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Abstract

Most engineering systems are multivariable in nature where more than one

input controls more than one output. The challenges arise in controlling

these types of systems due to interaction among inputs and outputs. In

an attempt to optimise the performance of these processes, many perfor-

mance objectives need to be considered simultaneously. In most cases, these

objectives often con�ict and hence a need for Multi-objective Optimization

(MOO) analysis.

In this thesis, MOO design for Model Predictive Control (MPC) and Pro-

portional Integral (PI) control are investigated for a multivariable process.

The Pareto sets for both controllers are generated using Pareto Di�erential

Evolution (PDE) and then compared using an n-Dimensional visualisation

tool, Level Diagrams to evaluate which controller is best for the process. In

addition, the MOO performance measures (or quality indicators) are further

used to quantitatively compare the Pareto fronts generated out of these con-

trollers. Finally, the solutions which provide a preferred performance are

then selected and tested experimentally on the process.
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Chapter 1

Introduction

1.1 Background

Most industrial control systems are Multi-Input Multi-Output (MIMO) or

multivariable in nature. These types of systems have two or more outputs

which are controlled by two or more inputs. In these systems, one input does

not a�ect only one output response, but it a�ects all other output responses.

In fact, when tracking a certain output due to its set-point changes, the

other outputs' responses are also interactively a�ected. Due to the struc-

tural properties of these multivariable systems, issues which are not relevant

in Single-Input Single-Output (SISO) systems such as interaction imposes

a challenge in designing controllers for these types of systems [1]. The de-

sign complexity of these controllers can further increase if other performance

measures, for example overshoots or oscillations minimisation, have to be

integrated into the control design considerations.

Several methods have been used to control multivariable systems. One of the

popular control methods, Model Predictive Control which is mostly applied
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in industrial systems has also been found to perform well with MIMO systems

[1, 2]. MPC rely on the model of the system to minimise a cost objective

which is used to calculate the optimal inputs to be applied onto the system.

Due to the structure of the MPC design, many parameters are involved

that need to be considered to tune the controller performance. Numbers

of works have been done to systematically tune the MPC for speci�c cases

and these are reviewed in ref. [3]. However due to varying nature of MPC

methods and control systems the tuning parameters of these methods can

still be manipulated to obtain better performance. In ref. [4], it has been

shown that di�erent control design methods performance can considerably be

improved if used in conjunction with Multi-Objective Optimisation (MOO).

Some of the work that uses MOO with MPC can be found in ref. [5] where

genetic algorithm is combined with multi-objective fuzzy decision making

(MOFDM) in an attempt to �nd MPC tuning parameters that optimize the

MIMO system performance. However, few works have been conducted on

comparisons of MOO MPC with other control methods so as to evaluate its

trade-o� performance over other control methods. The work where MOO

MPC was compared with the most popular control method, Proportional

Integral (PI) control can be found in [6]. However, the comparison was

done based only on theoretical design without any simulations, use of MOO

visualisation methods and or practical implementations which are addressed

in this work.

In MOO design methods, the idea is to try to deal with cases where many con-

�icting design objectives are to be satis�ed simultaneously. This is achieved

by designing cost objectives to represent the performance measures that are

to be optimised. These design objectives are then either minimised or max-

imised to generate the optimal solutions. The outcome of these optimal

3
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solutions depend entirely on the design objectives used [7]. As a result, care

must be taken when designing these objectives to ensure that they accurately

represent the performance measures to be evaluated.

The optimal solutions are the set in which all solutions that are obtained

using the given cost objectives are non-dominated in nature that is, in this set

there is no solution which is better than any other solutions. Improving any

cost objective in this set, will result into at least one of the other objectives

worsening. As a result, all solutions in this set can equally be acceptable as

solutions for controller design. This set is known as Pareto-optimal set [8].

Generating the exact optimal set can be computationally expensive or infea-

sible [8]. However, various methods exist that have been used to generate

the approximate of the Pareto set. The most recently used methods are

Multi-objective Optimisation Evolutionary Algorithms (MOEAs). This is

because they provide a good approximate of the Pareto set [8], that is, a set

of solutions which are (hopefully) not too far away from the optimal solu-

tions. Further, these algorithms as contrary to other algorithms that have

been used like nonlinear programming, use the probabilistic instead of deter-

ministic approach when progressing with the search to �nd global solutions.

They also classi�ed the solutions simply as populations and then apply the

principle of the survival of the �ttest. In this principle, the individuals which

are weaker (i.e., the solutions which there exists one or more solutions which

are better than them in all objective functions) are eliminated so that only

stronger individuals can evolve towards better solutions.

In the Pareto set, since all points are equally acceptable as solutions, knowl-

edge about this set can signi�cantly help the Decision Maker (DM) in choos-

ing the best compromise solution for a given design speci�cation. As a result,

tools are needed to aid the DM in selection for the preference. Visualisation
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tools have been widely accepted as valuable tools to help the DM to analyze

the Pareto set and select good solution [9]. Traditionally Pareto fronts are

represented in 2-Dimension (2-D) or 3-D which are relatively easy to visu-

alise but for dimensions higher than 3-D, it becomes di�cult to visualise or

extract useful information from such plots. Di�erent methods for aiding n-

Dimensional visualisation and decision making have been proposed. In ref.

[10], Visually Interactive Decision-making and Design using Evolutionary

Multi-objective Optimization (VIDEO) is presented but it can only be used

for design objectives up to four (or 4-D). Parallel coordinates and scatter

diagrams are popular methods in use for any dimensional space but their

plots have been found to be complex [9] and hence di�cult to interpret.

1.2 Scope

In this thesis, MOO is used to design MPC and Proportional Integral (PI)

controllers to optimise the performance of a highly interactive multivariable

system. Eight cost objectives are designed using the Integral Square Error

(ISE) and Integral Square Control velocity (ISU) on which large values of

their amplitudes are greatly penalised. From these cost objectives, the 8-D

Pareto fronts are generated for both controllers using one of the MOEAs,

Pareto Di�erential Evolution (PDE) algorithm.

The generated Pareto fronts for both controllers are visualised and compared

using a visualisation tool for n-Dimensional Pareto front, i.e. Level Diagrams

which is presented in ref. [9]. Furthermore, quantitative analysis for the

Pareto fronts are carried out using quality indicators (unary hypervolume,

binary hypervolume) presented in ref. [8] to further quantify which Pareto

front gives a better coverage space.
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Lastly, from the Pareto set, the solution which gives a better compromise

solution closer to the preference from each controller are simulated and com-

pared in real time. The experiments are then conducted in order to �nally

evaluate their performances on the physical process.

The thesis including Introduction is structured as follows: Chapter 2 gives

an overview and design of di�erent control methods that have been used.

Chapter 3 then gives a detail of the multi-objective design methods and tools

that are used for visualisation and analysis for MOO problems. Furthermore,

Chapter 4 then takes a look at a multivariable system that is used. Analysis

of the structure of the system and di�erent cost objectives that are used

are also discussed. This is followed by Chapter 5, which presents the Level

Diagram results and their interpretation. Time simulation and experimental

results are also presented and discussed. The conclusions that summarise

the �ndings and future works are �nally presented in Chapter 6.

