 150 

 151 

Alexander [12] studied the mechanics of motion of fresh concrete during vibration 152 

using a mechanical driving point impedance technique. He found different mechanical 153 

impedance curves depending on whether the dynamic stress applied is above or below 154 

a threshold level, i.e. the yield stress, although he did not call it this. Fresh concrete 155 

below the yield stress possesses the mass, damping and stiffness characteristics of a 156 

solid, while above the yield stress it is a liquid. Various combinations of force and 157 

frequency were found to cause liquefaction, which was associated with a 158 

simultaneous sharp drop in impedance. His experimental results showed that 159 

concretes of normal consistencies behave like a fluid during vibration, as confirmed 160 
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by the results of Tattersall and Baker [3, 4] and Banfill et al [5]. Therefore the use of 161 

hydrodynamic theory to analyse the liquefaction process is justified. 162 

 163 

Chen et al [13] presented an analytical and experimental study of a cylindrical rod 164 

vibrating in a viscous liquid enclosed by a rigid concentric cylindrical shell. Figure 2 165 

shows the coordinate system they used and the vibrator casing is represented by an 166 

infinitely long cylinder of radius ri oscillating with velocities: 167 

)sin(coscos0 tituur ωωθ +=  and )sin(cossin0 tituu ωωθθ +−=  (3) 168 

where ru  and θu are the velocity components in the radial and tangential directions at 169 

an arbitrary point on the casing which subtends an angle θ  to the coordinate axis, 170 

12 −=i , fπω 2= is the angular velocity, 0u is the peak velocity and f is the 171 

frequency. Where the amplitude of oscillation of the source is small compared to its 172 

dimensions, the equations for the conservation of mass and momentum may be 173 

linearised [14] as: 174 

0
1 24 =∇
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∂−∇ ψ

ν
ψ

t
         (4) 175 

where ψ  is the stream function, 2∇ is the Laplacian operator and ν  is the kinematic 176 

viscosity of the fluid. This assumption is reasonable for most internal vibrators, for 177 

which the amplitude is less than 1 mm and ri is typically 25 mm. The velocity 178 

components for the fluid are given by: 179 
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giving the solution of equation (4) as: 181 
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where 183 

ν
ω

ik = . 184 

A, B, C, D are arbitrary constants that can be determined as [13]: 185 
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where 192 

ikr=α  193 

okr=β  194 

oi rr=δ  195 

and 196 
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22 αββαδα KIKI −−=∆  197 

[ ])()()()()()()()(2 10010110 ββαβαββααδ KIKIKIKI −+−+  198 

[ ])()()()()()()()(2 01011010
2 ααβααααβαδ KIKIKIKI −+−+ .  (11) 199 

I0 and I1 are modified Bessel functions of the first kind and K0 and K1 are modified 200 

Bessel functions of the second kind. 201 

 202 



9 

Equations (5) and (6) can be used to calculate the velocity components in the radial 203 

and tangential directions as a function of distance from the source and this can be 204 

used to predict the decay of vibration within the inner flow region. 205 

 206 

3.3 Compressive waveform 207 

 208 

Beyond the critical distance where the amplitude of the oscillatory shear has 209 

decreased to the point where the shear stress is less than the yield stress the concrete is 210 

unsheared. In this outer region where the effects of vibration are not sufficient to 211 

liquefy the Bingham material, the principles of hydrodynamics are no longer 212 

applicable. Here fresh concrete behaves as an elastic solid and instead structural 213 

vibration theory can be used to describe the motion. 214 

 215 

A complete description of the compressive wave motion in a Bingham material at 216 

stresses below the yield stress is not available and a simplified first order equation of 217 

motion is adopted in this analysis. Assuming that a cylindrical wave spreads outwards 218 

from the radial position of the interface between liquid and solid zones, rls, the 219 

amplitude depends only on the radial distance r and the wave equation in cylindrical 220 

coordinates for this case is [15]: 221 
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       (12) 222 

where ur is the particle velocity component in the radial direction, c is the velocity of 223 

propagation of compressive waves in the material and t is time. 224 

 225 
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If rls is small compared to the wavelength the particle velocity component in the radial 226 

direction at large distances r is given by [15]: 227 






 −−= )
4

()(exp
πωπ ictr

c
i

cr

f
ruu lslsr      (13) 228 

where uls is the velocity of oscillation at the interface between liquid and solid zones. 229 

