
R

D

P
a

b

a

A
R
R
1
A

K
C
P
D
D
E
V
S

C

0
d

OREView met

tt Pure
Enzyme and Microbial Technology 43 (2008) 463–470

Contents lists available at ScienceDirect

Enzyme and Microbial Technology

journa l homepage: www.e lsev ier .com/ locate /emt

eview

ielectric measurement of cell death

areshkumar Patela, Gerard H. Markxb,∗

School of Chemical Engineering and Analytical Science, The University of Manchester, P.O. Box 88, Manchester M60 1QD, UK
School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK

r t i c l e i n f o

rticle history:
eceived 9 May 2008
eceived in revised form
1 September 2008
ccepted 11 September 2008

a b s t r a c t

Dielectric techniques, which include dielectric spectroscopy as well as AC electrokinetic methods such as
dielectrophoresis, electrorotation and electro-orientation, can be provide important information about
cell viability. A review is given of the different dielectric techniques that have been used for measuring
cell viability and their utility. The changes that occur in the cell dielectric properties during apoptotic and
different forms of traumatic cell death are discussed and interpreted in terms of the main parameters
involved (membrane capacitance and conductance and internal conductivity).
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. Introduction

The term “dielectric” was first introduced by William Whewell
fter a request from Michael Faraday to describe a material through
hich (greek—“dia” = through) an electric field passes. Dielectric

heory was given a firm theoretical foundation by Maxwell [1],
nd the many contributions by Maxwell to the field of dielectrics
nclude the derivation of an analytical solution for the conductivity
f a dilute suspension of spherical particles [1]. Fricke [2,3] proved
t was possible to adapt Maxwell’s equation so it could be used
or the description of the dielectric properties of suspensions of
ells by modelling a cell as a conducting spheroid surrounded by a
on-conducting membrane. After World War II rapid progress was
ade in the study of the electrical properties of biological materi-

ls. Major contributions to the subject were made by Schwan [4,5],
ho performed measurements on the electrical properties of tis-

ues and cell suspensions over a much broader frequency range
han was previously possible. The study of the movement of parti-
les in AC electric fields was pioneered by Pohl [6], who introduced
he term dielectrophoresis in the early 1950’s to describe the move-

ent of particles induced by non-uniform electric fields. This was
ollowed by the development of electro-orientation, electrorota-
ion and travelling wave dielectrophoresis techniques, all of which
re based on the movement of particles in AC electric fields [6-13].

Nowadays the study of the AC electrical properties of biologi-
al material is a very active and continuously expanding field of
esearch. Its application to the study of cells and tissues has been
articularly fruitful because of the way all cells are constructed, i.e.
hey all have a lipid bilayer membrane surrounding the cell inte-
ior. The cell membrane’s role is to isolate the cell interior from
he outside world, and regulate what goes in and out. Because of
his barrier function cell membranes have electrical properties that
re very different from that of the cell interior or the material out-
ide the cell membrane [9–14]. When cells are exposed to electric
elds in the radiofrequency range this causes the cells to be strongly
olarised by a Maxwell–Wagner type interfacial polarisation pro-
ess across the cell membrane. This polarisation is accompanied by
he formation of a high electric field across the cell membrane, and
he cell itself forming a strong dipole [9–14].

A variety of techniques have made use of this polarisation effect
o obtain information about the electrical properties of cells [10].