6
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Chapter 2

Control Methods

In this chapter, di�erent controller methods used in this thesis are discussed.

Firstly, the literature review behind the invention and application of MPC

is presented. Then the formulation of the MPC controllers will be discussed.

Finally, the classical PI controller designs will be discussed.

2.1 Model Predictive Control Review

The name Model Predictive Control (MPC) also referred to as Receding

Horizon Control comes from the idea of employing an explicit model of the

system to be controlled which is used to predict the future output behaviour.

This prediction enables the capability of solving the optimal control problem

on-line, where the tracking error (i.e. the di�erence between the predicted

output and the set-point (desired reference)) is minimised over a future hori-

zon, possibly subject to constraints on the manipulated inputs and outputs.

The idea of Model Predictive Control can be traced back to the 1960s [11],

but interest in the �eld started to be seen in the 1980s after the publications

on IDCOM and Dynamic Matrix Control (DMC) and exposition of General

7
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Predictive Control (GPC) [12]. Although at the �rst sight, the idea behind

DMC and GPC looks similar but DMC was conceived as multivariable con-

strained control, while GPC is primarily suited for a single variable, and

possibly adaptive control [2, 12]. MPC employ optimisation according to a

receding horizon philosophy which provides the controller with the desired

feedback characteristics.

MPC has some signi�cant strength as compared with other methods. In ref.

[13, 14] constraints have been shown as problem since they limit the system

performance. However, the problem was addressed by ref. [13, 15] and MPC

was found to handle the constraints systematically by imposing constraints

on the predictions. This is of importance since constraints such as limited

actuator power, force and slew rate, are virtually present in most control sys-

tems. Further, MPC has also been found to deal with multivariable (MIMO)

system [2, 16] especially highly interactive MIMO systems [13]. These have

enabled MPC to slowly become a popular control methodology. For example,

based on the data described in the survey paper [17], the estimated num-

bers of MPC applications are between seven and ten thousand on a global

scale. Most of these applications are found in the re�ning industries where

slow process dynamic plants enable MPC implementations, however MPC

has also found applications in fast process systems, for example, robotics,

aerospace, automotive and pulp & paper industries [17].

On the other hand in order to control the process accurately, MPC need a

very accurate model [14]. This is because in predictive control, the model

is used solely to compute the process predictions which are in turn used

to calculate the control actions. This is somehow disadvantageous as it is

di�cult to model all the physics, chemistry and internal behaviour of the

processes [13].

8
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MPC is classi�ed into two main methods, Unconstrained and Constrained

MPC.

2.2 Unconstrained MPC

This is a form of MPC in which the controller is formulated o�-line and

used at each time step to calculate the control action. The block diagram

for this method is shown in Figure 2.1. This is the state feedback structure

for the discrete model prediction control (DMPC). The matrices Ap, Bp,

Cp de�ne the discrete state-space representation of the system model. The

r(k) is the set-point where we want to drive our system and the observer

estimates the state variable x̃(k) using the output y(k). The state variable

vector x(k) =

[
4x(k) y(k)

]T
and hence the controller matrix K can be

split into two K =

[
Kmpc Ky

]
, where Kmpc corresponds to the feedback

gain related to 4x(k) and Ky corresponds to the feedback gain related to

y(k). The z−1 denotes the backward shift operator and the module 1
1−z−1

denotes the discrete-time integrator.

The control law is formulated using the state-space design which gives ad-

vantages of stability analysis, exponential data weighting, Linear Quadratic

Regulator (LQR) equivalent, and easy extension from Single Input Single

Output (SISO) to MIMO.

Consider the stable discrete state-space model

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(2.1)

where k denotes the current sampling point, 'x', 'u', and 'y' represent the

9
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Figure 2.1: Unconstrained predictive control block diagram
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state, the input and the model output, respectively, and A, B, C are system

matrices.

The following traditional MPC cost function which penalizes the deviations

of the controlled outputs from reference trajectory, i.e. e(k+j|k) and control

actions, i.e. u(k + j|k) is minimised

J =

Np,Np∑
r=0,j=0,

Q(r, j)[e(k + j|k)]2 +

Nc−1,Nc−1∑
r=0,j=0

R(r, j)[u(k + j|k)]2 (2.2)

where Np and Nc are the prediction and control horizon respectively, e is the

error, u is the input. Q and R are the positive de�nite weighting matrices.

• The prediction horizon, Np corresponds to the future time interval used

to compute predictions of the output. It dictates how far we want the

future to be predicted.

• The control horizon, Nc is a set of sampling intervals where the present

and the future control actions are computed. After Nc, the controller

will maintain the last control signal computed at Nc until the end of

the prediction horizon in order to calculate the output prediction.

2.2.1 Control law and O�set-free Tracking Control

In every control problem, the idea is to drive a system to a desire set-point.

The above formulation, i.e. using the state-space in Equation 2.1 would

not drive the system to its desired reference if subjected to disturbance or

modelling errors. To eliminate these, the state-space matrices are augmented

[18] to introduce an integral action. The integral action introduces extra
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states to estimate the steady state error and attempt to eliminate the error.

The complete velocity form method which considers the increments on both,

the inputs and the states is used and has the following form:

ξ(k + 1) = Ãξ(k) + B̃4u(k)

y(k) = C̃ξ(k)
(2.3)

where

Ã =

 A 0

CA I

 , B̃ =

 B

CB

 , C̃ =

[
0 I

]

ξ(k) =

 4x(k)

y(k)



4x(k) = x(k)− x(k − 1)

4u(k) = u(k)− u(k − 1)

and A,B, C are matrices in Equation 2.1. The traditional cost function which

penalizes the deviations of the controlled outputs y(k + j|k) from reference

trajectory r(k + j|k) and the increments in control action(i.e 4u) is now

de�ned as

J =

Np,Np∑
r=0,j=0

Q̄(r, j)[e(k + j|k)]2 +

Nc−1,Nc−1∑
r=0,j=0

R̄(r, j)[4u(k + j|k)]2 (2.4)

where

12



Univ
ers

ity
 of

 C
ap

e T
ow

n

e(k + j|k) = r(k + j|k)− y(k + j|k)

R =


λ1 . . . 0

...
. . .

...

0 . . . λh



Q =


β1 . . . 0

...
. . .

...

0 . . . βq


The constants λh, βq are weighting coe�cients on control action and error

respectively, h is the number of input and q is the number of outputs.

In this cost function, the new state vector ξ is directly penalised in order

to achieve a stationary point in which the state increments are null and the

output is equal to the set point [18].

In MPC, the future control velocity and states are captured over the whole

range of Nc and Np respectively. The future control velocity trajectory are

denoted by 4u(k|k) 4u(k + 1|k) 4u(k + 2|k) ... 4u(k +Nc − 1|k)

and the future states are also denoted by ξ(k+1|k) ξ(k+2|k) ξ(k+3|k) ... ξ(k+

Np|k).