The assumption that rls is small compared to the wavelength is reasonable because the 230 

velocity of wave propagation in fresh concrete is approximately 500 m/s and the 231 

wavelength at a typical vibrator frequency of 200 Hz is therefore 2.5 m, which is 232 

sufficiently greater than the typically observed radius of action of an internal vibrator 233 

of about 0.2 m. Thus equation (13) can be used to calculate the velocity distribution as 234 

a function of distance from the source and to predict the decay of vibration outside the 235 

liquid region where the Bingham materials behaves as a solid. 236 

 237 

Since the vibrational velocity is of interest the ratio of the velocity at any point r to 238 

that at the interface between solid and liquid is given by: 239 

cr

f
r

u

u
ls

ls

r π=          (14) 240 

It should be noted that the radial position of the interface is not known a priori and 241 

therefore the calculations presented here are based on reference values obtained 242 

experimentally for u and r that were well inside the solid region beyond the interface. 243 

Equation (14) describes the motion in the solid region and any value of uls can be used 244 

to generate a curve of ur as a function of distance. 245 

 246 

3.4 Radius of action 247 

 248 
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By definition, the radius of action of the vibrator is the radial position of the interface 249 

between the liquid and solid regions rls. Referring to Figure 3, at all radii r where ri < 250 

r <  rls the concrete is fluidified and the radius of action defines the size of the fully 251 

compacted region. Since there can be no consolidation in the solid region the radius of 252 

action cannot be larger than the position of the interface between the two zones, but in 253 

practice it may appear somewhat smaller if the shear waveform is decaying only 254 

slowly as it approaches the interface. Based on the preceding analysis of the shear and 255 

compressive waveforms, it is expected that a radial distribution of velocity will show 256 

two zones. The velocity will decrease relatively rapidly with increasing radius through 257 

the liquid zone as far as the interface, beyond which it will decrease more slowly with 258 

radius into the solid zone. In principle, the point where the two curves cross coincides 259 

with the interface between liquid and solid regions and defines the radius of action. 260 

 261 

In the liquefied zone the concrete is confined between two concentric cylinders (the 262 

vibrator and the unsheared concrete) so the shear stress at radius r decreases from a 263 

maximum value τw at the surface of the vibrator, radius ri, to the yield stress τ0 at the 264 

interface between solid and liquid. This is the radius of action and is given by: 265 

2

0
i

w
ls rr

τ
τ

=          (15) 266 

The shear stress at the surface of the vibrator τw is given by the Bingham model 267 

(equation 1): 268 

ww γµττ &+= 0          (16) 269 

where τ0 and µ are the yield stress and plastic viscosity of the concrete, respectively, 270 

and the shear rate at the surface of the vibrator wγ& is given by: 271 
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where ur and uθ may be calculated using equations (4) and (6). With this analysis it 273 

becomes possible to predict the radius of action from a knowledge of the 274 

characteristics of the vibrator and the rheology of the concrete. 275 

 276 

4. Experimental work 277 

 278 

The aim of the experimental work was to investigate the applicability of the 279 

prediction equations to the practical situation of an internal vibrator immersed in fresh 280 

concrete and to identify the liquid and solid zones and the radius of action. 281 

 282 

All experimental work was carried out using an electrically driven vibrator 283 

(Rotopoka, Fyne Machinery and Engineering Ltd, London) of 28 mm external 284 

diameter. Vibrational measurements used piezoelectric accelerometers (Bruel & Kjaer 285 

Type 4344), calibrated with a vibration calibrator (Bruel & Kjaer Type 4294), driven 286 

by charge amplifiers (Bruel & Kjaer Type 2635) and analysed with a dual channel 287 

frequency analyser (Bruel & Kjaer Type 2032). The acceleration levels in the radial, 288 

tangential and axial directions were measured at different positions along the vibrator, 289 

as well as the magnitude and phase difference between the radial and tangential 290 

acceleration levels. The accelerometer was attached to the vibrator with a 20x20x40 291 

mm aluminium block held in place by a circular screw clip. In all tests the vibrator 292 

was fully immersed in the fresh concrete sample in order to prevent overheating, as 293 

recommended by the manufacturer, and the vibrator and its attached accelerometer 294 

were removed from the concrete before it had a chance to set and thoroughly cleaned. 295 