easurement of the cell dielectric properties can give important
nformation about a cell’s physiology, in particular the properties
f the membrane and the cell interior. The major parameters that
an be determined are the membrane capacitance Cmem, the effec-
ive membrane conductance Gmem, the cell interior conductivity �i.
he membrane capacitance Cmem determines the amount of charge
hat can be stored across a membrane when a cell is exposed to an
lectric field. Its value is strongly dependent on the level of fold-
ng of the cell membrane (folds, blebs, microvilli, etc.) and can vary
ver a 20-fold range for different cell types (0.8–15 �F cm−2) [15].
he value of the effective membrane conductance Gmem gives a
easure of the permeability of the cell membrane, although move-
ent of ions over the cell surface (surface conductance) also plays
role [16]. For viable cells the value of Gmem is very low, in the

rder of 10–100 S m−2
, for non-viable cells it can be a number of

ecades higher. The value of the interior conductivity �i is to a large
xtent determined by the mobility and concentration of the ions
n the cytoplasm; typically values for viable cells are in the order
f 0.2–1 S m−1. A change in its value may indicate an exchange of

aterial between the cytoplasm and the medium, as may occur
hen the cell membrane is compromised. As cell death is often

ccompanied by a loss of the integrity of the cell membrane, signif-
cant changes may occur in the value of the dielectric parameters
pon cell death, making dielectric techniques some of the most

n
t
b

s

ig. 1. Dielectric spectra of baker’s yeast suspensions before and after killing the
ells by heat after their exposure to 70 ◦C for several hours.

seful techniques for the investigation of cell death. The ability to
easure cell death is important in many areas, including the opti-
isation of fermentations and downstream processing, toxicology

tudies, drug screening, pathology, food safety, and others.
The techniques that have been used for measuring the dielec-

ric properties of cells can broadly be divided into two groups [9].
he first set of techniques are impedance or admittance-based
ethods, in which the capacitance and conductance of cells in

uspension or attached to an electrode are measured. These tech-
iques will be referred to as dielectric spectroscopy. The other set
re the AC electrokinetic techniques, which involve the deriva-
ion of a cell’s dielectric properties from the movement of the cell
nder the influence of an applied AC electric field. These techniques

nclude dielectrophoresis, electrorotation and electro-orientation.
lso relevant, but not discussed here, are methods such as elec-

ric cell–substrate impedance sensing (ECIS) [17–19], which do not
easure the dielectric properties of cells directly.

.1. Impedance/admittance-based methods

Dielectric spectroscopy involves the measurement of the
requency-dependent permittivity and conductivity of a material
etween a set of electrodes. When this material is a cell suspension
r tissue the permittivity of the material in the radiofrequencies
hows a decline from low to high frequency as in Fig. 1. If the fre-
uency dependent complex particle conductivity of cells and the
ielectric properties of the medium are known, then the frequency-
ependent conductivity and permittivity of the suspension can be
redicted using Maxwell’s equation [1–5]. However, as shown by
chwan [4,5], for most cells the total decline �ε is linearly corre-
ated with the volume fraction P of (intact) cells present up to high
olume fractions (10–20%) [4,5,9,20]:

ε = 9PrCmem

4ε0
(1)

n which Cmem is the membrane capacitance per unit area (in
m−2), r the cell radius and ε0 the permittivity of vacuum

8.854 × 10−12 F m−1). Eq. (1) has been derived for cells without a
ell wall; however, in practice a linear relation between �ε and
is also found for cells with cell walls. Unlike AC electrokinetic

echniques, the use of dielectric spectroscopy directly in growth
edium is straightforward. Also, unlike AC electrokinetic tech-

iques [21], it does not matter whether the cells are immobilized or

ot, and the technique is relatively insensitive to non-cellular mat-
er [22]. The technique has been extensively used for monitoring
iomass levels during fermentations [23–27].

The dielectric spectrum of a suspension of dead cells is also
hown in Fig. 1. Suspensions of dead cells have a much lower but
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Electrorotation is the rotation of particles in electric fields
[7,46–50]. Electrorotation can be induced in cells and other parti-
cles by generating rotating electric field by applying phase-shifted
electric fields to microelectrodes. Like dielectrophoresis, electroro-
P. Patel, G.H. Markx / Enzyme and M

easurable capacitance; the actual value depends on the method
y which the cells have been killed [28]. Eq. (1) is only valid for cells
ith an intact membrane which has a low membrane conductiv-

ty. Clearly, this is often not the case for dying or dead cells, as the
embrane is often compromised. For cells with a high membrane

onductivity, instead of Eq. (1) one would have to use [4,5]:

