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Three-dimensional direct numerical simulations (DNS) of the nonlinear dynamics
and a route to chaos in a rotating fluid subjected to lateral heating are presented
here and discussed in the context of laboratory experiments in the baroclinic annulus.
Following two previous preliminary studies, the fluid used is air rather than a liquid
as used in all other previous work. This study investigates a bifurcation sequence
from the axisymmetric flow to a number of complex flows.

The transition sequence, on increase of the rotation rate, from the axisymmetric
solution via a steady fully developed baroclinic wave to chaotic flow, followed a
variant of the classical quasi-periodic bifurcation route, starting with a subcritical
Hopf and associated saddle-node bifurcation. This was followed by a sequence of two
supercritical Hopf-type bifurcations, first to an amplitude vacillation, then to a three-
frequency quasi-periodic modulated amplitude vacillation (MAV), and finally to a
chaotic MAV. In the context of the baroclinic annulus this sequence is unusual as the
vacillation is usually found on decrease of the rotation rate from the steady wave flow.

Further transitions of a steady wave with a higher wavenumber pointed to the
possibility that a barotropic instability of the sidewall boundary layers and the
subsequent breakdown of these barotropic vortices may play a role in the transition
to structural vacillation and, ultimately, geostrophic turbulence.

1. Introduction and background
Baroclinic instability is one of the dominant energetic processes in the large-scale

atmospheres of the Earth, e.g. Pierrehumbert & Swanson (1995), and other terrestrial
planets, such as Mars, and in the oceans. Its fully developed form as sloping convection
is strongly nonlinear and has a major role in the transport of heat and momentum
in the atmosphere. Its time-dependent behaviour also exerts a dominant influence on
the intrinsic predictability of the atmosphere and the degree of chaotic variability
in its large-scale meteorology, e.g. Pierrehumbert & Swanson (1995), Read et al.
(1998), Read (2001). An understanding of the modes of chaotic behaviour associated
with baroclinic processes is therefore of great importance for understanding what
determines the predictability of weather and climate systems.
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For more than 50 years, the differentially heated rotating cylindrical annulus has
been an archetypal means of studying the properties of fully developed baroclinic
instability in the laboratory. Laboratory measurements have enabled the transport
properties of the flow, its detailed structure, and aspects of its time-dependent
behaviour to be studied under a variety of conditions, e.g. Hide & Mason (1975),
Pfeffer, Buzyna & Kung (1980), Buzyna, Pfeffer & Kung (1984), Hignett et al. (1985),
Read et al. (1992), Früh & Read (1997). The system is well known to exhibit a rich
variety of different flow regimes, depending upon the imposed conditions (primarily
the temperature contrast �T and rotation rate Ω), ranging from steady axisymmetric
circulations through highly symmetric regular wave flows to fully developed
geostrophic turbulence.

Almost all laboratory experiments on the baroclinic annulus and numerical
simulations have used water, water–glycerol mixtures, or silicone oils. All these
have Prandtl numbers much larger than unity. One study, by Fein & Pfeffer (1976),
included mercury with Pr = 0.025 and confirmed that the observed basic transitions
were unchanged even at very small Prandtl numbers. That early study, however, did
not report on the details of flow transitions within the non-axisymmetric flow regimes.
Even though air is a very common fluid – and relevant to atmospheric flows as well as
the flow in turbomachinery – no previous detailed study has used air as the working
fluid in the annulus. Furthermore, the Prandtl number of air is near unity which could
result in revealing phenomena as the relative thickness of the thermal and velocity
boundary layers is similar. This paper continues two previous studies by Maubert &
Randriamampianina (2002, 2003) which explored the basic flow types found by direct
numerical simulation of baroclinic convection in an air-filled annulus.

1.1. Aim and outline

The focus of this paper is to provide a detailed analysis of the onset of baroclinic waves
in an air-filled rotating annulus, and to follow this through a complete bifurcation
sequence up to a complex fluctuating type of flow, which has not been achieved
before with direct numerical simulation (DNS) in an even remotely realistic domain
such as the simple annulus. The findings from the direct numerical simulations are
analysed in the framework of standard bifurcations and discussed in the context of
the extensive literature of annulus experiments with liquids.

The remainder of this section is devoted to a brief background to established
bifurcations in the baroclinic annulus and the role of the Prandtl number. The model
used for the direct numerical simulations is described in some detail in § 2, followed
by a description of the main techniques used to analyse data from the simulations.
Section 4 presents the main results, including an overview of the main regimes
observed and detailed discussions of the flows encountered (a) from m =2 towards
quasi-periodic and chaotic amplitude vacillations, and (b) from m = 3 towards either
quasi-periodic amplitude vacillation or structural vacillation via a mixed vacillation
regime not previously identified in other work. The overall results are discussed in
the light of previous work and wider issues in § 5.

1.2. Bifurcations to chaos in the baroclinic annulus

Rand (1982) has shown that the bifurcations of systems with axially symmetric
geometry and boundary conditions would be expected to lead to the eventual
transition to chaotic behaviour via a quasi-periodic route, provided the frequencies
of various forms of modulation of the waves remain incommensurate, otherwise a
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period-doubling route is anticipated. The rotating annulus seems to form an important
prototype for flow systems characterized by axially symmetric boundary conditions,
allowing experimental investigations of the effects of such imposed symmetries on
the bifurcations of the system. Thus, the onset of regular azimuthally travelling
waves with steady amplitude is commonly found to be the outcome of the onset
of baroclinic instability as parameters such as Ω are increased from the steady
axisymmetric regime. In the following, these waves are referred to as ‘steady waves’
and the frequency associated with the azimuthal phase velocity is by convention
referred to as the ‘drift frequency’, ωd . Secondary bifurcations are found to involve
the onset of periodic modulations of the initial steady regular waves, leading to
various forms of periodic ‘vacillation’ with a vacillation frequency, ωv . Further
bifurcations may involve a modulation at a second frequency, ωm, in the form
of a ‘modulated vacillation’ or the emergence of other complex flows. These may
follow low-dimensional chaotic dynamics or signal the emergence of turbulent flow,
described as ‘weak’ or ‘strong’ turbulence, respectively by Rand (1982). An important
consequence of the axial symmetry of the boundary conditions, however, is that
frequency entrainment of oscillatory amplitude modulations with the drift frequency
of the azimuthal progression of the baroclinic wave patterns is excluded, on the
grounds that there is no physical mechanism to couple these modes of oscillation.
This complete decoupling of the drift frequency of a travelling wave from any
amplitude variation gives rise to the possibility of observing a quasi-periodic flow
with three free frequencies while a generic three-frequency flow would be likely to be
chaotic (cf. Newhouse, Ruelle & Takens 1978). In laboratory experiments, however,
such a quasi-periodic flow has never been observed as even the smallest imperfections
are sufficient to provide the necessary coupling to result in either chaotic flow or
frequency entrainment with its resulting reduction to two independent frequencies. To
our knowledge, also no numerical evidence for a quasi-periodic three-frequency flow
from a numerical simulation of the Navier–Stokes equations has ever been reported.

Extensive experimental studies of transitions to chaotic behaviour in the laboratory
by Read et al. (1992) have demonstrated the onset of ‘baroclinic chaos’ via a quasi-
periodic route, in which a periodic amplitude-modulated wave (‘amplitude vacillation’)
develops a long-period secondary modulation, typically involving the instability of a
non-harmonic azimuthal sideband mode. The onset of this secondary modulation was
typically found to be chaotic (from computation of the largest Lyapunov exponent),
except when the modulation frequency was commensurate with the spatial drift
frequency. As mentioned above, this apparent entrainment of the modulation and
drift frequencies is not generic for systems with azimuthally symmetric boundary
conditions, but was almost certainly a consequence of imperfections in the apparatus
and thermocouple array used to measure the azimuthal thermal structure of the
flow, breaking the rotational symmetry of the boundary conditions. Subsequent work
by Früh & Read (1997) has highlighted that such entrainments with the azimuthal
drift frequency were commonplace in the experiments, indicating that only very small
departures from azimuthal symmetry in the boundary conditions were sufficient to
couple intrinsic nonlinear oscillations of the flow with the azimuthal pattern drift.

1.3. The role of the Prandtl number

The role of fluid properties in influencing the nonlinear development of baroclinic
flows is another aspect of the problem which has hitherto received relatively little
attention. The Prandtl number Pr is a parameter of particular interest, also in the
context of other convection problems. Fein & Pfeffer (1976), who carried out a
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careful survey of the main flow regimes in a thermally driven annulus using either
mercury, water, or silicon oils, found significant differences in the onset of baroclinic
instability in the region of the so-called ‘lower symmetric transition’ at low Taylor
number, where viscous and thermal diffusion are expected to play a major role. Some
substantial differences in the onset of various types of regular wave were also noted
at higher Taylor numbers. Jonas (1981) investigated the influence of Prandtl number
on the incidence of various forms of vacillation, using fluids with Pr ranging from
11 to 74. He reported that amplitude vacillation in particular was significantly more
widespread at high Prandtl number, though the onset of ‘structural vacillation’ close
to the transition zone at high Taylor number was less sensitive to Pr. In all of the
published studies so far, however, the range of Pr investigated has either been limited
to relatively high values (using liquids based on water, silicon oils or organic fluids
such as diethyl ether) or very low Pr in liquid metals (mercury). It is remarkable that
no experimental work to date has investigated the properties of baroclinic instability
in a fluid with Pr = O(1).