 296 



13 

Measurements in fresh concrete were carried out in the apparatus shown 297 

schematically in Figure 4. Accelerometers capable of measuring the acceleration in 298 

radial, tangential and axial directions were immersed at 25 mm increments of distance 299 

from the vibrator. Two containers were used: (1) a steel cylinder 640 mm internal 300 

diameter and 400 mm high, closed at the bottom and (2) a cuboidal timber mould 301 

1500x1500 mm and 500 mm high. Container 1 was a compromise between the need 302 

to be larger in diameter than the anticipated size of the zone of liquefaction and the 303 

capacity of the concrete mixer available in the laboratory. Container 2 was much 304 

larger so as to avoid any possible interference of the walls of the mould with wave 305 

propagation. In each case the vibrator was held vertically in the centre of the container 306 

by a frame. 307 

 308 

Two ordinary concretes were used in the tests and one further concrete was used for 309 

predictions of the radius of action. Concrete A was prepared in a 0.2 m3 laboratory 310 

pan mixer and was used in the smaller container 1. Concrete B was obtained from a 311 

ready-mixed concrete supplier and was used in the much larger container 2. Concrete 312 

C was prepared in a 0.2 m3 laboratory pan mixer with the sole purpose of providing 313 

the rheological data upon which the predictions of radius of action could be made for 314 

comparison with Taylor’s results [9]. All concretes used aggregate of maximum 315 

particle size 20 mm but unfortunately details of the mixture proportions have been 316 

lost. The concretes were characterised by the slump test and the two-point workability 317 

test, using the apparatus described by Domone et al [16]. Density was determined 318 

according to BS EN 12350-6 [17]. Velocity of sound was determined for each 319 

concrete using a time of flight measurement. Transient plane wave impulses were 320 

generated by a frequency analyser (dual channel Bruel & Kjaer Type 2032) and 321 
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imparted to the fresh concrete by a small shaker / vibrator (LDS Type 406) driven by 322 

a power amplifier (Bruel & Kjaer Type 2706) at levels too low to cause liquefaction 323 

and detected by an accelerometer (Bruel & Kjaer Type 4500) connected to a storage 324 

oscilloscope (Gould type 1421). 325 

 326 

5. Results 327 

5.1 Characterisation of concrete 328 

 329 

Table 1 summarises the properties of the experimental concretes. Concretes A and B 330 

were similar, though not identical, and while of a fairly soft consistency they are 331 

representative of concretes that would require vibratory compaction in practice. The 332 

lower slump of concrete B is consistent with its higher yield stress but the plastic 333 

viscosities were significantly different, as a result of the different constituent materials 334 

[2]. The velocity of sound in the fresh concrete is consistent with values reported by 335 

other authors who have used shear wave or pulse propagation techniques to monitor 336 

setting processes [18]. Concrete C was chosen to be similar to that used in Taylor’s 337 

investigations [9]. 338 

 339 

5.2 Characterisation of the vibrator 340 

 341 

Tested in free air, the accelerations of the vibrator in the radial and tangential 342 

directions were identical, with a phase angle of 90°, confirming that the vibrator 343 

performs an oscillatory motion in a circular path. The measured frequency was 246 344 

Hz and the acceleration was 1122 m/s2 RMS, providing a peak velocity of oscillation 345 
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uo = 1.03 m/s. The acceleration in the axial direction was negligibly small and can be 346 

ignored in comparison to that in the other directions. 347 

 348 

5.3 Propagation of vibration 349 

 350 

Figure 5 shows the results for concrete 1 in container A. The symbols represent the 351 

measured data and are the average of 10 tests, while the lines show the predictions 352 

from the shear and compressive waveform equations. In the liquid zone the radial and 353 

tangential velocity components for the shear wave (equation (5)) are almost identical. 354 

Only the radial velocity is available for the compressive waveform (equation (13)). 355 

Figure 5 also shows a curve plotted using Dessoff’s equation [1, 10] and the predicted 356 

value for the radius of action, calculated from equation (15). The radius of action was 357 

also determined visually from a cross-section cut through the concrete after it had 358 

been allowed to harden and found to be approximately 200 mm, in good agreement 359 

with the predicted value. 360 

 361 

Figure 6 presents the results for concrete 2 in container B, where again the symbols 362 

represent the measured data and are the mean of three tests, while the lines show the 363 

predictions. 364 

 365 

5.4 Radius of action 366 

 367 

Figure 7 shows a comparison between the radius of action results determined 368 

experimentally by Taylor [9] and those obtained from the prediction method 369 

introduced in this paper. Taylor used concrete of very low workability (6 mm slump) 370 
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but gave no other information on the rheological properties. The prediction values 371 

therefore use the properties determined for concrete C (table 1). 372 

 373 

6. Discussion 374 

 375 

The experimental results (figure 5) show a rapid decay in velocity from the surface 376 

value of 1.03 m/s as the distance from the vibrator increased. The experimental 377 

velocity distribution in the liquid region agrees well with the prediction from the shear 378 

wave equation as it drops towards the prediction from the compressive wave equation. 379 