ε = 9
4ε0

PrCmem

[1 + rGmem((1/�i) + (1/2�m))]2
(2)

n which Gmem is the membrane conductance (in S m−2). Using Eq.
1) to describe the changes in the dielectric behaviour of cells when
ying, as is often done [29–32], would compel one to draw the
onclusion that a fall in the capacitance of a cell suspension upon
ell death is mainly caused by drop in the value of Cmem (or cell
hrinkage), whilst most likely it actually is mainly due to an increase
n the membrane conductance Gmem.

.2. AC electrokinetic techniques

AC electrokinetic techniques have in recent years gained
remendously in popularity because they lend themselves well to

iniaturisation, with all the advantages that may entail in porta-
ility, sample size, cost, etc. A major advantage of AC electrokinetic
ethods is also that they can be used to measure the proper-

ies of single cells one at a time, enabling investigations on very
mall numbers of cells. A disadvantage compared to dielectric spec-
roscopy is that high conductivities reduce the electrokinetic forces,
nd that most experiments are therefore done in low conductivity
edia.
Although a variety of electrokinetic techniques exist, we will

imit the discussion to the two major ones, dielectrophoresis and
lectrorotation, and only briefly discuss electro-orientation.

.3. Dielectrophoresis

Dielectrophoresis (DEP) is the movement of particles in non-
niform electric field gradients [6,9–16]. For a particle with
quivalent radius r the DEP force is given by:

(ω) = 2�εmr3Re(K∗)∇
∣∣E∣∣2

(3)

n which K* is the Clausius–Mossotti factor.

∗ =
(

ε∗
p − ε∗

m

ε∗
p + 2ε∗

m

)
(4)

nd

∗ = ε − j�
ω

(5)

“Re” stands for “the real part of” and subscripts “p” and “m” for
article and medium, respectively. �|E|2 defines the average local
eld strength and gradient (in V2 m−3).

Cells in suspension are also colloidal particles, and when sus-
ended in low-conductivity buffers and exposed to high strength
on-uniform electric fields they readily show dielectrophoresis.
heoretical DEP spectra of viable and non-viable (heat-killed) [33]
east cells at low conductivities are shown in Fig. 2. The differences
n the spectra are large, and frequency ranges can be seen in which
he dielectrophoretic behaviour of the viable cells is negative and
or non-viable cells positive, and vice versa. These large differences

n the dielectrophoretic behaviour of viable and non-viable cells
an be used for their separation [34–37].

Dielectrophoretic spectra can be obtained in various ways,
ncluding measuring the force needed to levitate against gravity
6,38], and the measurement of the rate at which suspended cells

F
t
l

ig. 2. Theoretical dielectrophoretic spectra of live and dead yeast cells. The spectra
ere calculated using the multishell model [33]. Parameter estimates were taken

rom the same reference.

re attracted to (positive DEP) or repelled from (negative DEP)
lectrodes [39–42]. Particularly useful is the polynomial electrode
esign which can generate electric field of constant non-uniformity
nd strength between a set of electrodes [42]. Analysis of spectra
an be done by fitting the data to models such as the multishell
odel [33]. However, for intact (viable) cells without a cell wall

such as mammalian cells) the lower crossover frequency can be
sed to obtain the specific membrane conductance and capaci-
ance. This is most easily done by deriving these parameters from

plot of the product of the radius and the crossover frequency
r × fcrossover) versus the medium conductivity �m [16,43,44]. The

embrane capacitance Cmem can then be obtained from the slope
f the line obtained, and the effective membrane conductance
mem from the slope and intercept [16,43,44] (see also Fig. 3).
he higher crossover frequency can be used to obtain the inter-
al conductivity, as its value is linearly correlated with the internal
onductivity [28,45]. The presence of a cell wall strongly affects the
ower crossover frequency, making it more difficult to obtain infor-

ation about the cell membrane properties. This is less so for the
igher crossover frequency, which is only minimally affected by the
ell wall conductivity [28].