Air is a commonplace fluid, with a Prandtl number at room temperature of
around 0.7, and would seem to form an ideal medium in which to investigate the
properties of fully developed baroclinic instability in a fluid with Pr = O(1). Some
initial investigations were carried out recently by Maubert & Randriamampianina
(2003) in an air-filled rotating annulus using a pseudo-spectral numerical model, which
have successfully demonstrated the onset of baroclinic instability and the development
of some simple vacillations. That study has now been substantially extended to
investigate the onset of various types of flow in much more detail. The results
have exposed a number of new and intriguing features of fully-developed baroclinic
instability in a numerically simulated environment which is free of experimental
imperfections due to probes and/or departures from circular symmetry, and shed
light on a number of issues raised in previous work.

2. The numerical model
2.1. Governing equations

The physical model is composed of two vertical coaxial cylinders of height d , the
inner cylinder of radius a and the outer of radius b, resulting in an annular gap
of width L = b − a. At the top and the bottom, the annular gap is closed by two
horizontal insulating rigid endplates. The inner cylinder at radius r = a is cooled to a
constant temperature, Ta , and the outer cylinder is heated to a constant temperature,
Tb > Ta , as shown in figure 1. The physical dimensions and fluid properties are listed
in table 1. The whole cavity rotates at a uniform rate, where the rotation vector
Ω =Ωez is anti-parallel to the gravity vector g =−gez and coincides with the axis
of the cylinders. The geometry is defined by the aspect ratio, A= d/L = 3.94, and
the curvature parameter, Rc =(b + a)/L = 3.74 (see table 1), corresponding to the
configuration used by Fowlis & Hide (1965) in their experiments with liquids. The
working fluid considered in the present study is air at ambient temperature, so
that Pr =0.707. The fluid is assumed to satisfy the Boussinesq approximation, with
constant properties except for the density when applied to the Coriolis, centrifugal
and gravitational accelerations where ρ = ρ0(1− α(T − T0)), where α is the coefficient
of thermal expansion and T0 is a reference temperature T0 = (Tb +Ta)/2. The reference
scales are the velocity U = gα(Tb − Ta)/2Ω and the time t = (2Ω)−1, and the non-
dimensional temperature is 2(T − T0)/(Tb − T0). With a mean temperature of 293 K,
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Figure 1. Schematic diagram of the baroclinic annulus.

Inner radius a 34.8 mm
Outer radius b 60.2 mm
Height d 100 mm
Gap width L= b − a 25.4 mm

Mean temperature T0 293 K
Temperature difference �T 30 K
Rotation rate Ω 10 to 47 rad s−1

Density ρ 1.220 kg m−3

Volume expansion coefficient α = 1/T0 3.41× 10−3 K−1

Kinematic viscosity ν 1.697× 10−5 m2 s−1

Thermal diffusivity κ 2.400× 10−5 m2 s−1

Aspect ratio A= d/L 3.94 –
Curvature parameter Rc = (b + a)/L 3.74 –
Prandtl number Pr = ν/κ 0.707 –
Rayleigh number Ra = gα(Tb − Ta)L

3/(νκ) 4.7332× 104 –
Froude number Fr = Ω2L/g 0.313 to 5.730 –
Taylor number Ta = 4Ω2ν−2L5d−1 1.75× 105 to 32.5× 105 –

Table 1. Summary of the dimensions of the system, the fluid properties, and the
dimensionless parameters for the temperature difference of �T = 30 K.

the Boussinesq approximation can assumed to be valid to temperature differences of
up to 30 K.

In the meridional plane, the dimensional space variables (r∗, z∗) ∈ [a, b]× [0, d]
have been normalized into the square [−1, 1]× [−1, 1], a prerequisite for the use of
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Chebyshev polynomials:

r =
2r∗

L
− Rc, z =

2z∗

d
− 1.

In a rotating frame of reference, the resulting dimensionless system becomes

∂V
∂t

+
2Ra

A2PrTa
N(V ) + ez × V = −∇Π +

4

A3/2Ta1/2
∇2V + F, (2.1)

∇ · V = 0, (2.2)

∂T

∂t
+

2Ra

A2PrTa
∇ · (VT ) =

4

A3/2PrTa1/2
�T, (2.3)

where er and ez are the unit vectors in the radial and axial directions respectively,

Π =
p + ρ0gz− 1

2
ρ0Ω

2r2

ρ0gα(Tb − Ta)d/2
, (2.4)

F =
1

2
T ez −

Fr

4A
(r + Rc) T er , (2.5)

and N(V ) corresponds to nonlinear terms. The dimensionless parameters governing
the flow are the aspect ratio A, the curvature parameter Rc, the Prandtl number Pr,
the Rayleigh number Ra, the Froude number Fr, and the Taylor number,

T a =
4Ω2L5

ν2d
. (2.6)

The Taylor number is one of the two main parameters traditionally used to analyse
this system, following e.g. Fowlis & Hide (1965) and Hide & Mason (1975). The
second parameter is the thermal Rossby number,

Θ =
gdα(Tb − Ta)

Ω2L2
≡ 4Ra

PrT a
, (2.7)

which explicitly appears as the coefficient of the convective terms in (2.1) and (2.3).
The ‘skew-symmetric’ form proposed by Zang (1990) was chosen for the convective

terms N(V ) in the momentum equations to ensure the conservation of kinetic energy,
a necessary condition for a simulation to be numerically stable in time.

2.2. Boundary conditions

The boundary conditions are no-slip velocity conditions at all surfaces,

V = 0 at r = ±1 and at z = ±1,

thermal insulation at the horizontal surfaces,

∂T

∂z
= 0 at z = ±1,

and constant temperature conditions at the sidewalls,

T = −1 at r = −1

and

T = 1 at r = 1.

2.3. Numerical approach

A pseudo-spectral collocation-Chebyshev and Fourier method is implemented. In the
meridional plane (r, z), each dependent variable is expanded in the approximation
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space PNM , composed of Chebyshev polynomials of degrees less than or equal to N

and M respectively in the r- and z- directions, while Fourier series are introduced in
the azimuthal direction.

Thus, we have for each dependent variable f (f = Vr, Vφ, Vz, T ):

fNMK (r, φ, z, t) =

N∑

n=0

M∑

m=0

K/2−1∑

k=−K/2

f̂nmk(t)Tn(r)Tm(z)exp(ikφ), (2.8)

where Tn and Tm are Chebyshev polynomials of degrees n and m.
This approximation is applied at collocation points, where the differential equations

are assumed to be satisfied exactly (Gottlieb & Orszag 1977; Canuto et al. 1987). We
have considered the Chebyshev–Gauss–Lobatto points,

ri = cos(iπ/N) for i ∈ [0, N ],

zj = cos(jπ/M) for j ∈ [0, M],

and a uniform distribution in the azimuthal direction:

φk = 2kπ/K for k ∈ [0, K].

The time integration used is second-order accurate and is based on a combination
of Adams–Bashforth and Backward Differentiation Formula schemes, chosen for its
good stability properties (Vanel, Peyret & Bontoux 1986). The resulting AB/BDF
scheme is semi-implicit, and for the transport equation of the velocity components in
(2.1) can be written as:

3f l+1 − 4f l + f l−1

2δt
+ 2N(f l)−N(f l−1) = −∇Πl+1 + C∇2f l+1 + F l+1

i (2.9)

where N(f ) represents nonlinear terms with the Coriolis term, Fi corresponds to
the component of the forcing term F, δt is the time step and the superscript l

refers to time level. The cross-terms in the diffusion part in the (r, φ)-plane resulting
from the use of cylindrical coordinates in (2.1) are treated within N(f ), in order to
maintain an overall second-order time accuracy. An equivalent discretization applies
for the transport equation of the temperature (2.3). For the initial step, we have taken
f −1 = f 0. At each time step, the problem then reduces to the solution of Helmholtz
and Poisson equations.

An efficient projection scheme is introduced to solve the coupling between the velo-
city and the pressure in (2.1). This algorithm ensures a divergence-free velocity field at
each time step, maintains the order of accuracy of the time scheme for each dependent
variable and does not require the use of staggered grids (Hugues &
Randriamampianina 1998; Raspo et al. 2002). A complete diagonalization of
operators yields simple matrix products for the solution of successive Helmholtz
and Poisson equations at each time step (Haldenwang et al. 1984). The computations
of eigenvalues, eigenvectors and inversion of corresponding matrices are done once
during a preprocessing step.

2.4. Computational details

The numerical code has been previously validated by Randriamampianina,
Leonardi & Bontoux (1998) for a liquid-filled cavity (Pr = 13.07) by comparison of
solutions with the detailed results reported by Hignett et al. (1985) from a combined
laboratory and numerical study presented in Hignett (1985). Very close agreement
has been obtained between our results and measurements for a regular wave flow.
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Particular attention has been paid to the grid effect on the solution, which has served
as basis for the present study. A grid independence of the three-dimensional solution is
assumed when the levels of non-harmonics of the dominant wave amplitude approach
the machine precision (10−9).

For Ta � 3× 105, a mesh of N ×M ×K = 64× 96× 80 was used in the radial, axial,
and azimuthal directions, respectively, with a dimensionless time step δt = 0.1125.
For Ta > 3× 105, a finer resolution was used, N ×M ×K = 96× 96× 128, and
various time steps within the numerical stability limit: a dimensionless time step,
0.003225 � δt � 0.05.

For the transition from the upper symmetric regime to the regular waves, the initial
conditions corresponded to the steady axisymmetric solution at each azimuthal node
to which a random perturbation was added to the temperature field in azimuth.
Subsequently, the strategy consisted of increasing or decreasing progressively the
rotation rate, without adding any further perturbations, for following successive
three-dimensional solutions.