At a radius of about 0.2 m the shear and compressive curves cross and the 380 

experimental points start to follow the upper compressive curve. The excellent 381 

agreement between the simple theoretical model and experimental data in the region 382 

near the vibrator confirms that concrete behaves as a liquid in this region. Further 383 

from the vibrator, outside the liquid region, the decline of the measured velocity is 384 

significantly reduced and is in good agreement with the compressive equation, 385 

confirming that the concrete behaves as a solid in this region. 386 

 387 

Figure 5 also shows the Dessoff curve (equation (2)), which considerably over-388 

estimates the experimental velocity and is unable to account for the rapid decay in 389 

velocity near the vibrator. This confirms that it is unsuitable for the liquid region. 390 

However, the shape of the curve is very similar to that of equation (14) for the solid 391 

region but displaced to velocities which are nearly 100-fold higher, which confirms 392 

that Dessoff’s original formula applies to solid materials. 393 

 394 
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In figure 5 the two curves predicting the shear and compressive waveform velocity 395 

distributions intersect at about 200 mm. The predicted value for the radius of action 396 

(equation (15)) is 209 mm and the value determined experimentally by visual 397 

inspection of the compaction visible in a radially cut section through the hardened 398 

concrete is 200 ± 10 mm. Clearly the position of the interface between liquid and 399 

solid may be represented by the intersection of the curves and it follows that equation 400 

(15) may be used to predict the radius of action. 401 

 402 

The results with the large mould (container B) shown in figure 6 reinforce the 403 

previous experiments in the cylinder (container A) but are somewhat less clearly 404 

defined, perhaps due to inhomogeneities in the larger volume of concrete used in this 405 

test. There is again good agreement between experimental and predicted velocity for 406 

the shear waveform within the liquid zone and between experimental and predicted 407 

compressive wave velocity in the solid zone towards the extremity of the mould but 408 

the transition between the curves is less clearly defined by the experimental points. 409 

Equation (15) predicts the radius of action to be 231 mm in this case, whereas the 410 

curves intersect at about 300 mm. Again the Dessoff formula considerably over-411 

estimates the velocities. 412 

 413 

The effect of velocity on the radius of action, both as measured by Taylor and 414 

predicted by equation (15), is shown in figure 7. Taylor’s experiments were 415 

performed in wall-shaped moulds 1200 mm long by 200 mm wide and 600 mm high 416 

with the vibrator held vertically on the centre line 300 mm from one end. 417 

Consequently the results are very scattered, probably due to internal reflections from 418 

the mould surfaces and the possibility of assisted propagation along the wall. 419 
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Additionally, Taylor’s concrete had unknown rheology. While the yield stress is 420 

correct for a slump of 5 mm, it is impossible to confirm the plastic viscosity. The fact 421 

that the experimental points are mostly above the prediction curve suggests that the 422 

plastic viscosity of his concrete may be higher than the 150 Pa s assumed in the 423 

prediction. This is quite possible since Taylor describes his concrete as very stiff. It 424 

should also be pointed out that Taylor’s data in Figure 7 is duplicated: for each value 425 

of velocity there is one radius of action from the visual inspection and one from the 426 

gamma ray densitometer measurements, and in most cases the former is lower than 427 

the latter. The predicted values are given for the corresponding peak velocities, 428 

calculated from Taylor’s data. 429 

 430 

Despite these reservations, the broad trend is a clear increase in the radius of action 431 

with increasing peak velocity, as predicted. It confirms Tattersall and Baker’s findings 432 

that the peak velocity is the most important characteristic of the vibration. Moreover, 433 

Taylor’s experimental observation that for a given acceleration a vibrator with large 434 

amplitude is likely to perform better than one with lower amplitude and higher 435 

frequency is confirmed by the predictions. For example, a vibrator of 30 mm radius 436 

giving an acceleration of 395 m/s2 has a radius of action of 273 mm if operated at 200 437 

