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1.1.1.1.1. INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

In CNC the parametric curve or surface

actually  machined  differs  from  the  ideal

mathematical entity. Generation of tool locus

for machining of parametric planar curves

usually presents two levels of approximation.

The first level is implied by the approximation

of the parametric curve into a sequence of

lower  order  curves  (lines,  circular  arcs,

parabolic segments), which are the usual

primitives included in the dictionary of a CNC

machine. The second level of approximation

lies on the fact that these primitives are

actually mathematical abstractions which are

expressed  as  a  sequence  of  elementary,

discrete movements of the machine tool axes.

These two approximations eventually add up,

increasing the machining errors. According to

these facts, this investigation presents an

algorithm that directly expresses parametric

planar  curves  as  sequences  of  axis  move-

ments.  This  problem  can  be  abstracted  as

one of approaching a continuous curve in a

discrete space. By avoiding intermediate steps,

the errors inherent to both approximations

are reduced, therefore producing the best

possible curve given a CNC precision range (or

BLU (1) ). The objective of this investigation is to

explore the expression of parametric planar

curves directly into discrete movements of

BLU size of the machining tool axis. The net

final goal is to introduce a new G primitive,

namely parametric 2D curve, to enrich the

vocabulary of the G code in a CNC machine

tool.

(1) BLU: Basic Lenght Unit, is the axis resolution in

a CNC machine tool.

This  investigation  presents  an  algorithm
that directly expresses parametric planar
curves  as  sequences  of  axis  movements.
This  problem  can  be  abstracted  as  one  of
approaching a continuous curve in a discrete
space.

The example presented interpolates bezier

curves, although the algorithm is addressed to

work with any type of parametric curve.

Quantification of the merits of the algorithm

is attempted. Section 2 of the article surveys

the existing literature on this topic. Section 3

presents the algorithm and its different

characteristics. Section 4 discusses the results

obtained in the examples. Section 5 draws the

general conclusions of the article, and states

possible  advances  in  the  topic  presented.

2.2.2.2.2. LITERATURE SURVEYLITERATURE SURVEYLITERATURE SURVEYLITERATURE SURVEYLITERATURE SURVEY

The general problem of approaching a

continuous planar curve by a series of discrete

positions varies according to whether the

curve  is  expressed  in:  (i)  implicit  or  (ii)

parametric form.

(i) For implicit curves there is an immediate

antecedent in the algorithms used to display

geometric primitives on discrete spaces. This

is  the  case  of  Bresenhaḿs  and  Midpoint

algorithms to draw straight lines and circles

on  raster  graphics  devices  as  sequences  of

screen pixels (JOY, FOL.91, MOR.85). These

algorithms   make   use   of   symmetries   of

the  primitive  to  reduce  calculations  and

accelerate  the determination  of  the  pixels

to  highlight.  For example, in a circle, the

complete set of ( x,y ) pixel positions forming
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the periphery can be inferred from the pixels

of one octant. Another optimization of the

algorithms regards the statement of formulae

that only make use of integer arithmetic.

Clearly, for general planar curves, the special

conditions that favor Bresenham´s and

Midpoint algorithms are not present:  in

general,  there  exists  neither symmetry nor

formulae manipulation for integer  arithmetic.

In  addition  to  software-based  procedures

(Bresenhamś  and  Midpoint), hardware ones

are available which perform the interpolation

of an implicit planar function by using arrays

of DDAs (YOR.76). In summary this scheme

obtains the goal function by integrating its

derivatives by hardware. A similar software

approach, called pattern recognition tracks a

continuous planar implicit curve by staircase

displacements  on  a  discrete  grid  (KAP.91).

(ii)  In  processing  line  drawings  (image

consisting  of  line  and /or  curve  segments

which need no to be connected), (FRE.69) one

approaches the given mathematical curve

using the sequence of the grid discrete points.

The curve points on the grid are  chosen  on

the  basis  of  how  the  line drawing intersect

the grid line between two adjacent mesh nodes.

Of the two mesh nodes, the one closer to the

intersection point is chosen and used for the

low level direct interpolation.