3. Data analysis
The data analysis techniques can be broadly classified into two-dimensional sections

for visualization of the fields, spectral analysis of one-dimensional sections for mode
amplitudes and frequencies, and phase-space reconstruction from dynamical systems
theory to provide information on the qualitative class of solution observed.

3.1. Two-dimensional fields and azimuthal sections

To visualize the flow, both horizontal and vertical cross-sections of the velocity,
temperature, and pressure fields were used. The horizontal sections shown here are
at mid-height, and the vertical cross-sections are in the (r, z)-plane at zero azimuthal
angle.

For the further parametric analysis, the sequence of instantaneous three-dimensional
fields was reduced to time series of mode amplitudes in a one-dimensional section.
These could then be used for spectral analyses and phase-space reconstructions using
techniques from dynamical systems theory. The sections considered here are azimuthal
sections (rings) at mid-height and, unless specified otherwise, at mid-radius. These
sections then gave the temporal evolution of the set of azimuthal Fourier modes.
To obtain a measure of the radial structure, other sections were taken also at
mid-height but at a quarter of the gap width from the inner wall and at three-
quarters, respectively. The normalized space variables were calculated as the sum
of contribution from the Chebyshev polynomials, evaluated at (r, z) = (0, 0) for each
azimuthal Fourier mode for the mid-height, mid-radius section, and at (r, z) = (−0.5, 0)
and (0.5, 0) at the one- and three-quarter sections, respectively.

3.2. Spectral analysis

From the time series of the variables in the azimuthal sections one can obtain an
instantaneous or time-averaged spatial spectrum of the azimuthal wavenumber to
calculate both the average relative amplitudes of each azimuthal wave mode and to
show the temporal evolution of each mode. Each Fourier mode contains information
on both the spatial phase and the amplitude of a particular wave solution. If amplitude
variations are much smaller than the mean amplitude of a wave, the signal in a Fourier
mode is dominated by the drift of that mode in the azimuthal direction. By taking
the square-root of the sum of squares of each pair of sine and cosine modes, only
the wave amplitude is retained, making it possible to investigate small-amplitude
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fluctuations. Both Fourier mode time series and wave amplitude time series were used
to calculate power spectra.

3.3. Phase-space reconstruction and analysis

Two types of phase portraits and corresponding Poincaré sections were generated,
one using the Fourier modes as the basis functions and the other using the wave
amplitudes. Both types of phase portraits and Poincaré sections produced qualitatively
equivalent results for each regime, but the analysis using the wave amplitudes
effectively halved the dimension of the phase space and proved effective in analysing
flow of a higher attractor dimension.

The largest Lyapunov exponent λ1 in a number of cases was estimated using the
method of Wolf et al. (1985) but using the univariate Singular Systems Analysis
(SSA) method by Broomhead & King (1986) to obtain a cleaner embedding of the
attractor. The SSA is essentially a singular value decomposition of the covariance
matrix obtained from the Takens delay matrix, and it concentrates the variance in
the signal in a few leading singular vectors. Read et al. (1992), using experimental
measurements, had found this to be an effective compromise between optimal attractor
reconstruction and computational expense, and has proven a highly effective means
of detecting the onset of chaotic behaviour as λ1 becomes significantly positive. The
method estimates the largest Lyapunov exponent from long time series, by tracking
the divergence of nearby trajectory segments on the reconstructed attractor for a
specified time period, the evolution time τE , and averaging the logarithmic divergence
rate over a large ensemble of segments covering the entire reconstructed attractor. The
robustness of the resulting Lyapunov exponent estimate was tested by repeating the
calculation using a range of assumed embedding dimension, the tolerance of initial
perturbations and/or evolution time τE .

4. Results
4.1. The regimes observed

One of our objectives was to delineate a detailed regime diagram for air which
was as complete as possible, similar to those already available in the literature for
various liquids. In figure 2 we present a coarse-grained regime diagram obtained from
direct simulation of air inside the same geometry as used by Fowlis & Hide (1965)
in their experiments with liquids. This regime diagram uses and extends the initial
investigation primarily concerned with the delimitation of the axisymmetric regimes
by Maubert & Randriamampianina (2002, 2003)

The regime where all perturbations decay to an axisymmetric flow is traditionally
split into a Lower Symmetric (LS) regime, where the flow is strongly affected by
viscous diffusion, and an Upper Symmetric (US) regime, where the flow is stabilized
by stratification due to the background rotation. Despite the different labels and
processes involved, no clear phase transition separates them. At �T = 1 K, only the
LS axisymmetric solution was found for all values of rotation rates considered up
to a Taylor number of Ta = 108. At higher temperature differences 3 K � �T � 30 K,
we have delineated the transition between the symmetric regimes and regular waves.
In the US regime, characterized by high values of the thermal Rossby number
(and small values of the Taylor number), the heat transfer is still dominated by
conduction. This transition occurs following the criterion reported by Hide (1958)
from his experimental observations: Θ � Θcrit ≡ 1.58 ± 0.05. Moreover, Hide (1958)
mentioned that this anvil-like curve separating the upper symmetric regimes and the
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Figure 2. Summary of the regimes for air with Prandtl number of 0.7 as obtained by the
numerical model. The solid lines show the temperature differences investigated in this paper
and previously by Maubert & Randriamampianina (2002, 2003). The dots on the lines for
�T = 1, 3, 5 K correspond to cases discussed in the earlier papers while the dots on the line for
�T = 30 K show the cases discussed here. The long-dashed line indicates the transition from
the symmetric regimes to regular waves, and the short-dashed line indicates the transition from
regular waves to irregular flow. The line for �T = 30 K is shown again enlarged in the inset
to identify the different regimes observed in this study.

regular waves does not significantly vary with the fluid properties, say the Prandtl
number Pr, unlike the lower symmetric transition boundary, e.g. Fein & Pfeffer
(1976). The computations were not extended beyond �T = 30 K, partly for practical
reasons and partly because the validity of the Boussinesq approximation may become
debatable when the volume expansion, �T/T0, becomes much larger than 0.1. As a
result, we have only confirmed the knee of the anvil in figure 2 but not the upper,
almost horizontal section of the traditional anvil.

At �T =5 K, a transition to irregular waves has been obtained through the route:
Upper symmetric flow → steady waves → quasi-periodic waves → irregular flow
(Maubert & Randriamampianina 2002). By convention, the term ‘steady wave’ is used
to identify a flow characterized by a wave of constant amplitude and drifting at a
constant speed in the azimuthal direction. Substantial hysteresis was found as a result
of the coexistence of different wave flow solutions under the same physical conditions,
consistent with rotating experiments in liquids and many other systems of rotating
flows in confined configurations. This phenomenon is also known as intransitivity.
In the present case, each solution resulted from adding to the axisymmetric solution
a small perturbation to the temperature field of a selected wavenumber. However,
the maximum wavenumber obtained remained within the empirical limits found by
Hide (1958): mmax � 0.67πRc≈ 8 for the present geometry. During this preliminary
exploration, we did not identify clearly any vacillation regimes for �T � 5 K.
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Ta(× 105) Θ Ω (rad s−1) Regime m ωd (2Ω) ωv,m (2Ω) Am,1, Am,3 η

1.775 1.5087 3.617 US 0
1.800 1.4877 3.642 US 0

1.800 1.4877 3.642 2S 2 0.16666
1.825 1.4673 3.667 2S 2 0.004439 0.18335
1.850 1.4475 3.693 2S 2 0.003104 0.19533
2.000 1.3389 3.839 2S 2 0.004113 0.24676
2.050 1.3063 3.887 2S 2 0.006102 0.26097
2.075 1.2905 3.911 2AV 2 0.006647 0.05806 0.26137 0.0161
2.100 1.2752 3.934 2AV 2 0.00704 0.05770 0.2617 0.0343
2.150 1.2455 3.981 2AV 2 0.00740 0.05676 0.2630 0.0692
2.175 1.2312 4.004 2AV 2 0.00755 0.05630 0.2639 0.0845
2.200 1.2172 4.027 2MAV 2 0.00783 0.04925, 0.2684 0.1448

0.002344
2.250 1.1902 4.072 2MAV 2 0.00829 0.04398, 0.2782 0.2589

0.0037
2.2925 1.1681 4.110 2MAV 2 0.00893 0.04206, 0.2895 0.2993

0.0070

2.000 1.3389 3.839 3S 3 0.2700
2.150 1.2455 3.981 3S 3 0.2991
2.250 1.1902 4.072 3S 3 0.3180

2.300 1.1643 4.117 3S 3 0.00905 0.3269
3.000 0.8926 4.702 3S 3 0.01551 0.3612
4.000 0.6695 5.430 3S 3 0.01964 0.4200
5.000 0.5356 6.070 (3, 1 + 3, 3)S 3 0.02094 0.4446,

0.0721
7.000 0.3826 7.183 (3, 1 + 3, 3)S 3 0.02244 0.4524,

0.1500
9.000 0.2975 8.144 (3, 1 + 3, 3)S 3 0.02513 0.1839 0.4469,

0.1918
15.000 0.1785 10.514 (3, 1 + 3, 3)S 3 0.02732 0.1963 0.4152,

0.2280
20.000 0.1339 12.141 3SV 3 0.02856 0.2183, 0.3937, 0.004131

0.6367, 0.2297
0.0309

22.000 0.1217 12.734 3SV 3 0.02857 0.1916, 0.3863, 0.009798
0.6465, 0.2265
0.0333

32.500 0.0824 15.477 3SV 3 0.02946 0.1891, 0.3598, 0.078200
0.567, 0.2185
0.09

Table 2. Summary of computed results for �T = 30 K, with m the dominant wavenumber.