Hz and 0.25 mm amplitude, compared to a radius of action of 385 mm if operated at 438 

100 Hz and 1.0 mm amplitude. 439 

 440 

7. Implications for concrete practice 441 

 442 

The prediction equations for the radius of action of an immersed poker vibrator in a 443 

given situation require information on both the concrete properties – yield stress, 444 
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plastic viscosity and density – and the properties of the poker – diameter, frequency, 445 

amplitude – as well as the size of the container. The complexity of these seven 446 

variables makes it difficult to answer questions like “What is the radius of action in 447 

this situation?” or its converse “What conditions are needed to achieve a given radius 448 

of action?” and “What concrete should be used for a particular vibrator and size of 449 

container?”, and therefore a small computer program (POKER) was written in C++. 450 

This requests the user to enter values for yield stress, plastic viscosity, density, poker 451 

diameter, frequency and amplitude, and container size and gives the radius of action. 452 

The user interface offers a range of preset values for each variable, but these can be 453 

over-written with user-selected values if required. The “container size” box offers a 454 

“free field” value to deal with the situation where the mould is effectively of infinite 455 

size. Radius of action is then calculated using equation (15). 456 

 457 

Table 2 shows the results of a parametric survey of the effect of each variable on the 458 

predicted radius of action of the vibrator, in the form of a 27 factorial design using two 459 

levels of each variable (one high and one low). The low and high values are: (i) yield 460 

stress 250 and 3000 Pa, (ii) plastic viscosity 25 and 200 Pa s, (iii) density 1800 and 461 

2600 kg/m3, (iv) poker diameter 20 and 80 mm, (v) frequency 50 and 300 Hz, (vi) 462 

amplitude 0.5 and 1.0 mm, and (vii) container size 0.5 m and free field. These values 463 

represent the extremes that might be encountered in practice. Comparing rows 1-64 464 

with 65-128 shows that container size has an insignificant effect on the radius of 465 

action (i.e. less than 0.01 m) between 0.5 m and free field conditions, except for four 466 

combinations at low plastic viscosity (compare row 61 with 125 and row 62 with 467 

126). Comparing successive groups of four rows, e.g. rows 1-4 and 5-8, shows that 468 

concrete density has an negligible effect on the radius of action (i.e. some differences 469 
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of 0.01 m), except for four combinations at low plastic viscosity (compare row 57 470 

with 61 and row 58 with 62). All the other variables have a strong effect: radius of 471 

action decreases with increasing yield stress but increases with increasing plastic 472 

viscosity (except for eight combinations at high density (compare row 29 with row 31, 473 

row 30 with 32, row 61 with 63, and row 62 with 64). Radius of action increases with 474 

increasing vibrator diameter, increasing frequency and increasing amplitude, although 475 

in some cases the increase is small (e.g. compare row 2 with row 34 (amplitude) and 476 

with row 82 (frequency)). 477 

 478 

The principal effects identified in table 2 are amplified graphically, with intermediate 479 

values to demonstrate the trends, in figures 8, 9 and 10. Figure 8 shows the effect of 480 

poker diameter and frequency on the radius of action at a moderate yield stress of 481 

1500 Pa with plastic viscosity from 25 to 250 Pa s. Figure 9 shows the same at a 482 

moderate plastic viscosity of 100 Pa s with yield stress from 250 to 2500 Pa. These 483 

two graphs show the opposing effects of yield stress and plastic viscosity, which is 484 

shown more clearly in figure 10, which takes points at the approximate centre of the 485 

grids in figures 8 and 9. One point is omitted from figure 8 because the calculation 486 

became unstable. Points at high radius of action may be less certain because of the 487 

assumption that the radius at the interface is small compared to the wavelength. 488 

 489 

The importance of the rheology of the fresh concrete being vibrated has not 490 

previously been quantified, although ordinary practical observation shows that 491 

workability is important. Two important issues emerge from figure 10. The first is 492 

that yield stress and plastic viscosity have opposite effects on the radius of action of a 493 

given vibrator. This is a further reason for using two-point tests to characterise the 494 
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concrete: a single point measurement (slump, flow, etc), no matter how precise and 495 

sophisticated, cannot provide the necessary minimum of information, since an infinite 496 

number of combinations of yield stress and plastic viscosity can give the same single 497 

point result [2]. The second issue is that the combination of low yield stress and high 498 

plastic viscosity that gives the maximum radius of action (figure 10) is the same 499 

combination that is needed to ensure that concrete is self-compacting [19]. 500 

 501 

This work has not studied the rate of compaction. Since the viscosity of the vibrated 502 

concrete is proportional to the plastic viscosity of the unvibrated concrete [5] the flow 503 

and release of air bubbles during compaction is slower with higher plastic viscosities. 504 