Based on the state-space model in Equation 2.3, the future states variables

can be calculated sequentially as
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ξ(k + 1|k) = Ãξ(k|k) + B̃4u(k|k)

ξ(k + 2|k) = Ãξ(k + 1|k) + B̃4u(k + 1|k)

= Ã2ξ(k|k) + ÃB̃4u(k|k) + B̃4u(k + 1|k)

...

ξ(k +Np|k) = ÃNpξ(k|k) + ÃNp−1B̃4u(k|k)

+ . . .+ ÃNp−NcB̃4u(k +Nc − 1|k)

(2.5)

From the predicted state variables, by substitution, the predicted output

variables are

y(k + 1|k) = C̃Ãξ(k|k) + C̃B̃4u(k|k)

y(k + 2|k) = C̃Ãξ(k + 1|k) + C̃B̃4u(k + 1|k)

= C̃Ã2ξ(k|k) + C̃ÃB̃4u(k|k) + C̃B̃4u(k + 1|k)

...

y(k +Np|k) = C̃ÃNpξ(k|k) + C̃ÃNp−1B̃4u(k|k)

+ . . .+ C̃ÃNp−NcB̃4u(k +Nc − 1|k)

(2.6)

This predicted output can then be written in a compact form as

Y = Fx(k) + Φ4U (2.7)

where
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F =



C̃Ã

C̃Ã2

C̃Ã3

...

C̃ÃNP


,Φ =



C̃B̃ 0 0 ... 0

C̃ÃB̃ C̃B̃ 0 ... 0

C̃Ã2B̃ C̃ÃB̃ C̃B̃ ... 0

...
...

...
. . .

...

C̃ÃNP−1B̃ C̃ÃNP−2B̃ C̃ÃNP−3B̃ ... C̃ÃNP−NC B̃



and

Y =

[
y(k + 1|k) y(k + 2|k) y(k + 3|k) ... y(k +Np|k)

]T

4U =

[
4u(k|k) 4u(k + 1|k) 4u(k + 2|k) ... 4u(k +Nc − 1|k)

]T

From Equation 2.4 , the optimization cost function can be simply be written

as

J = (Rs − Y )T Q̄(Rs − Y ) +4UT R̄4U (2.8)

where

RT
s =

Np︷ ︸︸ ︷[
1 1 1 ... 1

]
r(k)

R̄ = λI(Nc×Nc)

Q̄ = βI(Np×Np)
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where β > 0 and λ ≥ 0.

To �nd optimal 4U we substitute Equation 2.7 into Equation 2.8 and min-

imized J (Discussed in Appendix A). Then the optimal control law is given

as

4U = (ΦT Q̄Φ + R̄)−1ΦT Q̄(Rs − Fx(k)) (2.9)

with the assumption that (ΦT Q̄Φ + R̄)−1exists. This is a Hessian matrix

and in the MPC literature is known as the System Matrix which gives the

sensitivity of the controller to model errors and tuning parameters variation.

Since the matrix needs to be inverted to calculate the control action, it is

properly conditioned by a careful selection of matrix Q̄ and R̄.

From Equation 2.9, (ΦT Q̄Φ + R̄)−1ΦT Q̄Rs corresponds to set-point change,

while (ΦΦ + R̄)−1ΦT Q̄F corresponds to the state feedback control.

Equation 2.9 can then be re-written as

4U = Kyr(k)−Kmpcx(k) (2.10)

where

Ky = (ΦT Q̄Φ + R̄)−1ΦT Q̄R̄s

Kmpc = (ΦT Q̄Φ + R̄)−1ΦT Q̄F

2.2.2 Receding Horizon Control

When calculating the control law, the optimal control ∆U is a vector that

contains all the future control increments, i.e.
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∆U = [∆u(k|k),∆u(k + 1|k), ...,∆u(k +Nc − 1|k)]

With receding control idea, we only implement the �rst sample of this se-

quence, i.e.,4u(k|k) while ignoring the rest of the sequence. Since the pre-

diction horizon remains of the same length as before, but slides along by one

sampling interval at each step, this way of controlling a plant is often called

a Receding horizon strategy [14].

2.3 Constrained MPC

In virtually all control systems, constraints do arise due to performance

demands or the environment in which the system operates. These constraints

are mostly found in the following forms [14]:

1. direct costs (e.g energy costs)

2. product quality

3. Saturation constraints

• Valve adjustment

• �xed pipe size

• Road lane

4. Output constraints (e.g overshoots), etc

This form of MPC formulates the controller on-line at each step and calcu-

lates the control action.
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2.3.1 Control, Control incremental and Output variable Con-

straits

Control variable constraints are mostly hard constraints in nature, for ex-

ample, a DAQ card cannot be allowed to operate beyond a certain voltage

range. In actual fact, we demand that

Umin ≤ U(k + i|k) ≤ Umax (2.11)

where Umin and U is the minimum and maximum limits of control variables

vectors respectively and i = [0, 1, .., Nc − 1].

Similarly, the control incremental constraints are also hard constraints. They

are of the form

∆Umin ≤ ∆U(k + i|k) ≤ ∆Umax (2.12)

where ∆Umin and ∆Umax are the minimum and maximum limit of control

incremental variables vectors respectively. In most cases, limits are de�ned

in terms of u(k) but since u(k) = u(k−1)+∆u(k), the ∆u(k) can be used to

dictate the direction of u(k). For example, if we want u(k) to only increase

then we will de�ne our constraints as

0 ≤ ∆U(k + i|k) ≤ ∆Umax (2.13)

The output constraints are given as

Ymin ≤ Y (k + j|k) ≤ Ymax (2.14)
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where Ymin and Ymax are the minimum and maximum limits of output vec-

tors respectively and j = [1, 2, .., Np].

The constraints on output are �soft� constraints in nature, because when

the output constraints become active, they cause large changes in control

and control incremental variables, which might violate their own constraints.

Since these constraints are �hard � in nature, the problem of constraints con-

�ict arises. This is resolved by adding a small slack variable sv in output

constraints hence softening them [2].

Ymin − sv ≤ Y (k + j|k) ≤ Ymax + sv (2.15)

2.3.2 Constrained Control formulation

The constrained control method includes constraints in its control law formu-

lation hence the constraints have to be formulated as part of the controller

design requirements. This is achieved by translating them into linear in-

equalities, and then relating them into the MPC problem. The idea is to

combine the constraints with the original cost function J used in Equation

2.8. In MPC literature, the ∆U parameter is mostly the parameter to be

optimised, hence all constraints are expressed in as a set of linear equations

based on ∆U .

The constrained problem is decomposed into two problems to re�ect the

lower and upper limits, that is,

∆Umin ≤ ∆U ≤ ∆Umax

is expressed as
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−∆U ≤ −∆Umin

∆U ≤ ∆Umax

(2.16)

Expressed in matrix form, it becomes

 −I
I

∆U ≤

 −∆Umin

∆Umax


These constraints are imposed mostly in both input and output variables,

and have to be expressed for the whole prediction. Hence, in the case of

input variables, this is expressed as



u(k|k)

u(k + 1|k)

...

u(k +Nc − 1|k)


=



I

I

...