Some vacillation was observed at a higher temperature difference of �T = 30 K in
a first exploration of this temperature contrast by Maubert & Randriamampianina
(2003). The work reported here continues these observations in a detailed investigation
and analysis of the flow regimes obtained for this value of �T . The specific cases
discussed in detail are summarized in table 2.

4.2. First instability and transition to steady waves

In this section, the initial transition from the upper symmetric regime (US) to a steady
wave with azimuthal wavenumber m =2 (2S), on increase of the Taylor number, will
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Figure 3. The amplitude of the dominant azimuthal mode, m= 2, at mid-radius. The
dash-dotted lines indicate the global maximum and minimum of the amplitude. The
dash-dotted lines in the 2MAV regime denote the largest amplitude minimum and the smallest
amplitude maximum of all the extreme values in each vacillation cycle, while the dotted lines
in 2MAV show the average of the amplitude minimum and maximum for all vacillation cycles,
respectively. The dotted line in the 2AV regime shows the averaged amplitude.

be presented. This will be followed by discussion of the subsequent transitions to an
Amplitude Vacillation (2AV) and the more complex so-called ‘Modulated Amplitude
Vacillation’ (2MAV; cf. Read et al. (1992) and Früh & Read (1997)).

The range of regimes dominated by the azimuthal wave mode m = 2 is summarized
in figure 3, which shows the equilibrated or time-averaged amplitude of that mode. The
axisymmetric baroclinic circulation was found to become unstable when the Taylor
number was increased from Ta = 180 000 to 182 500, following which the solution
converged to a steady wave mode m =2 and its harmonics, as a time-averaged spatial
spectrum at mid-height and mid-radius demonstrates for a qualitatively similar case
in figure 4(ai). The corresponding temporal spectrum in figure 4(aii) of the cosine
component of mode m =2 shows that the flow consists of a steady wave of constant
amplitude travelling at a fixed angular velocity around the tank. The amplitude of the
first wave solution and the step to it from the axisymmetric solution are indicated in
the portion of figure 3 labelled 2S. The regions labelled 2AV and 2MAV correspond
to time-dependent regimes discussed below in § 4.2.2, and the symbols represent the
minima and maxima of the wave amplitude observed over time.

Decreasing the Taylor number from this first wave solution at Ta = 182 500 back
to Ta =180 000 did not result in a return to the axisymmetric solution but to another
steady wave solution of slightly lower amplitude and higher angular velocity, as
indicated in figure 3. This hysteresis extended over a small range of Taylor number
only, so that reducing the Taylor number still further to Ta = 177 000, for example,
resulted in a slow decay of the wave back to the axisymmetric solution.

4.2.1. Basic flow structures

An example of a typical m = 2 flow is presented in figures 5 to 7, which show a
steady wave, 2S, at a Taylor number of Ta = 200 000. Figure 5 shows temperature
contours and the horizontal velocity field at mid-level. These show the breaking of the
azimuthal symmetry into a discrete symmetry of a mode with azimuthal wavenumber
m =2. The velocity field can be described as a meandering jet stream, with alternating
cyclones and anticyclones on either side of the jet stream. The presence of such a jet at
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Figure 4. Spectra of representative cases of the m= 2 flows from time series of the
amplitudes of the azimuthal modes at mid-radius and mid-height. Column (a) steady wave 2S,
Ta = 200 000; column (b) amplitude vacillation 2AV, Ta = 215 000; column (c) quasi-periodic
modulated amplitude vacillation, 2MAV, Ta = 220 000; and column (d) irregular 2MAV,
Ta = 225 000. Top row (i): spatial spectra of the time-averaged amplitude of the azimuthal
wave mode, m. Middle row (ii) temporal spectra of the time series of the cosine component
of mode m= 2. Bottom row (iii): temporal spectra of the amplitude of m= 2. The main
frequencies are indicated by their annotation, ωd for the drift frequency, ωv for the vacillation
frequency, and ωm for the modulation frequency.

(a) (b)

Figure 5. Horizontal cross-sections at mid-height of a 2S flow at Ta = 200 000.
(a) Temperature contours and (b) the horizontal velocity field.
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Figure 6. Zonal mean fields at Ta = 200 000 using air as the working fluid. (a) Temperature
(contour interval= 0.1, normalized to an imposed temperature difference of ±1.0),
(b) zonal velocity Vφ (contour interval= 0.25) and (c) meridional stream function (contour
interval= 0.01). Dotted lines indicate negative values.

mid-level is indicative of a significant breaking of the antisymmetry of the azimuthal
flow about the mid-plane.

The basic, azimuthally averaged flow associated with the m =2 waves is illustrated
in figure 6. This shows some differences from the typical azimuthal mean state found in
experiments using liquids of Prandtl number � 1. In particular, the temperature field
shows relatively weakly developed sidewall thermal boundary layers and isotherms
which are steeply sloped and nearly vertical in places. On the other hand, the velocity
fields and azimuthal mean streamlines such as in figure 6(b, c) indicate that Ekman
layers are well developed on the rigid, horizontal boundaries while somewhat thicker,
viscous Stewartson layers are present at both sidewalls.

The baroclinic character of the waves is illustrated in figure 7, which displays
azimuth–height sections at mid-radius but with the azimuthal mean flow removed.
The pressure field in figure 7(a) exhibits the strong westward phase tilt with height
characteristic of baroclinically unstable waves, e.g. Hide & Mason (1975). The
corresponding temperature field, T ′ in figure 7(b), shows a strong m =2 disturbance
with a noticeable eastward phase tilt over most of the height range, qualitatively
resembling the classical, linearly unstable Eady wave, e.g. Hide & Mason (1975). The
vertical velocity field in figure 7(c) is closely correlated with that of T ′, indicating
that the fully developed wave flow has optimized the baroclinic release of potential
energy in the buoyancy field by ensuring that the upward eddy heat flux w′T ′ is as
large as possible, where w′ and T ′ are the deviations from the temporal mean and
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Figure 7. Azimuth–height maps of eddy fields (with azimuthal flow removed) in a typical
simulation of a 2S flow at Ta = 200 000 using air as the working fluid. (a) Pressure (contour
interval= 0.05 dimensionless units), (b) temperature T ′ (contour interval= 0.05, normalised to
an imposed temperature difference of ±1.0) and (c) Vertical velocity (contour interval= 0.1
dimensionless units).

the overbar denotes time averaging of their product. The azimuthally asymmetric
nature of this m =2S flow is again clearly apparent, but in other respects this initial
instability evidently develops as a fairly ‘classical’ form of baroclinic wave with clear
similarities to those found for Pr� 1 (allowing for the differing balance of diffusive
effects at Pr ∼ 1).

4.2.2. Transitions to amplitude vacillations

The steady wave solution remained qualitatively the same for increased Taylor
number until above Ta =205 000, where the wave amplitude increased gradually
but the angular velocity first decreased and then increased again. At Ta = 207 500,
a noticeable periodic oscillation of the amplitude was observed, exhibiting the
characteristic signature of a simple amplitude vacillation, 2AV in this case. Figure 4(bi)
shows that the time-averaged spatial wave spectrum for the AV is fundamentally
different from the steady waves, with substantial energy in wave modes other than
the dominant wavenumber and its harmonics. The temporal spectra of mode m =2 in
figure 4(bii and biii) now show a second free frequency in the spectrum of the cosine
component (bii) and an associated peak in the spectrum of the mode amplitude (biii).
These two peaks are at different frequencies because the peak in the cosine spectrum
is the difference between the vacillation and drift frequencies.

The magnitude of that vacillation is indicated by the extreme values for the wave
amplitude in figure 3, where the envelope of the vacillation is shown by the maximum
amplitude (the upward pointing triangles) and the minimum amplitude (the downward
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pointing triangles). It is quantified by the vacillation index, η = (Amax −Amin)/(Amax +
Amin), where Amax and Amin are the amplitude maximum and minimum within a
vacillation cycle, respectively. This vacillation index increased first gradually then
more steeply. This sharp increase in the vacillation index occurred together with the
onset of a slow modulation of the vacillation, 2MAV, adding a third free frequency,
as seen in figure 4(ciii). While that spectrum is still fairly clear with sharp peaks, the
spectra at Ta = 225 000 and 229 250 are much broader. The spatial spectra of the
MAV flows as shown in figures 4(ci and di), however, are indistinguishable from that
of the 2AV flow.

An important and novel point to note here is that the progression from a steady
wave to an AV flow on increase of the rotation rate or Taylor number has not usually
been seen in most laboratory experiments using fluids with a Prandtl number of 7 and
higher (e.g. Hignett et al. 1985; Read et al. 1992; Koschmieder & White 1981). In their
cases, the transition to AV was typically found to occur on decrease of the rotation
rate (or Ta), where it has been observed that the transition seems to occur earlier the
higher the Prandtl number (Jonas 1981).† An exception at high Prandtl number seems
to be found close to the lower symmetric transition boundary (e.g. Lewis & Nagata
2004), where the onset of AV appears via a straightforward supercritical secondary
Hopf bifurcation with respect to Ta or Θ , much as found here for air. The present
results thus indicate important roles for Pr and Ta in determining the nature of the
bifurcation to quasi-periodic AV either as super- or subcritical with respect to Ta
or Θ .