However, the results presented here show that a high radius of action requires a high 505 

plastic viscosity so the productivity in practice is a compromise between the two 506 

requirements. A low plastic viscosity permits rapid compaction but the small radius of 507 

action requires the vibrator to be inserted many times at close spacing in the form, 508 

while a high plastic viscosity requires the vibrator to be held in one place for longer 509 

but without so many insertions. 510 

 511 

8. Conclusions 512 

 513 

An analysis of the compaction of fresh concrete by an internal poker vibrator has been 514 

developed using closed-form solutions for the shear and compressive waveforms 515 

based on the assumption that concrete conforms to the Bingham model. Theory and 516 

experiment agree well. 517 

 518 
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There are two distinct regions around the vibrating source. Near the vibrator the flow 519 

is controlled by the shear waveform and hydrodynamic theory may be used in the 520 

analysis, whereas outside this region the material is solid and the motion is governed 521 

by the compressive waveforms which can be solved by structural vibration theory. 522 

 523 

The rapid decay of energy near the internal vibrator is due to the liquefaction and flow 524 

of the Bingham material and Dessoff’s equation for estimating the radial distribution 525 

of vibrational energy is restricted to the case of the solid material outside the liquefied 526 

zone and cannot be used to predict the size of that zone. 527 

 528 

The analysis developed in this study gives a method of predicting the radial position 529 

of the interface between the liquid and solid regions, i.e. the radius of action of the 530 

vibrator, as a function of the characteristics of the vibration and the rheology of the 531 

concrete. The radius of action increases with increasing plastic viscosity but decreases 532 

with increasing yield stress, with the optimum combination predicted to be a low yield 533 

stress with a high plastic viscosity. The work confirms the importance of velocity as 534 

the most important characteristic of the vibration governing efficacy. This work offers 535 

the potential to optimise the design and use of internal vibrators to achieve the most 536 

efficient and productive compaction of a concrete during production of constructional 537 

elements. 538 

 539 
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Figure captions 602 

 603 

1. Construction of a poker type vibrator. 604 

2. The coordinate system used in the equations. 605 

3. Definition of the radius of action of a vibrator. 606 

4. Experimental set-up for vibration tests. 607 

5. Radial velocity results for concrete A in container 1. 608 

6. Radial velocity results for concrete B in container 2. 609 

7. Effect of peak velocity on the radius of action. 610 

8. Effect of poker diameter and frequency on the calculated radius of action in 611 

concrete of yield stress 1500 Pa, vibration amplitude 1.0 mm, concrete density 2400 612 

kg/m3. Plastic viscosity (a) 25 Pa s, (b) 100 Pa s, (c) 175 Pa s, (d) 250 Pa s. 613 

9. Effect of poker diameter and frequency on the calculated radius of action in 614 

concrete of plastic viscosity 100 Pa s, vibration amplitude 1.0 mm, concrete density 615 

2400 kg/m3. Yield stress (a) 250 Pa, (b) 1000 Pa, (c) 1750 Pa, (d) 2500 Pa. 616 

10. Effect of yield stress and plastic viscosity on the calculated radius of action of a 617 

50 mm diameter poker operating at frequency 75 Hz, amplitude 1.0 mm, in concrete 618 

of density 2400 kg/m3. 619 

 620 

621 
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Tables 622 
 623 
Table 1. Properties of the concrete mixtures 624 
 625 
Concrete Slump 

mm 
Yield stress 
Pa 

Plastic viscosity 
Pa.s 

Plastic density 
kg/m3 

Sound velocity 
m/s 

A 180 570 15 2300 445 
B 150 620 26 2200 515 
C 5 2200 150 2200 - 
 626 

627 
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Table 2. Parametric survey of the effect of concrete properties and vibrator 628 
characteristics on the calculated radius of action of a vibrating poker. 629 
 630 
Row 
No. 