.4. Electrorotation
ig. 3. Determination of the membrane capacitance Cmem and membrane conduc-
ance Gmem from dielectrophoresis experiments from a plot of the product of the
ower crossover frequency fcrossover and radius r versus the medium conductivity �m.
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ig. 4. Theoretical electrorotation spectra of live and dead yeast cells. The spectra
ere calculated using the multishell model [33]. Parameter estimates were taken

rom the same reference.

ation is most easily observed in low-conductivity media. Unlike
ielectrophoresis, where the rate of movement is determined by
he Real part of the Clausius–Mossotti factor, electrorotation rates
re determined by the Imaginary part of the Clausius–Mossotti fac-
or K* as the rotation rate ˝ (in rad s−1) is given by [7,46–50]:

(ω) = −εm

2�
Im(K∗)E2 (6)

n which � is the medium viscosity. Measurement of the electroro-
ation rate as a function of the frequency produces electrorotation
pectra as in Fig. 4. The two spectra shown demonstrate the dif-
erences between electrorotation spectra of viable and non-viable
ells. The large differences that can be seen have been exploited for
he creation of assays of cell viability, particularly that of microbial
arasites such as Cryptosporidium, Cyclospora and Giardia [50].

Analysis of rotation spectra is similar as that for dielectrophore-
is. For more complex cells, including those with a cell wall, the
ata need to be fitted by a model such as the multishell model [33].
or spherical cells without a cell wall such as animal cells the lower
ntifield peak fc1 can be used to obtain accurate values of the mem-
rane capacitance and conductance, as Cmem can be determined
rom the slope of a straight line through a plot of fc1 × r versus the

edium conductivity �m, and Gmem from the intercept (see Fig. 5).

.5. Electro-orientation
Electro-orientation is the orientation of particles in electric
elds [51–57]. To observe electro-orientation, the particle has to
e anisotropic, i.e. its properties have to be different along one of

ig. 5. Determination of the membrane capacitance Cmem and membrane conduc-
ance Gmem from a plot of the product of the lower rotation peak frequency fc1 and
adius r versus the medium conductivity �m.
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ts axes. Typically this means that the particle has to be cylindrical
r rod-shaped. Because of this anisotropy the particle shows differ-
nces in its orientation at different frequencies, i.e. with its longest
xis aligned either with or perpendicular to the electric field.

Because they lack a cell wall many animal cells tend to round up
hen suspended. Electro-orientation studies have therefore con-

entrated on (rod-shaped) bacterial [52,53,57] or yeast cells [51,56],
lthough studies have also been performed on disk-shaped blood
ells [55]. The frequency at which live cells orient perpendicular to
he electric field is significantly different for viable and non-viable
ells.

. Cell death

A first major problem one encounters when studying cell
eath using dielectric techniques is that it is not clearly defined
hat cell death actually is. Many forms of cell death have been
escribed—and the precise distinction between the different terms

s still a matter of discussion [58–61]. Some of the difficulties are
aused by the fact that dielectric methods are used for many dif-
erent cell types, and that the definitions of different terms and

ethods for ascertaining whether a cell is “alive” or “dead” can be
ignificantly different for different branches of biology. For exam-
le, the terms “apoptosis” and “necrosis” are commonly used to
escribe programmed cell death and traumatic cell death in ani-
al or plant cell biology, but rarely in microbiology. Even within a