4.2.3. Phase portrait analysis

The trajectory in a reconstructed phase space or configuration space provides a way
to demonstrate the different qualitative behaviours of the different flow regimes. Two
representations were used here and are shown in figure 8. One representation uses the
azimuthal sine and cosine modes of a Fourier analysis of the fields at mid-height and
mid-radius, the other uses the amplitude of the modes thereby removing the phase
information of the wave. The trajectories, or orbits, in the projection onto the cosine
and sine components of mode m =2 at mid-radius are shown in figure 8(a–d) for the
different m =2 flows, 2S (a), 2AV (b), and two 2MAV cases (c and d). The simple
circle in (a) represents the angular progression in azimuth of a wave with constant
amplitude. The 2AV case in (b) shows a thickening of the circle which a Poincaré
section revealed to be a torus. The large circle dominating in the phase plot in (b)
still represents the drift of the wave while the small circle of the torus cross-section
describes the periodic oscillation of the wave amplitude in the AV. Figure 8(c) still
shows some structure but with more detail which cannot be attributed to a simple
oscillation on a torus, and (d) only retains the obvious structure of the wave mode
travelling in the azimuthal direction.

If the spatial phase information is separated from the amplitude information, the
amplitudes of different modes can also be used to construct an attractor of reduced
dimension in a pseudo-phase space. This in effect removes the drift and its frequency
from the display, the circle in figure 8(a) turns into a fixed point, the torus in (b) into
a limit cycle, and a 3-torus into 2-torus. To analyse the 2MAV flow, a Poincaré section
of the amplitude trajectory is required. A section of the 2MAV case at Ta = 220 000 in
figure 8(e) reveals that the orbit in the amplitude space is a 2-torus, and therefore that

† Hignett (1985) has discussed that some of the classification by Jonas (1981) was incorrect.
However, a comprehensive synopsis of the rotating annulus literature confirms this phenomenon.
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Figure 8. Phase-space representations of: (a) a steady 2S (Ta = 200 000), (b) a 2AV
(Ta = 215 000), (c) a quasi-periodic 2MAV (Ta = 220 000), and (d) a chaotic 2MAV
(Ta = 229 250). The phase-space diagrams show the time series of the sine component against
that of the cosine component of mode m= 2. (e, f ) Poincaré sections of the amplitudes of
m= 1 against m= 2 where m= 4 is zero, after the mean amplitudes had been subtracted.

the 2MAV shown in (c) is a 3-torus. This implies that this particular 2MAV flow is a
quasi-periodic flow with three independent and incommensurate frequencies. This is
a remarkable case since Newhouse et al. (1978) have argued that generic 3-frequency
flows are usually unstable.

The Poincaré sections for the other 2MAV cases at Ta � 225 000 appear to be more
typical of chaotic flows as illustrated by figure 8(f ) for Ta =229 250. Figure 8(f )
only shows the positive crossings for clarity but the crossings in the negative direction
are qualitatively the same and are found in a region which overlaps that occupied
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Figure 9. The largest Lyapunov exponent for the 2AV and 2MAV flows against Taylor
number.

by the positive crossings. This is in contrast to the quasi-periodic 2MAV where the
crossings in the different directions occupy distinct and well-separated regions. As a
test for low-dimensional chaotic behaviour, the largest Lyapunov exponent, λ1, was
calculated for all the AV and MAV cases, using the method of Wolf et al. (1985). As
figure 9 shows, the flows at low Taylor number up to, and including, the 2MAV case
at Ta = 220 000 have a largest Lyapunov exponent which cannot be distinguished
from zero. However, λ1 is significantly positive for the last two 2MAV cases. A
positive Lyapunov exponent is clear evidence for chaotic solutions, indicating that
a clear transition to low-dimensional chaotic behaviour occurs, but only after the
quasi-periodic transition to 2MAV. The intermediate 2MAV case has a value for λ1

which is indistinguishable from zero, confirming the existence (hinted at above) of a
nonchaotic three-frequency flow.

4.3. Transition to m = 3 and higher modes

As Ta was increased through the 2MAV regime discussed above, the flow dominated
by m =2 was found to give way to a new type of flow dominated by m =3 at
Ta = 2.3× 105. We consider in this subsection the flow structure and transitions from
the m =3 state as Taylor number is varied.

4.3.1. Basic flow structures

The basic flow pattern is illustrated in figures 10 to 12 for a steady wave, 3S, at
Ta = 1.5× 106. Figure 10 shows maps in the (r, θ)-plane of temperature and velocity
vectors at mid-height for a typical m =3 case. The temperature fields show the
presence of pronounced ‘plumes’ alternately of warm and cool air, highly concentrated
in azimuth and crossing the annular gap radially in association with strong radial
jets.

The barotropic nature of the fully developed waves in this region of parameter
space is illustrated in figure 11, which shows azimuth–height sections of an m = 3
flow at Ta = 1.5× 106. The pressure field (figure 11a) clearly shows very little
phase tilt with height, in complete contrast to those in the 2AV regime shown in
figure 7. The temperature field in figure 11(b), too, has a much more complicated
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Figure 10. Horizontal cross-sections at mid-height of a wave-3 flow at Ta = 1.5× 106.
(a) Temperature contours and (b) the horizontal velocity field.
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Figure 11. Azimuth–height maps of eddy fields (with azimuthal flow removed) in a typical
simulation of the wave-3 flow at Ta = 1.5× 106 using air as the working fluid. (a) Pressure
(contour interval= 0.25 dimensionless units), (b) temperature T (contour interval= 0.05,
normalized to an imposed temperature difference of ±1.0) and (c) vertical velocity (contour
interval= 0.5 dimensionless units).

structure than for the m =2 flows, with highly concentrated plumes of hot and cold
air which have very little slope with height, interspersed with broad regions with
relatively very weak horizontal thermal gradients. The thermal plumes are aligned
azimuthally with the regions of strong azimuthal pressure gradient, consistent with
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Figure 12. Zonal mean fields for the typical wave-3 simulation at Ta = 1.5× 106 using air
as the working fluid. (a) temperature (contour interval= 0.1, normalized to an imposed
temperature difference of ±1.0), (b) zonal velocity Vφ (contour interval= 0.25 dimensionless
units) and (c) meridional stream function (contour interval= 0.01 dimensionless units).

optimizing the correlation between radial (geostrophic) velocity and temperature
perturbations. Similarly, the regions of strong upward vertical velocity (figure 11c)
are also concentrated close to the strongest positive temperature anomalies, and vice
versa, consistent with an optimization of w′T ′ as before. Regions of strong downward
motion (necessary to satisfy mass conservation) are concentrated in plumes or jets
adjacent to the strong upwelling jets, forming ‘cross-frontal’ circulations which show
some similarities with those inferred for atmospheric frontal regions in developing
cyclones (Hoskins 1982). The overall impression is that the flow in this region of
parameter space is strongly nonlinear and much modified from the simple, linearly
unstable Eady solution of the corresponding state for m =2 flows at much lower
Taylor number.

The increasingly barotropic and nonlinear character of the flow at high Ta is also
apparent in the azimuthal mean flow structure, which is illustrated in figure 12. This
time, in contrast to the low Ta states (figure 6), the temperature field (figure 12a)
exhibits strongly developed sidewall thermal boundary layers and relatively weak
horizontal thermal gradients in the interior. The near-absence of horizontal thermal
contrast in the interior would suggest (via the geostrophic thermal wind relation) that
the zonal flow should be relatively barotropic. This is confirmed in figure 12(b),
which shows negative (retrograde) azimuthal flow at most heights except near
the outer cylinder. The zonal mean meridional streamlines (figure 12c) exhibit an
additional (thermally indirect) ‘Ferrel’ cell, in contrast to figure 6(c), indicating a
strong contribution of baroclinic eddies to the heat transport in this case.
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Figure 13. The amplitude of the m= 3 solutions against the Taylor number. The solid line
and circles shows the sum of the first three radial modes of the azimuthal mode m= 3, while
the dash-dotted line only shows the contribution of the first radial mode. For the vacillating
flows, the mean amplitude is given by the dotted lines, and the amplitude extrema are shown
by the solid lines and triangles. To put the m= 3 solutions into context, the transition from
axisymmetric flow and the m= 2 solutions, shown in figure 3 are reproduced.

4.3.2. Sequence of flow transitions

The onset of m =3 effectively began a new sequence of bifurcations, since the m =3
flow at Ta = 230 000 converged to a regular pattern of a steady amplitude of m =3
and its harmonics, as shown by the time-averaged amplitude spectra in row (i) of
figure 14 below. The new solution showed substantial hysteresis relative to the previous
m = 2 regime in that reducing the Taylor number to Ta =200 000 still gave a steady
m = 3 solution. This 3S regime persisted until Ta = 1.5× 106 but at Ta = 2× 106 other
frequencies emerged. The sequence of m =3 flows observed is illustrated by figure 13
which shows the amplitude of the azimuthal mode m =3, where the solution branch
of the m =2 flows (figure 3) is reproduced to put the m =3 observation in context.