Yield 
stress 
Pa 

Plastic 
viscosity 
Pa.s 

Density 
kg/m3 

Poker 
diameter 
mm 

Frequency 
Hz 

Amplitude 
mm 

Container 
size* 
m 

Predicted 
radius of 
action m 

1 250 25 1800 20 50 0.5 0.5 0.13 
2 3000 25 1800 20 50 0.5 0.5 0.04 
3 250 200 1800 20 50 0.5 0.5 0.38 
4 3000 200 1800 20 50 0.5 0.5 0.11 
5 250 25 2600 20 50 0.5 0.5 0.13 
6 3000 25 2600 20 50 0.5 0.5 0.04 
7 250 200 2600 20 50 0.5 0.5 0.38 
8 3000 200 2600 20 50 0.5 0.5 0.11 
9 250 25 1800 80 50 0.5 0.5 0.27 
10 3000 25 1800 80 50 0.5 0.5 0.09 
11 250 200 1800 80 50 0.5 0.5 0.76 
12 3000 200 1800 80 50 0.5 0.5 0.22 
13 250 25 2600 80 50 0.5 0.5 0.27 
14 3000 25 2600 80 50 0.5 0.5 0.09 
15 250 200 2600 80 50 0.5 0.5 0.76 
16 3000 200 2600 80 50 0.5 0.5 0.22 
17 250 25 1800 20 300 0.5 0.5 0.33 
18 3000 25 1800 20 300 0.5 0.5 0.1 
19 250 200 1800 20 300 0.5 0.5 0.93 
20 3000 200 1800 20 300 0.5 0.5 0.27 
21 250 25 2600 20 300 0.5 0.5 0.33 
22 3000 25 2600 20 300 0.5 0.5 0.1 
23 250 200 2600 20 300 0.5 0.5 0.93 
24 3000 200 2600 20 300 0.5 0.5 0.27 
25 250 25 1800 80 300 0.5 0.5 0.66 
26 3000 25 1800 80 300 0.5 0.5 0.19 
27 250 200 1800 80 300 0.5 0.5 1.86 
28 3000 200 1800 80 300 0.5 0.5 0.54 
29 250 25 2600 80 300 0.5 0.5 2.7 
30 3000 25 2600 80 300 0.5 0.5 0.78 
31 250 200 2600 80 300 0.5 0.5 1.86 
32 3000 200 2600 80 300 0.5 0.5 0.54 
33 250 25 1800 20 50 1.0 0.5 0.19 
34 3000 25 1800 20 50 1.0 0.5 0.06 
35 250 200 1800 20 50 1.0 0.5 0.54 
36 3000 200 1800 20 50 1.0 0.5 0.16 
37 250 25 2600 20 50 1.0 0.5 0.19 
38 3000 25 2600 20 50 1.0 0.5 0.06 
39 250 200 2600 20 50 1.0 0.5 0.54 
40 3000 200 2600 20 50 1.0 0.5 0.16 
41 250 25 1800 80 50 1.0 0.5 0.38 
42 3000 25 1800 80 50 1.0 0.5 0.12 
43 250 200 1800 80 50 1.0 0.5 1.07 
44 3000 200 1800 80 50 1.0 0.5 0.31 
45 250 25 2600 80 50 1.0 0.5 0.38 
46 3000 25 2600 80 50 1.0 0.5 0.12 
47 250 200 2600 80 50 1.0 0.5 1.07 
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48 3000 200 2600 80 50 1.0 0.5 0.31 
49 250 25 1800 20 300 1.0 0.5 0.46 
50 3000 25 1800 20 300 1.0 0.5 0.13 
51 250 200 1800 20 300 1.0 0.5 1.31 
52 3000 200 1800 20 300 1.0 0.5 0.38 
53 250 25 2600 20 300 1.0 0.5 0.47 
54 3000 25 2600 20 300 1.0 0.5 0.13 
55 250 200 2600 20 300 1.0 0.5 1.31 
56 3000 200 2600 20 300 1.0 0.5 0.38 
57 250 25 1800 80 300 1.0 0.5 0.93 
58 3000 25 1800 80 300 1.0 0.5 0.27 
59 250 200 1800 80 300 1.0 0.5 2.63 
60 3000 200 1800 80 300 1.0 0.5 0.76 
61 250 25 2600 80 300 1.0 0.5 3.82 