I


u(k−1)+



I 0 0 ... 0

I I 0 ... 0

...
...

...
. . .

I I I ... I





∆u(k|k)

∆u(k + 1|k)

...

∆u(k +Nc − 1|k)


(2.17)

Expressing Equation 2.17 in matrix form as in Equation 2.16, we get

− (γ1u(k − 1) + γ2∆U) ≤ −Umin

(γ1u(k − 1) + γ2∆U) ≤ Umax

(2.18)

The output constraints can also be expressed as,

Ymin ≤ Fx(k) + Φ∆U ≤ Ymax

which can also be written in matrix form as
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 − (Fx(k) + Φ∆U) ≤ −Ymin

(Fx(k) + Φ∆U) ≤ Ymax

 (2.19)

Combining all constraints (i.e, Equations [2.16,4.4,2.19]) together, the Con

trained MPC law will be designed as to �nd the parameter ∆U that minimise

J = ∆UT
(
ΦTΦ + λ

)
∆U − 2∆UTΦT (Rset − Fx(k)) (2.20)

subjected to inequality constraints


Ω1

Ω2

Ω3

∆U ≤


µ1

µ2

µ3


where

Ω1 =

 −γ2
γ2

 ; µ1 =

 −Umin + γ1u(k − 1)

Umax − γ1u(k − 1)



Ω2 =

 −I
I

 ; µ2 =

 −∆Umin

∆Umax



Ω3 =

 −Φ

Φ

 ; µ3 =

 −Ymin + Fx(k)

Ymax − Fx(k)


Equation 2.20 is a quadratic programming problem which can be solved using

numerical algorithms.
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2.3.3 Quadratic Programming

Quadratic Programming (QP) is a special type of mathematical optimization

problem. Since this is a �eld on its own, we will look at QP in overview and

algorithms that are used to solve these problems.

In QP, we optimise (i.e., minimise or maximise) a quadratic function of sev-

eral variables subject to linear constraints on these variables. We minimise

f(x) =
1

2
xTEx+ xTΓ (2.21)

subjected to one or more constraints of the form

ψx ≤ b(inequality − constraints)

Λx = d(equality − constraints)

where x ∈ Rn space, E is a symmetric n× n matrix and Γ is n× 1 column

vector.

Heldrith Programming is one of the popular numerical algorithms that are

used to solve the quadratic problems. This algorithm is used in this thesis

because it avoids any matrix inversion when searching for optimal solution.

It also gives a compromised, near-optimal solution if the situation of con�ict

in constraints arises [2] hence avoids giving an error message. This is a key

strength of using this approach because in real-time applications, the plant

is awaiting for the input to be applied at every sample instant, so if a case

of constraints con�ict arises and there is no solution which can satis�es all

the active constraints, the algorithm should have the ability to automatically

recover from this condition instead of giving error.
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2.3.3.1 Inequality Constraints

The inequality constraints are the constraints of the form

ψx ≤ b (2.22)

where ψ and b are matrices of compatible size.

The inequality constraints may comprise active constraints and inactive con-

straints. In most cases, an inequality ψix ≤ bi is said to be active if ψix = bi

and inactive constraints if ψix < bi. Note that ψi represent the i
th row of ψ

matrix while bi is the i
th element of b column vector. In order to de�ne the

active and inactive constraints, the Kuhn-Tucker conditions should be met

[19]. The necessary Kuhn-Tucker conditions are

Ex+ Γ + ψTλ = 0

ψx− b ≤ 0

λT (ψx− b) = 0

λ ≥ 0

(2.23)

where the vector λ contains the Lagrange multipliers. At any given time

instant, it is most probable that certain constraints are active. Denoting

the index set of active constraints as Gact, then Equation (2.23) can be

transformed to represent these active set of constraints and it can simply be

written as
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Ex+ Γ +
∑

i∈Gact
λiψ

T
i = 0

ψix− bi = 0

ψix− bi < 0

λi ≥ 0

λi = 0

i ∈ Gact

(2.24)

From Equation (2.24), note that ψix− bi = 0 means that this is an equality

constraint, therefore active constraint. But in contrast, ψix − bi < 0 is in-

active constraint which means that its constraints requirements are ful�lled.

If the constraint is active, the corresponding Lagrange Multiplier is non-

negative (i.e, λi ≥ 0) whilst if the constraint is inactive the corresponding

Lagrange Multiplier is zero (i.e, λi = 0).

2.3.3.2 Equality Constraints

If the objective to be minimised is subjected to equality constraints, that is,

ψx = b , then Lagrange Multiplier are introduced to solve the optimization

function. The original objective function given in Equation (2.21) is re-

written as

f(x) =
1

2
xTEx+ xTΓ + λT (ψx− b) (2.25)

If ψx = b, then Equation (2.25) is translated back into its original opti-

mization function. Most importantly, it should be noted that satisfying all

equality constraints that become active simultaneously, it is a bit di�cult

and some constraints might have to be violated.
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2.4 Proportional Integral Control

PI control is a simpli�ed version of Proportional Integral Derivative (PID)

control method where the derivative term (i.e, D term) is removed. This

method as contrary to MPC does not use a model of the process to calculate

its control law; however it uses the error between the output and its refer-

ence to calculate the control action that is applied onto the system. Due

to this simplicity in calculating the control law and its competitiveness in

performance [20], it has remained one of the popular control methods in use

in the industries.

2.4.1 PI Formulation

PI design is fully discussed in ref. [21]. In this thesis, the form used is slightly

modi�ed as shown in Equation 2.26 for easy parameter range determination

and tuning (Explained later in Section 4.5).

K(s) = KP +
KI

s
(2.26)

The MIMO PI is designed as

K(s) =



K1 0 . . . 0

0 K2 . . . 0

...
...

. . .
...

0 0 . . . Ki


(2.27)

whereKi takes the form shown in Equation 2.26, which then gives the control

law
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∆u1

:

.

∆ui


=



K1 0 · · · 0

0 K2 · · · 0

...
...

. . .
...

0 0 · · · Ki





∆e1

:

.

∆ei


(2.28)

i = [1, 2, 3, ...]

where ∆ui, ∆ei, Ki are the control action velocity of output i, the change

in error of the output i due to reference i and the controller on output i

respectively.
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Chapter 3

Multiobjective Optimisation

Design and Tools

When designing a control system, there are often a number of design objec-

tives that need to be considered. These objectives most often con�ict and no

design exist which are considered the best with respect to all the objectives.

These have led to a trade-o� analysis between the objectives and hence a

multi-objective optimisation (MOO) problem. MOO combined with control

methods can considerably improve the performance of the process and also

help to approximate con�icting design speci�cations [4].