The sum of all radial modes of the azimuthal mode at mid-radius resulted in an
initial increase of the amplitude on increase of the Taylor number followed by a
decrease, which was mirrored by a continuing increase of the amplitude between
a radius of one-quarter of the gap from the inner wall and three-quarters. This
suggested that the radial structure of the flow was more complex. Approximating the
radial structure by half sine waves, the approximate distribution into the first three
radial modes, Am,n with m =3 and n= 1, 2, 3, can be estimated from the amplitudes,
A1/4, A1/2, A3/4, at a radial position of a quarter, a half, and three-quarters of the gap,
respectively, by

n = 1 : A3,1 =
1√
8

(
A1/4 + A3/4

)
+

1

2
A1/2,

n = 2 : A3,2 =
1

2

(
A1/4 − A3/4

)
,

n = 3 : A3,3 =
1√
8

(
A1/4 + A3/4

)
− 1

2
A1/2.
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Figure 13 then shows the amplitude of the sum of first three radial modes as
the solid line, labelled (3,1+3)S since the second radial mode did not contain any
substantial amplitude. Below Ta ≈ 400 000, the overall amplitude is fully described by
the first radial mode only. Following this branch to lower values of the Taylor
number, one can observe a substantial regions of hysteresis between the m = 2
branch and the m = 3 branch. Between Ta = 400 000 and Ta = 500 000, the radial
structure of the flow changes whereby (m = 3, n =3) grows beside (m = 3, n =1). In
terms of the horizontal structure of the flow, this indicates the emergence of a flow
with wave trains near each sidewall. Finally, this solution develops a vacillation
which appears as a radial fluctuation of the eddies or wave maxima. Visually, this
vacillation would be classified as a structural vacillation since the overall amplitude
(still dominated by the first radial mode) varies little, but the exchange between flow
or temperature maxima at mid-radius and near the walls varies the structure of the
flow.

4.3.3. Spatial and temporal spectra

Figure 14 shows a set of time-averaged mode spectra in row (i) and corresponding
power spectra for the cosine component of m =3 (row 2) and for the amplitude
of m = 3 in row (3). A steady wave case and a vacillating case are shown. While
the transition from 2S to 2AV discussed above was characterized by a fundamental
change in the time-averaged spectrum, the mode spectra for all wave-3 flows are
qualitatively very similar. The only substantial change is the gradual increase of the
‘floor’ from around 10−5 to around 10−3.

Because the vacillation of the amplitude is very weak in almost all cases, the power
spectrum of the cosine component of m =3, the upper of the spectral curves in each
plot in row (ii) of figure 14, is very bland and only shows distinctly the peak at the
drift frequency of the wave. The power spectrum of the amplitude, however, shows
two broad but distinct peaks, one associated with vacillation of the flow structure
and the other with a slower modulation. We did not observe any periodic vacillation
in this set of simulations. It should be noted, however, that the transients leading
to the steady 3S solutions were characterized by a decaying, periodic oscillation
with oscillation frequency comparable to the vacillation frequency identified in
figure 14(b iii).

4.3.4. Phase portraits

Figure 15 shows phase portraits and Poincaré sections of two vacillating cases,
the first time-dependent case at Ta =2× 106 and the final case at Ta = 3.25× 106.
Since the strength of the vacillation is very small compared to the mean amplitude,
only the phase portraits generated from the wave amplitudes are shown; the phase
portraits for the cosine or sine components would only show the circle representing
the wave drift. Both cases show irregular oscillations of the amplitude in the phase
portrait of the amplitude of mode m =6 against that of m = 3. The Poincaré section
of the phase portrait for the lower Taylor number in figure 15(c), which shows the
amplitude of m = 1 against that of m = 6 at the section where A3 = 0, reveals no
obvious structure. The corresponding section for the high Taylor number is also
irregular but it appears that at least the negative crossing points are arranged around
a circular structure, indicating the possibility of a fuzzy torus. Note that the scale of
the plots varies substantially between the two cases with the y-axis 5 times larger
and the x-axis 50 times larger in figure 15(d) compared to figure 15(c). Due to the
computational expense of the calculations at these high Taylor numbers, the time
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Figure 14. Spectra of representative cases of the m= 3 flows from time series of the amplitudes
of the azimuthal modes at mid-radius and mid-height. Column (a) steady wave 3S, at
Ta = 0.9× 106, and column (b) irregular structural vacillation, 3SV, at Ta = 3.25× 106. Top
row (i): spatial spectra of the time-averaged amplitude of the azimuthal wave mode, m. Middle
row (ii): temporal spectra of the time series of the cosine component of mode m= 3. Bottom
row (iii): temporal spectra of the amplitude of m= 3. The main frequencies are indicated by
their annotation.

series at the highest value of Ta, only covers a few drift periods of the dominant flow
feature which is too short to estimate Lyapunov exponents. For the same reason, it
has not been possible to carry out more integrations between Ta = 2.2× 106, which
is qualitatively and quantitatively similar to Ta = 2.0× 106, and Ta = 3.25× 106 to
investigate whether the toroidal structure seen in figure 15(d) is a larger-amplitude
version of the fluctuations seen in figure 15(c) or whether it emerges as a new type
of oscillation besides the small-scale fluctuations in a flow regime transition. As a
final note it should be mentioned that no quasi-periodic solutions were found in the
simulations carried out.
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Figure 15. Phase portraits and Poincaré sections in the m= 3 regime: (a) phase portrait of
the amplitude of A6 against A3 for Ta = 2.0× 106, (b) phase portrait for Ta = 3.25× 106;
(c) Poincaré section at A3 = 0 showing A1 against A6 for Ta = 2.0× 106. (d) Poincaré section
as (c) but for Ta = 3.25× 106.

5. Discussion
5.1. Regime diagram and onset of baroclinic waves

The overall structure of the regime diagram, presented in figure 2, is qualitatively and
quantitatively consistent with previous experiments and simulations of the baroclinic
annulus using liquid instead of air. They all show the characteristic anvil-shaped
transition curve between axisymmetric flow and regular waves, separating the regimes
into a wave regime, an upper symmetric regime at large Θ , and a lower symmetric
regime at small Θ/small Taylor number, e.g. Fein (1973), Fein & Pfeffer (1976),
Hide (1958), Hide & Mason (1975) and Jonas (1981). The upper symmetric regime
indicates a flow at large Θ or thermal Rossby number which is stabilized by strong
stratification. The transition from the upper symmetric regime to baroclinic waves
appears largely controlled by a critical thermal Rossby number. The lower symmetric
regime is stabilized by viscous dissipation, and the transition to waves is largely given
by a critical Grashof number or Rayleigh number.

Most of these studies were performed with fluids of Prandtl number Pr � 7 but
even an early study by Fein & Pfeffer (1976) using mercury, with Pr = 0.025, showed
the same qualitative characteristic anvil-shaped stability curve although the onset of
waves was shifted towards higher Taylor numbers by several orders of magnitude.
The case of air with a Prandtl number between that of mercury and water, however,
seemed not to be located between those cases but, if anything, at slightly smaller
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Figure 16. The bifurcation scenario for the transition from the upper symmetric regime to a
steady wave and subsequent vacillations for the m= 2 flows.

values of the Taylor number. The observations from our simulations suggest that the
case of �T = 30 K is positioned near the ‘knee’ of the classical anvil shape.

The, albeit narrow, hysteresis at the transition between the axisymmetric flow and
the steady wave suggests a subcritical bifurcation. While Hide & Mason (1978)
reported that the transition from the symmetric regimes in an annulus showed
hysteresis only if the upper boundary was a free surface, Koschmieder & White
(1981) presented evidence for the possibility of small hysteresis for the transition to
or from the upper symmetric regime. In their experiments, performed with water
(Pr ∼ 7), the hysteresis set in at a critical Taylor number below which the transition
was not hysteretic and above which the extent of the overlap of the symmetric and
wave regimes increased with the Taylor number. Hysteresis near the ‘knee’ of the
anvil-shaped marginal stability curve has not been documented before. Other studies
have either reported or assumed a Hopf bifurcation, e.g. Rand (1982), Miller & Butler
(1991), Lewis & Nagata (2004), or the occurrence of so-called weak waves prior to
the onset of fully developed baroclinic waves, Hide & Mason (1978); Jonas (1980).
The weak waves have been suggested to be wave modes which are located near
the upper or lower boundary and are decaying in the fluid interior. No such weak
waves were observed in this study, though weak waves seem to have been observed
predominantly at the transition from the upper symmetric regime at somewhat higher
Taylor numbers, well past the knee of the anvil.

5.2. A bifurcation scenario

The transition sequence from the axisymmetric flow through all observed wave-2 flows
follows clear steps of increasing complexity, from axisymmetric flow via a steady wave
with one frequency, a two-frequency flow of a vacillating wave, a quasi-periodic three-
frequency flow of a modulated vacillating wave to, finally, a chaotic flow. As Hopf
bifurcations for the onset of baroclinic waves and the subsequent onset of amplitude
vacillation are often cited, e.g. Rand (1982), Miller & Butler (1991), Lewis & Nagata
(2004), it seemed obvious to fit the normal form of a Hopf bifurcation to the wave
amplitude data. This transition scenario is reproduced in figure 16 by showing the
mean amplitude and the envelope of the vacillation.
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Since the initial onset of waves is a subcritical transition, a subcritical Hopf
bifurcation and a fold or saddle-node bifurcation is invoked, e.g. Guckenheimer &
Holmes (1983), Rand (1982). A linear regression to a curve of the form A= A0+[(T a−
T aS)/q]1/2, using the five data points from the 2S regime, gave A0 = 0.125 for the wave
amplitude at the saddle-node, a growth parameter of q =1.50× 106, and a critical
Taylor number for the saddle-node of TaS =177 500 with a correlation coefficient of
r2 = 0.9997. The ‘unstable branch’ has been filled in using this critical Taylor number
and a Taylor number for the location of the unstable Hopf of Ta0 = 182 000.