62 3000 25 2600 80 300 1.0 0.5 1.10 
63 250 200 2600 80 300 1.0 0.5 2.63 
64 3000 200 2600 80 300 1.0 0.5 0.76 
65 250 25 1800 20 50 0.5 ∞ 0.13 
66 3000 25 1800 20 50 0.5 ∞ 0.04 
67 250 200 1800 20 50 0.5 ∞ 0.38 
68 3000 200 1800 20 50 0.5 ∞ 0.11 
69 250 25 2600 20 50 0.5 ∞ 0.13 
70 3000 25 2600 20 50 0.5 ∞ 0.04 
71 250 200 2600 20 50 0.5 ∞ 0.38 
72 3000 200 2600 20 50 0.5 ∞ 0.11 
73 250 25 1800 80 50 0.5 ∞ 0.27 
74 3000 25 1800 80 50 0.5 ∞ 0.09 
75 250 200 1800 80 50 0.5 ∞ 0.76 
76 3000 200 1800 80 50 0.5 ∞ 0.22 
77 250 25 2600 80 50 0.5 ∞ 0.27 
78 3000 25 2600 80 50 0.5 ∞ 0.09 
79 250 200 2600 80 50 0.5 ∞ 0.76 
80 3000 200 2600 80 50 0.5 ∞ 0.22 
81 250 25 1800 20 300 0.5 ∞ 0.33 
82 3000 25 1800 20 300 0.5 ∞ 0.1 
83 250 200 1800 20 300 0.5 ∞ 0.93 
84 3000 200 1800 20 300 0.5 ∞ 0.27 
85 250 25 2600 20 300 0.5 ∞ 0.33 
86 3000 25 2600 20 300 0.5 ∞ 0.1 
87 250 200 2600 20 300 0.5 ∞ 0.93 
88 3000 200 2600 20 300 0.5 ∞ 0.27 
89 250 25 1800 80 300 0.5 ∞ 0.66 
90 3000 25 1800 80 300 0.5 ∞ 0.19 
91 250 200 1800 80 300 0.5 ∞ 1.86 
92 3000 200 1800 80 300 0.5 ∞ 0.54 
93 250 25 2600 80 300 0.5 ∞ 0.66 
94 3000 25 2600 80 300 0.5 ∞ 0.19 
95 250 200 2600 80 300 0.5 ∞ 1.86 
96 3000 200 2600 80 300 0.5 ∞ 0.54 
97 250 25 1800 20 50 1.0 ∞ 0.19 
98 3000 25 1800 20 50 1.0 ∞ 0.06 
99 250 200 1800 20 50 1.0 ∞ 0.5 
100 3000 200 1800 20 50 1.0 ∞ 0.16 
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101 250 25 2600 20 50 1.0 ∞ 0.19 
102 3000 25 2600 20 50 1.0 ∞ 0.06 
103 250 200 2600 20 50 1.0 ∞ 0.54 
104 3000 200 2600 20 50 1.0 ∞ 0.16 
105 250 25 1800 80 50 1.0 ∞ 0.38 
106 3000 25 1800 80 50 1.0 ∞ 0.12 
107 250 200 1800 80 50 1.0 ∞ 1.07 
108 3000 200 1800 80 50 1.0 ∞ 0.31 
109 250 25 2600 80 50 1.0 ∞ 0.38 
110 3000 25 2600 80 50 1.0 ∞ 0.12 
111 250 200 2600 80 50 1.0 ∞ 1.07 
112 3000 200 2600 80 50 1.0 ∞ 0.31 
113 250 25 1800 20 300 1.0 ∞ 0.46 
114 3000 25 1800 20 300 1.0 ∞ 0.13 
115 250 200 1800 20 300 1.0 ∞ 1.31 
116 3000 200 1800 20 300 1.0 ∞ 0.38 
117 250 25 2600 20 300 1.0 ∞ 0.47 
118 3000 25 2600 20 300 1.0 ∞ 0.13 
119 250 200 2600 20 300 1.0 ∞ 1.31 
120 3000 200 2600 20 300 1.0 ∞ 0.38 
121 250 25 1800 80 300 1.0 ∞ 0.93 
122 3000 25 1800 80 300 1.0 ∞ 0.27 
123 250 200 1800 80 300 1.0 ∞ 2.63 
124 3000 200 1800 80 300 1.0 ∞ 0.76 
125 250 25 2600 80 300 1.0 ∞ 0.93 
126 3000 25 2600 80 300 1.0 ∞ 0.27 
127 250 200 2600 80 300 1.0 ∞ 2.63 
128 3000 200 2600 80 300 1.0 ∞ 0.76 
* Free field conditions are denoted by the symbol ∞. 631 
 632 
 633 