3.1 Multiobjective design

Design is generally governed by multiple con�icting criteria, which require

designers to look for good compromise designs by performing trade o� studies

involving the criteria [22]. These design speci�cations are often con�icting

since there is no optimal solution that simultaneously satis�es all of them.
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In general the multi-objective Optimisation problem is a problem of simul-

taneously minimising the n objectives Jn(θ), that is

min

θ ∈ Ω
J(θ)

θ = [θ1, . . . , θi] ∈ Ω

J(θ) = [J1(θ), . . . , Jk(θ)]

where θ is the input or decision vector, Ω is the decision space and J(θ)

is the cost or objective vector. These generate a set of mutually optimal

solutions ΩP in which no point dominates any other. This set is known as

the Pareto-optimal set [9]. In this set, there is no single solution which is

better than the others, i.e., improving any objective functions in this set,

will result into at least one of the other objectives worsening.

3.1.1 Pareto Optimal

A point θ∗ ∈ ΩP is de�ned as being Pareto-optimal if and only if there exists

no other point θ ∈ ΩP such that

1. Jn(θ) ≤ Jn(θ∗) for all n and

2. Ji(θ) < Ji(θ∗) for at least one i

This is shown in Figure 3.1. φ1 and φ2 are cost objectives to be minimised.

Note that a point lying in the interior of the attained set is sub-optimal,

since both φ1 and φ2 can be reduced while a point lying on the boundary of

the set, i.e., the Pareto optimal set, θP , requires φ1 to be increase if φ2 is to

be decreased or vice versa.
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Figure 3.1: The Pareto-optimal set [4]

Therefore, the Pareto optimal point, θP , is given by

θP = {θ ∈ Ω|@θ∗ ∈ Ω : θ∗ ≺ θ}

3.1.2 Di�erential Evolution

MOO is a huge �eld with many di�erent optimisation methods. Some of the

very popular types of MOO methods are Evolutionary Algorithms (EA) [7].

These methods are preferred over other methods because they use proba-

bilistic and not deterministic procedures for processing the search [4]. They

also work well on the non-smooth objective functions hence they are less

susceptible to the shape or continuity of the Pareto Front [7]. Another ad-

vantage of these methods is that they are more likely to �nd global optima,

and not be stuck on local optima as gradient methods might do [23].

There are various competing EA which di�er depending on the selection
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of individuals for breeding, the crossover combination of genes by mating,

genetic mutation and other factors such as population size. Most of the

recent popular Multi-Objective Evolutionary Algorithm (MOEA) methods

are the SPEA2 (Strength Pareto Evolutionary Algorithm), MOGA (Multiple

Objective Genetic Algorithm), NGSA-II (Non-dominated Sorting Genetic

Algorithm), NPGA-II (Niched Pareto Genetic Algorithm), Particle Swarm

Optimization and Di�erential Evolution (DE) [6, 7].

In this thesis DE is used due to its desired properties. DE has been found

to be competitive with other EA's [24] and it deals with real numbers rather

than binary encoding as many EA's do [7]. Furthermore, there has been

extensive research in the �eld of DE in the department. The Pareto Di�er-

ential Evolution Algorithm (PDE) discussed in ref. [24] is used to generate

the Pareto front.

3.2 Multiobjective Visualisation and Analysis

In multi-objective optimisation, the decision-maker (DM) will be stuck with

the problem of having a Pareto optimal set of con�icting functions. As a

result, tools are needed to aid DM to visualise, analyse and decide based on

the preference which set better �ts the problem.

Depending on how the computation and the decision-making processes are

combined in the search for compromise solutions, there exist three main

classes of multi-objective optimization methods: a priori articulation of pref-

erences, a posteriori articulation of preferences, and progressive articulation

of preferences [4].

• In a priori articulation of preferences, the DM makes the preferences

30



Univ
ers

ity
 of

 C
ap

e T
ow

n

before optimization begins. Here the DM makes preference by com-

bining individual objective functions into a single objective function.

• In a posteriori articulation of preferences, the DM makes the prefer-

ences after optimization. Here, the DM has the optimiser which de-

termines the solution set before the DM makes any preferences. Then,

the DM can choose the solution trade-o� from the determined set.

• In a progressive articulation of preferences, the DM makes decisions

during optimisation. At each step, the DM provides partial preference

information to the optimiser, which in turn generates better alterna-

tives based on the information received.

Preference articulation tries to implicitly de�ne a utility function that dis-

criminates between candidate solutions. Although it is very di�cult to for-

malise such a utility function in every detail, approaches based on weighting

coe�cients, priorities and goal values have been widely used [4].

• Weighting coe�cients are values that show the importance of the ob-

jectives and balance their involvement in the overall utility function.

• Priorities are integers which determine the order in which cost ob-

jectives are to be optimised based on their importance. Each cost

objective is assigned a priority number.

• Goal values give an indication of the desired levels of performance

in each objective dimension. These may represent the level of per-

formance or the ideal performance levels to be matched as closely as

possible. This is the most used method as it is easier to be interpreted

and can relate more closely to the �nal solution of the problem.
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3.2.1 Level Diagrams

In MOO design, it is mostly accepted that visualization tools are valuable and

provide decision-makers with a meaningful method to analyze the Pareto set

and select good solutions [9]. This method has been widely applied in control

systems for analysis of Pareto fronts of di�erent control design methods.

Traditionally Pareto fronts have been proposed to be represented in 2-D

or 3-D plots which are easy to visualise. However when the Pareto front

dimensions are increased to a dimension higher than 3-D, it becomes di�cult

and impossible to extract useful information's from the plots.

Di�erent methods for aiding n-Dimensional visualisation have been proposed

and the most commonly used are scatter diagrams and parallel coordinates

[9]. Scatter diagrams arrange data in form of an n×n matrix where each di-

mension represent one row and column of the matrix. Parallel coordinates on

the other hand try to represent an n-dimensional data on a two dimensional

graph where each dimension is translated into an x-coordinate. However,

plots complexity of both methods increases as dimensions of data increases

[9] hence it becomes di�cult to interpret.

Level diagrams are another new alternative method that enables easier vi-

sualization and analysis of a multi-dimensional Pareto set. This method is

presented and discussed in ref. [9]. It can be used in a priori and progressive

articulation of preferences to help the DM.

The Level diagrams tool try to approximate the Pareto front based on the

proximity to the ideal point and then normalize each objective with respect

to its minimum and maximum values, i.e.
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JM
i =

max

θ ∈ ΩP ∗
Ji(θ)

Jm
i =

min

θ ∈ ΩP ∗
Ji(θ)

i = 1, . . . , s

J i(θ) =
Ji(θ)− Jm

i

JM
i − Jm

i

−→ 0 ≤ J i ≤ 1 (3.1)

Then a norm is evaluated to an approximate distance to the ideal point, and

these norms are applied as shown in ref. [9].

1. 1-norm:
∥∥J i(θ)

∥∥
1

=
∑s

i=1

∣∣J i(θ)
∣∣

2. Euclidean norm (2-norm):
∥∥J i(θ)

∥∥
2

=
√∑s

i=1 J i(θ)2

3. In�nite norm (∞-norm):
∥∥J i(θ)

∥∥
∞ = max{J i(θ)}

The values of each norm ranges as shown in Equation 3.2

0 ≤
∥∥J i(θ)

∥∥
1
≤ s

0 ≤
∥∥J i(θ)

∥∥
2
≤
√
s

0 ≤
∥∥J i(θ)

∥∥
∞ ≤ 1

(3.2)

The Pareto front shape view is di�erent for each norm. The Euclidean norms

supply an accurate evaluation of the conventional geometrical distance to the

ideal point, and then o�er a better view of the `real ' shape [9]. The∞-norm

shows the worst objective at a speci�c point. It is mostly used for trade-o�

analysis between di�erent objectives.
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Figure 3.2: The Pareto front for 2 cost objectives

Generally, the ideal point is the point with a norm that is closest to zero.