ubject area, however, there is often no clarity, as for example the
erm necrosis has been used for the description of both traumatic
ell death, as well as a general term to designate the presence of
ead cell or tissue [58,59]. Similarly, in microbiology the distinc-
ion between “viable” and “non-viable” cells is disputable [60,61].
he term “viable” usually refers to the ability of an organism to live,
evelop, or germinate under favorable conditions, and it is often
sed to describe the ability of microbes to divide and form colonies.
his term, however, becomes difficult to use when describing non-
ulturable or dormant micro-organisms which are unable to form
olonies but are otherwise intact [60,61]. Also, the exact moment
hen a cell can be considered dead is difficult to determine. For

xample, cells have a strong ability of self-repair, and can come
ack from the brink of death. Thus, whilst a method may deter-
ine that a cell is dead (e.g. because its membranes are broken),

ecause the cell can repair itself the cell is actually not dead—just
njured [62].

This brings us to another major problem. Different methods of
easuring cell viability give different answers. Plate counts give

ou a measure of the cells’ ability for colony formation, but don’t
ork if the cells are unculturable. Exclusion dyes such as trypan
lue or methylene blue only work if cell death is accompanied by
embrane injury. Metabolic stains such as formazan give a mea-

ure of a cell’s metabolic activity, but do not work if a cell is not
ead but just resting. Dielectric spectroscopy and AC electrokinetic
ethods are in this respect not different from other methods- they

nly report differences if the cell’s dielectric properties change. For-
unately, the dielectric properties of cells in the radiofrequencies
end to be dominated by the dielectric properties of the mem-
rane, whilst (the conductivity of) the cytoplasm can play a major
ole at higher frequencies. Both are dependent on the integrity of
he membrane - membrane capacitance and conductance directly,
nd internal conductivity indirectly as the cell internal conductiv-

ty changes when the cell membrane becomes permeable. Both
ften change when the cell is stressed or is dying. However, not
ll cell deaths lead to changes in the cell membrane permeability.
xamples include toxic chemicals which act at DNA, RNA or pro-
ein synthesis level such as metabolic inhibitors. As there are clearly
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any issues involved in the measurement of cell death using dielec-
ric techniques, it may be useful to review what is known about
he changes that occur in the dielectric properties of cells during
ifferent forms of cell death.

.1. Programmed cell death

Apoptosis, or programmed cell death, occurs after a cell has
witched on a self destruction programme. The process of apoptosis
nvolves a number of steps, including cell shrinkage and round-
ng as well as condensation of the cytoplasm and nuclear material,
ollowed by the formation of blebs, and finally complete cell break-
own into vesicles called apoptotic bodies. Considering these large
tructural changes it is maybe not surprising that apoptosis is
ccompanied by large changes in the cells’ dielectric properties. Cell
ounding is accompanied by the loss of microvilli and smoothing
f the membrane. This could explain the decrease in the mem-
rane capacitance in HL60 cells and Jurkat cells reported by the
any researchers [16,63–64; but see 45]. Labeed et al. [45] also

eported that apoptosis in K562 leukaemic cells gives rise to an ini-
ial increase in the cytoplasmic conductivity during cell shrinkage,
ollowed by a decrease as cells start to lyse. For human promye-
ocytic HL-60 and Jurkat E6-1 cells, however, only a decrease was
ound [16,63–64]

.2. Traumatic cell death

Unlike apoptosis, in traumatic cell death the cell is the passive
ictim, and cell death is the direct result of environmental stress,
ncluding injury by low and high temperatures, mechanical forces,
nd chemical or biological challenges.

.3. Temperature

The effects of elevated yet sublethal temperatures on the dielec-
ric properties of yeast cells were investigated by Zhou et al. [65]
sing electrorotation. They observed only small effects of increased
emperatures, indicating a possible small decrease in membrane
r wall conductivity with increasing temperature. More recently,
hanges in the membrane conductivity were also reported by
udsiri et al. [66]; it was proposed that these changes may be corre-
ated with changes in the chloride transport rate [66]. Small changes
n the dielectric properties of yeast cells with temperature were
lso observed by Ferris et al. [67] using dielectric spectroscopy;
heir hypothesis that this may be caused by changes in protein