The  general  problem  of  approaching  a
continuous planar curve by a series of
discrete positions varies according to
whether the curve is expressed in: (i) implicit
or  (ii)  parametric  form.

A large obstacle to apply the implicit curve

schemes mentioned above is the fact that

parametric  planar  curves  are  not  always

convertible  to  implicit  form,  and  therefore

the  techniques  are  not  always  applicable.

This  investigation  proposes  a  method  to

approach  a  parametric  curve  by  choosing

a  sequence  of  vertex  on  a  grid  in  such  a

way  that  the  error  of  approximation  is

minimized  among  them.  The  algorithm

correctly approaches bezier as well as spline

curves, and its strategy is indifferent  to  the

type  of  curve  used.  It should be noticed that

although it  reminds  Touissaint’s   work

(TOU),   it  focuses  on  BLU  grid  space  rather

than  on  screen  pixels.

Current  CNC  machines  use  the  original

curve  to  create  new  curves  based  on

primitive  curves  such  as  circles,  lines,

ellipses  and  parabolas.  The  most  modern

machines  interpolate  the  original  curves

using  not  only  primitives  but  also  nurbs.

The  CNC  machine  use  those  interpolated

data  to  create  a sequence  of  pulses  to

commard  the machine's motor(s) (BEA.97,

BEA.96).

To achieve this, is necessary to use another

interpolation method, this generates a double

interpolation and in consequence a double

error.  The  total  error  could  be  estimated

as  the  sum  of  these  errors.  Using  the

method described in this paper, only one

interpolation is necessary from the original

curve to the discrete movements in the

machine's axis reducing  the  error  to  BLU/

SIN45
o.  (SEE FIG.10).
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3.3.3.3.3. M E T H O D O L O G YM E T H O D O L O G YM E T H O D O L O G YM E T H O D O L O G YM E T H O D O L O G Y

Given a planar parametric curve C(u) , and a discretization of the 2D space (a grid of size BLU),

the goal is to produce the sequence of grid intersection points that approaches C(u) . The proposed

algorithm obtains the best approach for C(u)  given a grid G. This is so, because the algorithm

chooses in each step the grid intersection that is closest to the curve C(u) . Therefore, the error of

approximation to the curve is only the inherent to the finite resolution of the machine tool. This

is in contrast with other approaches which add the error inherent to the approximation of the

curve C(u) by other set of primitives (lines, circles and parabolas).

The  algorithm  used  for  the  BEZIER  interpolation  basically  includes  the  following functions:

function interp_segment ( Curve C, Grid G,

List X, List Y,

List Pulses_X, List Pulses_Y)

1 initialize(C,G,du);

2 X=[]

3 Y=[]

4 Pulses_X=[]

5 Pulses_Y=[]

6 (xi, yi) = round(C(0),G)

7 u = 0

8 while (u <= 1.0 ) do

9 {Inv: (xi,yi) = last grid intersection found}

10 u = u + du

11 (xt, yt)=C(u)

12 if too_large_jump((xi,yi),G,(xt,yt))

13 u=u-du

14 u=du/2

15 elseif hits_grid((xi,yi),G,(xt,yt))

16 (xt,yt) = round((xt,yt),G)

17 Pulses_X = [Pulses_X, sign_with_error(xt-xi, ERROR_DIST)]

18 Pulses_Y = [Pulses_Y, sign_with_error(yt-yi, ERROR_DIST)]

19 xi = xt

20 yi = yt

21 X=[X, xi]

22 Y=[Y, yi]

23 fi

24 end{while}

end{function}
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function boolean too_large_jump((xi,yi), G, (xt,yt))

1 if ((|xt- > G) or (|yt-yi| > G) and

2  ( not equal(xt,xi,ERROR_DIST)) and

3  ( not equal(yt,yi,ERROR_DIST))

4  )

5 return( TRUE );

6 else

7 return( FALSE );

8 fi

end{function}

function hits_grid((xi,yi),G,(xt,yt))