This point is mostly not a feasible solution because of the con�ict between

the objective functions.

To plot level diagrams, each objective Ji and decision variables θi is drawn

in its own graph where the Y axis correspond to the value of
∥∥J i(θ)

∥∥
x
and X

axis corresponds to the value of the objective or decision variable, in physical

units. x represent a norm used.

To show this an example representing a Pareto front in 2-D extracted from

two objectives used in this thesis is shown in Figure 3.2.

By using 2-norm, the Pareto front is represented in Level diagrams as shown

in Figure 3.3.

Since the plotted data points are represented in physical units, the DM

can easily analyse the resulting plots. For example, it easier to see the

unreachable range of a given cost objective (J2 ≈ [1.1, 1.3] from Figure 3.3).
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Figure 3.3: 2-Norm Level Diagrams

Furthermore, an analysis of trade-o� between objectives can be observed and

points situated closer to the ideal point are easily observed (J1 ≈ 0.22, J2 ≈

0.6 from Figure 3.3). This information is of signi�cance since in decision

making criterion, the decision rule is to select a feasible solution such that

the combined deviation between the selected solution and the ideal point is

minimised.

3.3 Quality Measures

Evolutionary multi-objective optimization deals with computing the Pareto-

optimal set for a given objective functions. When it comes to comparing the

Pareto set of di�erent control methods then quantitative measures are also

of great signi�cance as they give an exact value (or metric) by how much

each Pareto set is better or dominates another.

When single objective function is used for comparison it is easier to come
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up with a conclusion since the smaller (or larger) the value, the better the

solution. However, if we compare two solutions in the presence of multiple

optimization criteria, the concept of Pareto dominance can be used, although

the possibility of two solutions being incomparable, i.e., neither dominates

the other, complicates the situation [8]. Quality measures (or Quality indi-

cators) as opposed to graphical plots have been used as a means to aid the

DM to make better comparisons of the Pareto front generated from di�erent

multi-objective algorithms [8, 25].

In this thesis, quality indicators are applied to determine their usefulness and

signi�cance in comparing the Pareto fronts generated from di�erent control

design methods. These indicators are carefully selected since some of the

indicators have direct real world analogies, while other don't relate to any

practical realities and can be misleading especially when the Pareto front is

not known exactly [7].

Quality measures are used to compare multi-objective optimizers quantita-

tively and their outcome is checked based on the three dominance relations

.,�,�� which are discussed in Table 3.1.

For these relations to have an applicable meaning, they need to be inter-

preted. As a results, an interpretation function E is introduced as shown in

Figure 3.4.

This function maps vectors of real numbers to Booleans, for example, if we

have a combination of quality indicators, I, and an interpretation function

E, a comparison method is de�ned as

CI,E(A,B) = E(I(A), I(B))
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Table 3.1: Relations De�nition [8]

Figure 3.4: Illustration of the concept of a comparison method for (a) a
single unary quality indicator, (b) a single binary quality indicator, and (c)
a combination of the two unary quality indicators [8]
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I = (I1, I2, . . . , Ik)

E : Rk × Rk −→ {false, true}

where A, B ∈ Ω are two approximation sets. In Figure 3.4, for cases (a)

and (b) , the indicator I is applied onto the approximation sets A and B.

This generates two real values which are passed through the interpretation

function E. The interpretation function produces a Boolean outcome from

the comparison. In case (c), each indicator I1 and I2 is applied separately on

the approximation sets A and B and the resulting two indicator values are

combined in a vector I(A) & I(B) respectively. The interpretation function

E is then applied on the two vector to decide the outcome of the comparison

based on these two real numbers.

Two indicators that are used in this thesis are discussed in ref. [8] and applied

in ref. [7, 26]. These are

• The unary hypervolume indicator, IH(A), is a measure of the percent-

age of the hypervolume within a bounded region that the approxima-

tion set A bounds.

• The binary hypervolume indicator, IH2(A,B), is the percentage hy-

pervolume of A that is weakly dominated by A but not by B. It is

given as

IH2(A,B) = IH(A ∪B)− IH(B)

38



Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 4

Control System Modelling and

Design

Modelling is an important step when designing control systems. This chapter

describes in detail the system modelling and analysis. Furthermore, it depicts

the cost objectives used, and various controller tuning parameters selected.

4.1 System Modelling

For a control system design to be de�ned, an appropriate model or step

test data should be obtained which relates the input variables to the output

variables. Many methods exist to present but most of them are classi�ed as

either mathematical or physical modelling techniques. In this thesis, physical

modelling was used to extract the system model using step test data. The

system used was a thermal system, which consists of two inputs and two

outputs. The step test plot is shown in Figure 4.1.

The system was modelled using �rst-order model where the input-output
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Figure 4.1: Step Test Results: Inputs (Heater1⇐⇒ Input 1, Heater 2⇐⇒
Input 2), Outputs (Temperature 1⇐⇒ Output 1, Temperature 2⇐⇒Output
2
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relation is given by

G(s) =
Y (s)

U(s)
=

A

Tps+ 1
(4.1)

where A is the system gain which is given by

A =
4Y
4U

and Tp is the time-constant of the system.

For a multivariable system the model is given by

G(s) =



g11(s) g12(s) . . . g1j(s)

g21(s) g22(s) . . . g2j(s)

...
...

. . .
...

gi1(s) gi2(s) . . . gij(s)


(4.2)

where gij takes the form of Equation 4.1, i is the number of outputs and j

is the number of inputs.

From Equation 4.2 and step test data in Figure 4.1, the transfer matrix

model was obtained as (Check Appendix D)

G(s) =
Y (s)

U(s)
=

 0.37±0.01
(8.0±0.4)s+1

0.2317±0.002
(7.6±0.4)s+1

0.19±0.001
(8.0±0.4)s+1

0.3483±0.01
(8.0±0.4)s+1

V/V (4.3)

where U(s) is the input measured in volt (V), Y (s) is the output also mea-

sured in volts (V) and G(s) is given by (V/V).

The signal limits on both inputs and outputs that can be tolerated or

achieved are plotted as shown in Figure 4.2.
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Figure 4.2: Inputs and outputs limits
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4.2 System Analysis

4.2.1 Stability

For a linear system, the system stability must be de�ned. A linear system is

stable if the poles of the transfer matrix are only in the open left-half-plane

(OLHP) of the complex plant. This is discussed in depth in ref. [27].

The system poles and zeros were determined using Smith-McMillan form

described in ref. [27]. These were found as

• Poles: [−0.1250,−0.1316,−0.1250]

• Zeros: [−0.1353]

Since all the poles are only on OLHP, i.e. they are all negative, therefore the

system is stable. There is only one zero on the OLHP, hence no problem of

unstable zeros which introduces di�culties in controlling the system.