The following transition, from the steady wave to the periodic oscillation of the
wave amplitude in the 2AV flow, is consistent with a second Hopf, also known
as a Neimark bifurcation. This is indicated by fitting a square-root function to
the vacillation strength (amplitude maximum minus mean amplitude) for the four
simulations in the 2AV regime as a function of the Taylor number. While this is a
standard bifurcation, it is in contrast to all experience for the onset of amplitude
vacillation in a liquid with a range of Prandtl number between 7 and 30, where
the evidence is that vacillation occurs on decreasing the Taylor number from the
steady wave. In those cases, the vacillation is a precursor of a particular wave mode
giving way to, and co-existing with, a flow of lower mode number. The experiments
in mercury by Fein & Pfeffer from 1976 at much lower Prandtl number did not
report such details in the wave regime. The consensus for the other experiments in
liquids is that vacillation is much more common at higher Prandtl number, where
most of the wave 2 and 3 domains at Pr = 26 in Früh & Read (1997) were time-
dependent, whereas at Pr = 13 and Pr = 7 substantial ranges were found where a
steady wave was reported by Hignett (1985); Hignett et al. (1985), James, Jonas &
Farnell (1981). Some initial experiments carried out in the apparatus used by Hide &
Mason (1978), Read et al. (1992), Früh & Read (1997) but now using air confirmed at
least qualitatively the onset of vacillation with increasing Taylor number, consistent
with these computational results.

The third transition, to a modulated 2MAV was a not surprising continuation of
the ‘quasi-periodic route to chaos’ described by Newhouse et al. (1978), see also § 6
in Schuster (1995), but the nature of the initial solution as a quasi-periodic 2MAV
with three independent frequencies was unusual. As was shown by Newhouse et al.
(1978), generic three-frequency flows are expected to be chaotic rather than periodic.
Previous illustrations of the existence of three-frequency quasi-periodic orbits were
demonstrated numerically, with the modulation of a simple circle map by Grebogi,
Ott & Yorke (1983a), and in experiments on convection of mercury in a magnetic
field by Libchaber, Fauve & Laroche (1983). However, no previous example of such
a flow has been reported from either numerical or experimental studies of baroclinic
waves. All previous reports of quasi-periodic modulated vacillations, e.g. by Read
et al. (1992) and Früh & Read (1997), involved frequency locking between the drift
frequency and the vacillation or modulation frequency. Conversely, no instance of
frequency locking was observed in the current numerical simulations. This supports
the previously suggested notion that the ubiquitous frequency locking in the baroclinic
annulus relies on a coupling between the spatial phase of the wave and its amplitude
by imperfections in the apparatus or the presence of sensors in the fluid.

The final type of flow dominated by m =2 was a chaotic 2MAV. In the average
statistics, such as the time-averaged wave spectrum and the average drift frequencies,
there was little difference between the quasi-periodic and the chaotic versions of the
2MAV. Fitting yet another square-root function to the modulation amplitude over
the vacillation amplitude in the MAV regimes suggests that the onset of modulation
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in itself could be consistent with a further supercritical Hopf bifurcation. As there
are only three sufficient 2MAV simulations, together with a change in character from
quasi-periodic to chaotic, the assumption of a square-root scaling is conjecture but
gives a reasonable representation of the development of the modulation. Square-root
dependent or not, the growth of the modulation hints at the possible mechanism for
the transition from periodic to chaotic behaviour: the minimum of the amplitude
maximum and the maximum of the amplitude minimum intersect in figure 16 at a
point between the observed periodic flow at Ta = 220 000 and the first chaotic flow
at Ta =225 000. It appears, therefore, that the transition to chaos in this example
might not have arisen from the local stretching of the torus, § 6.1 in Schuster (1995),
but from a crisis as suggested by Grebogi, Ott & Yorke (1983b) where the orbit of
the quasi-periodic 2MAV intersects the unstable orbit of the 2AV, see also § 6.4 in
Schuster (1995).

The final transition from the m =2 branch to the steady 3S on the m =3 solution
branch could also be due to a crisis, this time caused by the collision of the chaotic
2MAV attractor with the unstable orbit separating the m = 2 and m = 3 solutions.
Such a collision is possible in phase space because the 2MAV flow involves finite-
amplitude variations of the m =3 mode, and it is consistent with the conjecture by
Grebogi et al. (1983b) that ‘almost all’ sudden changes in chaotic attractors are due
to crises. The existence of an unstable orbit separating the basin of attraction of the
m = 2 and m = 3 solutions is indicated by the dotted line between the two solution
branches in figure 16 following figure 8 of Lewis & Nagata (2003).

5.3. Transitions on the m =3 branch

The m =3 flows also showed a progression from periodic flow of a steady wave, 3S,
to irregular vacillations but following a very different route. This route involved a
change in the radial structure of the flow while remaining a simply periodic flow of a
steady wave. No quasi-periodic flows were observed but the possibility remains that
those could exist at Taylor numbers not covered by the simulations.

The vacillating flows at the very high Taylor number are qualitatively similar to
experimental evidence by Früh & Read (1997) at Pr = 26 which they classified as
‘Structural Vacillation’, also known as ‘Tilted-trough vacillation’. That flow was largely
dominated by a simple azimuthal mode (m = 2 in their case), superimposed on which
were small fluctuations consistent with a higher radial mode. While the large-scale
structure of the flow was highly regular, the fluctuations were shown by them to
be not consistent with low-dimensional dynamics. The failure to compute reliable
dimension estimators for structural vacillation had previously been reported in two
independent experimental studies by Read et al. (1992) and Guckenheimer & Buzyna
(1983).

The significantly different vertical structure of the steady 3S, by being much more
barotropic, could result in a different type of instability altogether. The radial profile
of the azimuthal velocity, shown in figure 12(b) suggests a Reynolds number of
Re ≡ UL/ν≈ 50 for the boundary layer near the inner wall (using a velocity of
∼ 12U at a distance of L∼ 0.1b from the wall). Studies of the instability of detached
shear layers by Früh & Read (1999) suggest that such a Reynolds number is sufficient
for the onset of barotropic instability in a Hopf bifurcation which leads to a string
of vortices along the shear layer with a wavenumber largely determined by the
thickness of that layer. With a critical Taylor number of Tac = 428 000, the observed
growth of the higher radial mode, shown in figure 13, is consistent with a square-root
dependence up to the Taylor number of Ta = 900 000. Barotropic instability has also
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US Axisymmetric
Subcritical Hopf ← | → 2S Baroclinic instability,
with saddle-node Zonal symmetry breaking
Hopf ←→ 2AV Temporal symmetry breaking
Hopf ←→ 2MAV Three-frequency quasi-periodic
Crisis ←→ 2MAV Chaos
Crisis ← | → 3S Mode transition,

Zonal symmetry breaking
Pitchfork ←→ (3,1 + 3,3)S Barotropic instability,

Radial symmetry breaking
??? ←→ 3SV Irregular fluctuations

Table 3. Tentatively suggested bifurcation sequences from the initial instability to the onset
of the irregular vacillation of the m= 3 flow. ←→ denote transitions without hysteresis
(supercritical bifurcations), and ← | → indicate the presence of hysteresis.

been proposed by Schär & Davies (1990) as a mechanism active in the decay of
baroclinic waves in the atmosphere. If this instability has caused the onset of the
waves near the sidewalls, it is not surprising that the quasi-periodic route to chaos was
not followed, as the experiments by Früh & Read (1999) did not show quasi-periodic
vacillating flows either. The indication of steps of a period-doubling cascade were
observed at large Rossby numbers, whereas the increase in Taylor number in the
baroclinic annulus would result in reducing the Ekman number in their study. At
a Reynolds Re =O(50), they observed only steady and noisy waves of wavenumber
m � 6 and a regime of weak irregular fluctuations (cf. their regime diagram in figures 3
and 4). Früh & Nielsen (2003) suggested that the onset of time-dependence in the
amplitude of barotropic vortices may rely on local, small-scale vorticity generation at
the sidewalls rather than a global-mode instability of the flow in the fluid interior.

6. Conclusions
We have presented results from direct numerical simulations of convection in a

baroclinic annulus filled with air and put those in the context of sloping convection in
liquid-filled baroclinic annulus experiments. This investigation, and the two previous
studies by Maubert & Randriamampianina (2002, 2003) leading up to this work,
followed the most common procedure of keeping the temperature difference fixed
while varying the rotation rate of the system. Maubert & Randriamampianina
(2002, 2003) verified the transition curve between the symmetric regimes and wave
regimes and they reported the main types of baroclinic waves usually observed
in the baroclinic annulus. The transition curve from the axisymmetric solution to
steady, fully developed baroclinic waves formed the typical anvil shape in the Ta−Θ

parameter plane, in common with all published information on this transition for
liquids covering a range of Prandtl number from 0.025 to 26 (though not the extreme
case published by Fein & Pfeffer (1976) for Pr = 63).

Table 3 summarizes the sequence of flows and bifurcations. The initial baroclinic
instability and the development of the m =2 flows are consistent with the standard
quasi-periodic route to chaos, with a few individual aspects, such as the subcritical
character of the first Hopf bifurcation and the existence of a rather rare three-
frequency quasi-periodic flow which became chaotic in what could be a crisis. The
mode transition between flows dominated by m = 2 and m = 3, respectively, is also
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consistent with all previous evidence for baroclinic waves in the rotating annulus in
that it is a sudden mode transition to a higher wavenumber on increase of the Taylor
number, associated with a substantial hysteresis.

The results at the highest Taylor number achieved in the study point to a first
direct numerical simulation of a structural vacillation. The onset and characteristics of
structural vacillation is less well-documented in the literature, where a variety of small-
scale processes have been proposed, e.g. Früh & Read (1997), such as inertia–gravity
waves observed by Lovegrove, Read & Richards (2000). The evidence here points to
the occurrence of a barotropic instability of the steady wave prior to the onset of
temporal fluctuations near the sidewalls, in which case vorticity generation at the
sidewalls may be a mechanism in the onset of structural vacillation in the annulus.