1 if ( (equal(|xt-xi|,G,ERROR_DIST)) or

2 (equal(|yt-yi|,G,ERROR_DIST))

3  )

4 return( TRUE );

5 else

6 return( FALSE );

7 fi

end{function}

OBSERVATIONSOBSERVATIONSOBSERVATIONSOBSERVATIONSOBSERVATIONS

1. The function sign_with_error(v, ERROR_DIST) returns

0, if equal (v, 0, ERROR_DIST)

1, if v > 0

-1, if v < 0

The sequences so build, Pulses_X  and Pulses_Y , are the inputs for the step motors driving the

axes X and Y of the CNC machine tool.

2. The  function  initialize ( C,G,du )  assigns  a  starting  value  to  du,  based  on  the  length  of

the  curve  C  and  the  grid  size  G.  The  starting  value  clearly  depends  on  the  control

points  of  the  curve  G,  and  is  defined  to  permit  several  iterations  on  the  parameter  u

within each grid interval.
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3. The  function  too_large_jump (( xi,yi ),  G,

(xt,yt ))  examines  if  xt  (or yt )  differs  from

xi  (or yi )  by  a  distance  strictly  larger

than  G (line 12).  In  that  case  the  para-

meter  du  is  decreased,  given  the  fact

that  it  represents  a  step  too  large  in

the parametric space.

4. The function hits_grid (( xi,yi ), G,( xt,yt ))

determines whether xt  (or yt ) lies away

from  xi  (or  yi )  approximately  by  a

distance G.

5. The line ( xt,yt) = round((xt,yt),G ) chooses

the grid intersection closest to the point

C(u) . This function is called when C(u)  lies

on  a  horizontal  grid  line  ( y=yt )  or  a

vertical one ( x=xt ).

The  main  strategy  of  the  algorithm  is  to

detect the places in which the curve C(u)

crosses the vertical ( x=k*g ) or horizontal

(y=k*g ) grid lines (see line 15). If it is detected

that the curve crosses say a horizontal grid

line ( yt=k*g , for some integer k), the other

component ( xt ) of the point is attracted to the

closest vertical grid line. A converse situation

is  produced  if  the  line  crosses  a vertical

grid line.

Once the grid intersection is recorded, the

pulses required to drive the machine from the

previous intersection to the current one are

determined  (See  17,18).  Each  entry  of  the

pulse  train  may  take  one  of  tree  values:

{no  pulse,  pulse  forward,  pulse  backward}

(0,1,-1). With this convention, the curve C(u)

is represented by two sequences:

for X axis: 1,1,0,0,0,0,-1,-1,-1....

for Y axis: 0,0,-1,-1,-1,0,-1,0,0,0,....

4.4.4.4.4. RESULTSRESULTSRESULTSRESULTSRESULTS

The algorithm presented above was tested

with three Bezier curves. Figures 1, 4 and 7

present the mathematic versions, as well as

the approximations resulting of the algorithm

explained. Figures 2, 3, 5, 6, 8, and 9 present

the corresponding pulse trains to machine the

curves with a CNC machine of 0.02 mm BLU.

The maximum error is found when the curve

approaches a grid vertex while the algorithm

chooses its diagonal one as closest to the

curve.  This  could  happen  because  the

intersection of the curve with grid boundaries

(See  Figure  10)  would  produce  grid  inter-

section ( xk, yk ) in the k iteration.

5.5.5.5.5. CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS

The  present  article  has  presented  an

algorithm for the direct interpolation of

parametric curves with a CNC machine. The

exact nature of the curves is not relevant to

the  algorithm  given  the  fact  that  its

mathematical form does not explicitly appear

in it. The algorithm presented is the best

approximation that a parametric curve may

have with a grid of given BLU value. This is so

because it eliminates the approximation of the

C(u)  curve with given primitives (lines, circles,

etc.)  which  have  to  be,  in  turn,  approached

by the pulse trains driving the axes of the

CNC  machine.  In  this  algorithm  the  curve

C(u)  is directly approximated by the pulse

trains, therefore  eliminating  one  source  of

the machining errors.
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