4.2.2 Diagonal Dominance

For a multivariable system, one of the important properties is that the gain

matrix has to be diagonally dominant. This particular condition of a gain

matrix is known as diagonal dominance [1]. The dominance is analysed

either by rows or columns using Nyquist-Gershgorin bands or circles. For

the G(s) given in Equation 4.3, the row Gershgorin bands were found as

shown in Figure 4.3.

Since the Gershgorin bands in Figure 4.3 excludes the origin, G(s) is diago-

nally dominant.
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Figure 4.3: Nyquist - Gershgorin plot
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4.2.3 Constraints Form

The constraints were implemented based only on the input saturation. This

is because the inputs on the process were limited to within the range of [3-9]

volts. This was to avoid damaging the Thermal heater since any voltage

outside the range would damage the heater. Based on the formulation and

parameters given in Equation 4.4 for constrained MPC, the constraints to

include the limits were de�ned as

−γ2∆U ≤ −3 + γ1u(k − 1)

γ2∆U ≤ 9− γ1u(k − 1)
(4.4)

whereγ1 and γ2 are the matrices in Equation 4.4 and u(k−1) is the previous

control action when at sample instant k.

This is written in a constrained standard form as

Ω1∆U ≤

 −3

9

+ η (4.5)

where

ψ =

 −γ2
γ2


η =

 γ1u(k − 1)

−γ1u(k − 1)



4.3 State-Space Representation

State-space models are a popular mathematical representation of MIMO

systems [28]. They are mostly given in discrete form as shown in Equation
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2.1, Section 2.2. Using the matrix transfer function model in Equation 4.3

sampled at 0.5 seconds, the state space equation was obtained as shown in

Equation 4.6 ( check Appendix C):

x(k + 1) =


0.9394 0 0

0 0.9363 0

0 0 0.9394

x(k) +


0.1212 0

0 0.0605

0 0.1212

u(k)

y(k) =

 −0.1850 −0.2439 0

−0.0950 0 −0.1742

x(k) +

 0 0

0 0

u(k)

(4.6)

4.3.1 Augmented Model

In every control problem, the idea is to drive a system to a desire set-point

in the presence of disturbances. The above formulation, i.e. using the state-

space in Equation 2.1 would not drive the system to its desired reference if

subjected to disturbances. To overcome these, the system is augmented as

shown in Equation 2.3, Section 2.2. This gives
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ξ(k + 1) =



0.9394 0 0 0 0

0 0.9363 0 0 0

0 0 0.9394 0 0

−0.1738 −0.2283 0 1 0

−0.0892 0 −0.1636 0 1


ξ(k) +



0.1212 0

0 0.0605

0 0.1212

−0.0224 −0.0148

−0.0115 −0.0211


4u(k)

y(k) =

 0 0 0 1 0

0 0 0 0 1

 ξ(k)

(4.7)

The augmentation increases the dimensions of the state-space matrices de-

pending on how many outputs the system has. This is because each output

must track its given set-point hence an integrator has to be added for each

output. This can be a problem as the number of output increases because

the dimensions of the matrices also increase. The larger the matrix di-

mensionality, the longer it takes to obtain results from the resulting matrix

computations. This is a disadvantage if the sampling time is very small since

all the control action computations have to be completed within this time.

In this thesis, a sampling time of 0.5 seconds was large enough to complete

the computation within this time.

4.3.2 Controllability and Observability

Controllability and observability are important concepts in the design of

state-space control systems, since the design of a controller and observer

need a system to be controllable and observable respectively. This is also

important in the design of MPC controllers since all the states are to be ob-
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served. The Equation 4.6 was found to be both controllable and observable.

4.4 Optimisation Costs

When optimisation is performed cost objectives to be used need to be care-

fully determined. This is because the Pareto front depends entirely on the

cost objectives used [7]. As a result, cost functions selected should be as

applicable as possible to control engineering. In this thesis, 8 di�erent cost

objectives are used which are based on the Integral Square Error (ISE) and

Integral Square Control velocity (ISU). These are de�ned and described in

this section and summarized as shown in Table 4.1.

4.4.1 Setpoint Tracking Costs

Error Costs

Two error costs are proposed which de�ne the error between the set-point,

r and the plant output, y. These are given as ISEe1r1 and ISEe2r2 where

e = r − y

Since this is a MIMO system, we have di�erent combination of errors, i.e.

eij which is error on output i due to change in set-point j. From Equation

4.8, the ti1 is the initial time when the output 1 reference is changed while

tf1 is the �nal time just before the reference of output 2 is also changed.

Similarly, the ti2 is the initial time when the output 1 reference is changed

while tf1 is the �nal time for the time simulation. Note that the integral

errors or control velocities are calculated over di�erent time spans because
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Cost functions Notation Mathematical description

J1 ISEe1r1

´ tf1
ti1

(e11)
2 dt

J2 ISEe1r2

´ tf2
ti2

(e12)
2 dt

J3 ISEe2r1

´ tf1
ti1

(e21)
2 dt

J4 ISEe2r2

´ tf2
ti2

(e22)
2 dt

J5 ISU4u1r1

´ tf1
ti1

(4u11)2 dt

J6 ISU4u1r2

´ tf2
ti2

(4u12)2 dt

J7 ISU4u2r1

´ tf1
ti1

(4u21)2 dt

J8 ISU4u2r2

´ tf2
ti2

(4u22)2 dt

Table 4.1: Cost functions design Table
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the output references are altered at di�erent times. This ensures that the

interactions among output responses can be clearly extracted.

These errors are given as

ISEe1r1 =
´ tf1
ti1

(e11)
2 dt

ISEe2r2 =
´ tf2
ti2

(e22)
2 dt

(4.8)

Controller Velocity Costs

Another two controller cost functions are de�ned i.e. ISU4u1r1and ISU4u2r2 .

This gives the amount of controller action that is needed to drive a system

output to a steady-state.

ISU4u1r1 =
´ tf1
ti1

(4u11)2 dt

ISU4u2r2 =
´ tf2
ti2

(4u22)2 dt

where ∆uij is controller velocity used to track the output i due to a change

in set-point j.

4.4.2 Interaction Costs

Interaction Error Costs

Further two interaction error costs based on ISE are de�ned. Similarly as

in Equation 4.8, these are given as
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ISEe2r1 =
´ tf1
ti1

(e21)
2 dt

ISEe1r2 =
´ tf2
ti2

(e12)
2 dt

(4.9)

These give the amount of error on each output due to a set-point change on

another output.

Interaction Controller Velocity Costs

Lastly, interaction based on ISU are de�ned as

ISU4u2r1 =
´ tf1
ti1

(4u21)2 dt

ISU4u1r2 =
´ tf2
ti2

(4u12)2 dt

(4.10)

These gives the amount of controller action needed to drive the output i

back to its set-point when set-point j is changed.