obility is given credence by the findings that heating does affect
he interaction between proteins and phospholipids [68], although
ther studies have cast doubt of the role of proteins in the dielec-
ric properties of the cell membrane [69]. The effect of lethally
igh temperatures on the electrorotation and dielectrophoretic
ehaviour of yeast and other cells have been investigated exten-
ively, as “heat treatment” or “boiling” is often used to obtain
on-viable cells for further study of difference in the electroki-
etic behaviour of live and dead cells [34–36,46]. The differences
etween dead and live cells killed by heat-treatment are generally
xplained in terms of differences in their cell membrane con-
uctivity and interior conductivity; but some changes in the wall
roperties can also be observed. Huang et al. [33] give useful data on
hanges in the dielectric properties of baker’s yeast after cell death
btained using dielectrophoresis and electrorotation; Kriegmaier

t al. [51] give useful data on fission yeast using both electrorota-
ion and electro-orientation. Measurement of the effect of different
emperatures on the capacitance of yeast suspensions have shown
hat the dielectric properties of heat-killed cells depend little on
he temperature at which the cells were killed [28].

c
i
t
s
s

ial Technology 43 (2008) 463–470 467

Dielectric spectroscopy has been used to investigate changes in
issues and organs during storage [70–73]. Freezing of tissues and
rgans is accompanied by the formation of ice crystals which can
amage cell structures [70].

.4. Osmotic, shear and other mechanical effects

Osmotic stress has been investigated using electrorotation
75–77] and dielectric spectroscopy [78]. The value of the mem-
rane capacitance dropped and the membrane conductance

ncreased when the osmotic pressure of the medium was reduced;
his can be explained by the fact that the membrane is stretched as
he cells take up water from the medium as the external osmotic
ressure is reduced, causing microvilli to unfold. It was also thought
hat at very low osmotic pressures (below 200 mOsm) the cells
ould incorporate additional membrane material into the cell sur-
ace.

The effects of shear on cells is not well-studied, even though
ielectric spectroscopy can give a measure of cell damage by shear
n-line and in real time. A study by Markx et al. [29] on plant cells
howed that there were significant differences in the susceptibility
f the plant cells to shear between cultures, and even within a single
ulture. Electrorotation was used by Freitag et al. [74] to study the
ffects of shear on insect cells; they showed that shear lowered the
embrane capacitance and increased the membrane conductance,
hich they explained by the shearing off of microvilli.

.5. Toxic chemicals

The effect of toxic chemical on the dielectric properties of cells
s well-studied, and a large variety of chemicals has been used. We

ill discuss the effects of organic materials (“solvents”) and deter-
ents which insert themselves into the cell membrane and disrupt
t, organic agents which chemically react with the cell membrane
r other cell components, antibiotics, and heavy metal ions.

Typically, when a solvent is added to a cell suspension, an
ncrease in the suspension capacitance is seen at first, followed by a
ecrease as the cells lyse [30–32,77]. The cause has been attributed
o changes in cell size and membrane capacitance [77,78] as the
olvent inserts itself into the membrane and expands it. Recent
odelling by Asami, however, has indicated that the presence of

pproximately 30 nm sized pores in the membrane may lead to an
dditional �-dispersion-like dispersion at low frequencies [79,80].
t is therefore likely that the initial increase in the suspension capac-
tance that can be seen after the addition of a solvent is caused
y the fact that the solvents produce nanosized pores randomly
istributed over the membrane surface. The decrease in the capac-

tance which the follows may be due to the pores size increasing
bove 30 nm. Lysis of cells is thought not to be through the sudden
reakdown of the membrane, but due to a gradual change in mem-
rane properties [81]. This has also been corroborated by modeling
y Asami [80] which has shown that cells that have large pores (up
o nearly 50% of the membrane missing) still show a strong disper-
ion. Whether a solvent has an effect on the cells strongly depends
n the polarity of the solvent relative to that of the membrane;
ery apolar solvents are, because of the large difference in their
olarity with that of the membrane, often amongst the most bio-
ompatible solvent for biotransformations [82,83]. Electrorotation
easurements by Pauli et al. [84] on the effects of substituted ani-