Overall, the observations are consistent with the extensive literature on baroclinic
waves in the thermally forced annulus filled with liquid. This demonstrates the validity
of the numerical model in parameter ranges not previously covered by direct numerical
simulation. The change in Prandtl number from Pr� 1 to Pr � 1, however, resulted in
the reversal of the Hopf bifurcation leading to amplitude vacillation. From a physical
point of view it seems sensible to suggest that the relative thickness of the thermal
and velocity boundary layers controls whether the vacillation appears on increase
or decrease of the Taylor number. While this change in itself is rather subtle, it has
consequences for the overall organization of the regime diagram and the transition
from highly regular to complex flows. This point is not only relevant to baroclinic
annulus flows but to all convective flows, if not fluid dynamical systems in general,
where a change in the fluid properties may lead to apparently minor changes which
then cause a fundamental change in the dynamics over a wide range of forcing
parameters.

We are grateful to the Royal Society for their support of this work by funding the
collaboration between the French and UK partners in a Joint Project Grant, grant
number 15118. The CPU time for this work was provided by the IDRIS (CNRS,
Orsay, France) on their NEC SX-5.

REFERENCES

Broomhead, D. S. & King, G. P. 1986 Extracting qualitative dynamics from experimental data.
Physica D 20, 217–236.

Buzyna, G., Pfeffer, R. L. & Kung, R. 1984 Transitions to geostrophic turbulence in a rotating,
differentially heated annulus of fluid. J. Fluid Mech. 145, 377–403.

Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. 1987 Spectral Methods in Fluid Dynamics .
Springer.

Fein, J. 1973 An experimental study of the effects of the upper boundary condition on the thermal
convection in a rotating, differentially heated cylindrical annulus of water. Geophys. Fluid
Dyn. 5, 213–248.

Fein, J. S. & Pfeffer, R. L. 1976 An experimental study of the effects of Prandtl number on thermal
convection in a rotating, differentially heated cylindrical annulus of fluid. J. Fluid Mech. 75,
81–112.

Fowlis, W. W. & Hide, R. 1965 Thermal convection in a rotating fluid annulus: Effect of viscosity
on the transition between axisymmetric and non-axisymmetric flow regimes. J. Atmos. Sci. 22,
541–558.

Früh, W.-G. & Nielsen, A. H. 2003 On the origin of time-dependent behaviour in a barotropically
unstable shear layer. Nonlin. Proc. Geophys. 10, 289–302.

Früh, W.-G. & Read, P. L. 1997 Wave interactions and the transition to chaos of baroclinic waves
in a thermally driven rotating annulus. Phil. Trans. R. Soc. Lond. A 355, 101–153.



388 A. Randriamampianina, W.-G. Früh, P. L. Read and P. Maubert

Früh, W.-G. & Read, P. L. 1999 Experiments in a barotropic rotating shear layer. I: Instability and
steady vortices. J. Fluid Mech. 383, 143–173.

Gottlieb, D. & Orszag, S. 1977 Numerical Analysis of Spectral methods: Theory and Applications .
SIAM.

Grebogi, C., Ott, E. & Yorke, J. A. 1983a Are three-frequency quasi-periodic orbits to be expected
in typical nonlinear systems? Phys. Rev. Lett. 51, 339–342.

Grebogi, C., Ott, E. & Yorke, J. A. 1983b Crises, sudden changes in chaotic attractors, and
transient chaos. Physica D 7, 181–200.

Guckenheimer, J. & Buzyna, G. 1983 Dimension measurements for geostrophic turbulence.
Phys. Rev. Lett. 51, 1438–1441.

Guckenheimer, J. & Holmes, P. J. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields . Springer.

Haldenwang, P., Labrosse, G., Abboudi, S. & Deville, M. 1984 Chebyshev 3-d spectral and 2-d
pseudospectral solvers for the Helmholtz equation. J. Comput. Phys. 55, 115–128.

Hide, R. 1958 An experimental study of thermal convection in a rotating fluid. Phil. Trans. Roy.
Soc. Lond. A 250, 441–478.

Hide, R. & Mason, P. J. 1975 Sloping convection in a rotating fluid. Adv. Phys. 24, 47–99.

Hide, R. & Mason, P. J. 1978 On the transition between axisymmetric and non-axisymmetric
flow in a rotating liquid annulus subject to a horizontal temperature gradient.
Geophys. Astrophys. Fluid Dyn. 10, 121–156.

Hignett, P. 1985 Characteristics of amplitude vacillation in a differentially heated rotating fluid
annulus. Geophys. Astrophys. Fluid Dyn. 31, 247–281.

Hignett, P., White, A. A., Carter, R. D., Jackson, W. D. N. & Small, R. M. 1985 A comparison
of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating
cylindrical annulus. Q. J. R. Met. Soc. 111, 131–154.

Hoskins, B. J. 1982 The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech. 14, 131–154.

Hugues, S. & Randriamampianina, A. 1998 An improved projection scheme applied to
pseudospectral methods for the incompressible Navier-Stokes equations. Intl J. Numer. Meth.
Fluids 28, 501–521.

James, I. N., Jonas, P. R. & Farnell, L. 1981 A combined laboratory and numerical study of fully
developed steady baroclinic waves in a cylindrical annulus. Q. J. R. Met. Soc. 107, 51–78.

Jonas, P. R. 1980 Laboratory experiments and numerical calculations of baroclinic waves resulting
from potential vorticity gradients at low Taylor number. Geophys. Astrophys. Fluid Dyn. 15,
297–315.

Jonas, P. R. 1981 Some effects of boundary conditions and fluid properties on vacillation in
thermally driven rotating flow in an annulus. Geophys. Astrophys. Fluid Dyn. 18, 1–23.

Koschmieder, E. L. & White, H. D. 1981 Convection in a rotating, laterally heated annulus. The
wave number transitions. Geophys. Astrophys. Fluid Dyn. 18, 279–299.

Lewis, G. M. & Nagata, W. 2003 Double Hopf bifurcations in the differentially heated rotating
annulus. SIAM J. Appl. Maths 63, 1029–1055.

Lewis, G. M. & Nagata, W. 2004 Linear stability analysis for the differentially heated rotating
annulus. Geophys. Astrophys. Fluid Dyn. 98, 129–152.

Libchaber, A., Fauve, S. & Laroche, C. 1983 Two-parameter study of the routes to chaos. Physica
D 7, 73–84.

Lovegrove, A. F., Read, P. L. & Richards, C. J. 2000 Generation of inertia-gravity waves in a
baroclinically unstable fluid. Q. J. R. Met. Soc. 126, 3233–3254.

Maubert, P. & Randriamampianina, A. 2002 Transition vers la turbulence géostrophique pour un
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écoulement d’air en cavité tournante différentiellement chauffée. C. R. Méc. 331, 673–678.

Miller, T. L. & Butler, K. A. 1991 Hysteresis and the transition between axisymmetrical flow
and wave flow in the baroclinic annulus. J. Atmos. Sci. 48, 811–823.

Newhouse, S. E., Ruelle, D. & Takens, F. 1978 Occurence of strange axiom A attractors near
quasi-periodic flow on T m, m � 3. Commun. Math. Phys. 64, 35–40.

Pfeffer, R. L., Buzyna, G. & Kung, R. 1980 Time-dependent modes of thermally-driven rotating
fluids. J. Atmos. Sci. 37, 2129–2149.



Numerical simulations of bifurcations in air-filled baroclinic annulus 389

Pierrehumbert, R. T. & Swanson, K. L. 1995 Baroclinic instability. Annu. Rev. Fluid Mech. 27,
419–467.

Rand, D. 1982 Dynamics and symmetry: predictions for modulated waves in rotating fluids. Arch.
Rat. Mech. Anal. 79, 705–720.

Randriamampianina, A., Leonardi, E. & Bontoux, P. 1998 A numerical study of the effects of
Coriolis and centrifugal forces on buoyancy driven flows in a vertical rotating annulus. In
Advances in Computational Heat Transfer (ed. G. De Vahl Davis & E. Leonardi), pp. 322–329.
Begell House.

Raspo, I., Hugues, S., Serre, E., Randriamampianina, A. & Bontoux, P. 2002 A spectral projection
method for the simulation of complex three-dimensional rotating flows. Computers Fluids. 31,
745–767.

Read, P. L. 2001 Transition to geostrophic turbulence in the laboratory, and as a paradigm in
atmospheres and oceans. Surveys in Geophys. 22, 265–317.

Read, P. L., Bell, M. J., Johnson, D. W. & Small, R. M. 1992 Quasi-periodic and chaotic flow
regimes in a thermally-driven, rotating fluid annulus. J. Fluid Mech. 238, 599–632.

Read, P. L., Collins, M., Früh, W.-G., Lewis, S. R. & Lovegrove, A. F. 1998 Wave interactions
and baroclinic chaos: a paradigm for long timescale variability in planetary atmospheres.
Chaos, Solitons Fractals 9, 231–249.

Schär, C. & Davies, H. C. 1990 An instability of mature cold fronts. J. Atmos. Sci. 47, 929–950.

Schuster, H. G. 1995 Deterministic Chaos , 3rd edn. Weinheim: VCH.

Vanel, J. M., Peyret, R. & Bontoux, P. 1986 A pseudospectral solution of vorticity-streamfunction
equations using the influence matrix technique. In Numerical Methods in Fluid Dynamics II
(ed. K. W. Morton & M. J. Baines), pp. 463–475. Clarendon.

Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. 1985 Determining Lyapunov exponents
from a time series. Physica D 16, 285–317.

Zang, T. A. 1990 Spectral methods for simulations of transition and turbulence. Comput. Meth.
Appl. Mech. Engng 80, 209–221.