ines and aliphatic alcohols on yeast drew a similar conclusion; the

hemical that had the strongest effect had the highest lipophilic-
ty. The same conclusion was drawn by Arnold et al. [49] during
he study of the effects of (chloro)phenols on the electrorotation
pectra of yeasts. Experiments by Tileva et al. [32] using dielectric
pectroscopy indicated that the susceptibility of the cells to solvents
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ay be dependent of the history of the cells, including the polarity
f the substrate it has previously been grown on. This indicates that
ells may alter the composition of their membrane in response to
oxic challenges. Markx and Kell [31] described a method by which
he addition of a toxic chemical used in biotransformations (ben-
aldehyde) was controlled using dielectric spectroscopy in order
o keep the level of viable biomass in a chemostat constant. Using
his method a continuous but sublethal stress could be imposed
n the cell population the fermenter, imposing a selection regime
phenotype or genotype) for cells that are highly resistant to the
tress.

The effect of detergents on cells is similar to that of solvents.
or example, using dielectric spectroscopy it has been shown [85]
hat the membrane capacitance of yeast cells was increased by
he presence of a surfactant during surfactant-induced cell shrink-
ge. Further addition of surfactant caused the capacitance to drop
ue to membrane solubilisation by the additional surfactant caus-

ng cell lysis. The observed effects of antibiotics on the dielectric
roperties of cells is also similar [57,86–88], and can usually most
eadily be explained by the fact that the cell membrane becomes
ompromised and the cell lyses.

Whilst solvents and detergents can be expected to insert them-
elves directly into the lipid membrane and physically disrupt it,
ther agents can be expected to directly chemically attack the mem-
rane. Treatment of insect cells with trypsin caused only relatively
mall changes in their rotation spectra [74]. Ratanachoo et al. [44]
sed dielectrophoresis to detect changes in the specific membrane
onductance and capacitance of a human cultured leukemia cell
ine (HL-60) after exposure to paraquat, styrene oxide, N-nitroso-
-methylurea (NMU) and puromycin. Paraquat and styrene oxide
irectly attack the cell membrane by lipid peroxidation; the action
f NMU and puromycin is intracellular. All chemicals led to a time-
ependent decrease in the membrane capacitance and an increase

n the membrane conductance. However, because dielectric mea-
urements are more sensitive to agents that affect the membrane,
he effects of paraquat and styrene oxide were detected earlier. No
ncrease in the membrane capacitance was seen with any of the
hemicals used, as none of the chemicals in these experiments had
solvent or detergent-like effect.

The effects of various heavy metal ions such as copper, silver
nd mercury on the cell dielectric properties have been investi-
ated using various dielectric measurements techniques including
ielectric spectroscopy [89], electrorotation [90,91] and electro-
rientation [52,53]. The presence of heavy metal ions in the
uspending medium strongly affected the membrane integrity even
t low concentrations as the heavy metals bound to membrane
omponents. The effects of the heavy metals depended not only
n the metal involved but also on the presence of other ions in
he medium, as well as medium pH. This may be at least partly
orrelated with the number of negative groups on the cell surface
52,53].

.6. Viruses

Changes in the cell’s dielectric properties after its infection
y viruses have been investigated using a number of different
echniques [92–97]. Electrorotation measurements on baby ham-
ter kidney fibroblasts after infection with herpes simplex virus
howed a small decrease in the membrane capacitance as the sur-
ace morphology changed [92]; also a decrease in the internal

ermittivity was observed as membrane vesicles and enveloped
iral capsids were formed in the cytoplasm. Changes in cell prop-
rties after infection by viruses have also been observed using
ielectric spectroscopy [94–97], providing potentially an effec-
ive method for following monitoring and controlling virus-based
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ecombinant protein production in cell cultures. Phages can be
ighly selective towards specific cells; phage technology combined
ith electro-orientation has also been show to be an effective
ethod to selectively assay the viability of microbial cells [54].

. Conclusions and future trends

A survey of the literature on the dielectric measurement of cell
eath has shown that changes that occur in the dielectric proper-
ies of cells when they die depend to a large extent on the method
y which cell death is induced, but some general trends can be
bserved.

Cell death is nearly always accompanied by changes in the cell
embrane permeability, a fact that is exploited in many viability

tains. This change in the membrane permeability can be expected
o be mirrored by the change in the membrane conductance Gmem.
n increase in the cell permeability also leads to an increase in

he exchange of material between the cytoplasm and the medium,
hich can cause change (typically a decrease) in the internal con-
uctivity �i. The decline in the capacitance of cell suspensions that

s often seen when cell death is induced is most likely mainly due to
his increase in the membrane conductance. The large differences
n the dielectrophoretic behaviour that can be see in many cells (e.g.
east above 2 MHz [28,35]) is most likely due to this change in the
nternal conductivity.

The situation with the membrane capacitance is less clear.
nalysis of the literature is complicated by the fact that many
esearchers, including ourselves [29–32], have previously reported
hanges in the dielectric properties of cells based on capacitance
easurements on cells without measuring the cell size or refer-

al to the fact that the membrane had become permeable. Where
ctual values of Cmem have been obtained during cell death some
esearchers find a decrease in Cmem, indicating a loss of membrane
tructures and the rounding of the cell membrane [45,16,63,64].
ome researchers, however indicate an increase in Cmem, which
as been attributed to factors such as increased folding of the
embrane, for example when the cell shrinks as the cell con-

ents leaks out [45,96,97], a change in membrane permittivity [89],
nd an increase in membrane fluidity [98]. Asami [79,80] reported
he appearance of an �-dispersion-like dispersion when nanosized
ores are formed in the membrane. This would manifest itself as an
pparent increase in Cmem, and may explain the temporary increase
n suspension capacitance often observed when solvents, deter-
ents or other compounds are added to cell suspensions [29–32].

The application of dielectric techniques in the study of biolog-
cal systems enjoys increasing attention, exemplified by the act
hat the numbers of papers on the use of dielectrophoresis has
ncreased form a handful per year in the 1980, to a few tens in
he 1990, to several hundreds per year currently. New techniques
re constantly being developed, which are likely to impact on our
bility to study cell death using dielectric techniques. In dielec-
ric spectroscopy there is a clear trend from single or dual point

easurements to frequency scanning. Combined with improved
ata analysis and chemometric methods [96,97,99,100] this would
llow one to obtain better and additional estimates of cell param-
ters on-line and in real time. Also, the modeling of the dielectric
roperties of cells is constantly improving, in particular the mod-
lling of the dielectric properties of cells with more complicated
hapes [101–103] and conductive membranes [80,104]. This will

elp in the analysis of both electrokinetic as well as dielectric
pectroscopy measurements. Impedance-based methods for the
nalysis of the electrical properties of single cells are currently
nder also development [105,106]. This promising development
ay result in techniques that combine the advantages of AC elec-
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rokinetic techniques such as its ability to measure the properties
f single cells with the advantage dielectric spectroscopy of being
ble to measure directly in growth medium. In AC electrokinetics
he development of new electrode systems and methods of field
pplication such as the application of multiple frequencies simulta-
eously and electrodeless DEP is particularly rapid [107–110]. At the
ame time the dielectric techniques are becoming more easy to use
nd compatible with modern standard analyses equipment such as
icroplate readers [111–115]. Thus one can expect to the increasing

se of dielectric techniques in the study of cell death and associ-
ted applications such as process monitoring and improvement,
rug screening, etc. to keep its momentum in future years.
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