4.5 Controllers Tuning

It's important in control engineering to achieve a speci�ed given performance

and stability with minimal overshoots. For a given controller to achieve these,

the controller parameters must be properly tuned. Di�erent methods exist

for di�erent types of controllers. Traditionally PI Controllers are tuned us-

ing Ziegler-Nichols method. Recently MOO has been used for tuning PID

controller parameters [6]. Likewise, MPC have no formally de�ned method

of tuning since many parameters are involved in tuning the controller, but

di�erent methods have been proposed in literature [3]. Similarly, most re-
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cently MOO has been used as a way to �nd best achievable parameters for

given cost objectives as shown in ref. [6].

4.5.1 MPC Tuning

MPC is classi�ed as one of the methods which is di�cult to tune due to

many parameters in consideration [3]. The controller designer had to set the

prediction horizon (Np), control horizon (NC), weights on the outputs(Q),

and weights on the change in inputs(R). Di�erent tuning methods that have

been discovered in the MPC literature are discussed in ref. [3] for which

MOO is not used as a way for tuning.

MOO tuning of MPC was discussed in ref. [4, 6] on which cost objectives

and evolutionary algorithms are used for tuning the MPC. In this thesis,

PDE optimizer was used to �nd the best achievable performance and tuning

parameters for MPC for the given cost functions described in Section 4.4. To

tune MPC, �ve parameter were assumed, that is, prediction horizon (Np),

control horizon (NC), move and weighting coe�cients for inputs and outputs

(λ1, λ2, β1, β2) (more detail in Section 5.2).

4.5.2 PI Tuning

PI is one of the traditional methods. It has widely been applied in most

industries due to its simplicity and competitiveness. Ziegler-Nichols is one

of the popular methods used for tuning PI parameters [21] but its generated

parameters can still be greatly improved. MOO has been applied to design

control systems based on PI/PID [6]. The MOO approach was applied in

ref. [6, 29] for tuning PI parameters. In this thesis, four tuning parameters

were assumed (Kp1, Kp2, KI1, KI2) for the PI controller.
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Chapter 5

Simulations and Results

This chapter presents the Level Diagrams of the di�erent (MPC, PI) con-

trollers. It further outlines the use of performance measures to compare

the Pareto front generated from these controllers. Then simulation time re-

sponses of the produced controllers are compared and tested experimentally

on the physical system.

5.1 PDE Optimizer

Using the design objectives discussed in Table 4.1, the PDE optimizer was

run for 50 generations with a crossover rate and mutation rate set to 0.15.

The population size for the optimizer was set to be 200 so that enough points

were initially generated for the optimizer. The optimizer was developed using

Python based on the pseudo-code presented in ref. [24] and some algorithms

ported from [30]. The accuracy of the Python Optimizer was veri�ed by

comparing the plots generated with the plots given in ref. [24] when the

same parameters are used for optimisation (see Appendix B).
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5.2 Controller Tuning Parameters

5.2.1 MPC Parameters

As described above in section 4.5, for the MPC controllers �ve parameters to

be tuned are control horizon, Nc, prediction horizon, Np, move and weighting

suppression coe�cients for each output (λ1, λ2, β1, β2). As discussed in [3],

the parameter, Np does not need to be tuned using an optimizer. This is

because Np can be selected o�-line as long as an initial value large enough

(greater than largest settling time, which is 12.6 seconds) to cover the system

dynamics is chosen. As a result, Np was set to be 30 samples. Other tuning

parameters were tuned using an optimizer and the range on which they are

bounded had to be speci�ed. Nc was bounded on the range [1− 30]. This

was based on the fact that the value should be greater than 1 [3] but should

also be less than or equal to Np. The (λ1, λ2, β1, β2) were each bounded

on the range[0− 1]. These weighting coe�cients are used to condition the

system matrix [2] hence any range can be used.

5.2.2 PI Parameters

For the PI controller, four tuning parameters for the optimizer were assumed

(KP1,KP2,KI1,KI2). Each parameter was bounded on the range[−2− 0]

. The range was selected based on the fact that the model gains of the

system were negative hence negative gains were required. Large gains were

practically not implementable on the physical system hence lower gains were

opted.
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5.3 Level Diagrams Results

The Level Diagrams for di�erent controllers, i.e unconstrained MPC, con-

strained MPC and PI is shown in Figure 5.1. The 2-norm is used. This is

because it provides an accurate evaluation of the conventional geometrical

distance to the ideal point and o�ers a better view of the 'real' shape of the

Pareto front in n-D space [9].

From the plots in Figure 5.1, it can be seen that all points of the uncon-

strained MPC and constrained MPC are clustered together giving the same

Pareto shape. In fact, these controllers seem to perform relatively the same

way for all objectives, hence generating similar Pareto fronts. This result

could be due to the fact that the constraints that arose during the process

were only based on the inputs. The input constraints arise due to the lim-

itation on the amount of voltage that the thermal heaters can tolerate. As

a result, the voltages were forced to be limited between 3 volts and 9 volts

to avoid damaging the heater system. In addition, since no constraints were

imposed on the outputs of the system, there were few constraints that needed

to be dealt with hence no performance deviation from both unconstrained

and constrained MPC. Finally, dealing with limits on the inputs is easier as

long as the set-points set can be achieved within the speci�ed input control

range. This is because if the control action calculated at any instant exceeds

the limits, it can be saturated by applying the minimum or maximum of the

given limits depending on the value of the control action obtained. There-

fore, if the control input is below minimum limit, then the minimum limit is

used or if it is above maximum limit, then the maximum limit is used.

As a results, the comparison with PI was further detailed using either one

of the MPC controllers (unconstrained MPC used (now labelled MPC)).

55



Univ
ers

ity
 of

 C
ap

e T
ow

n

Figure 5.1: Level Diagrams of Controllers
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Figure 5.2: Level Diagrams of the cost objectives

Unconstrained MPC was selected due to its easier and straight forward design

as compared to constrained MPC.

5.3.1 MPC versus PI

The Level Diagrams plots for the 8-D Pareto front of MPC and PI control

methods are shown in Figure 5.2 and for the controller tuning parameters in

Figure 5.3 and 5.4.

From the plots, note the points marked with square bracket, left-faced tri-

angle and right-faced triangle represent the minimum, medium, maximum

norms respectively.

From the Level Diagrams plots, number of observations can be drawn. In
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Figure 5.3: Level Diagrams of the MPC tuning parameters

Figure 5.4: Level Diagrams of the PI tuning parameters
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Figure 5.2, by observing all the plots, MPC gives more points with lower

norm than PI. This shows that MPC have more points concentrated towards

an ideal point hence generally a better method to use for controller design.

However, on the J1 and J4 plots most points for PI seem to be more con-

centrated towards the lower values of the cost objectives (i.e J1≈J4≈2) than

MPC. If minimising these two cost objectives is of higher priority for the

DM then PI gives more chances of getting a minimum values for both cost

objectives. These imply that PI gives a better set-point tracking on both

outputs. However care must be taken as the points could be far worse in

other objectives. Looking at J1 plot it can be seen that most points for MPC

are concentrated below 1 with a maximum value less than 2 while looking

at PI all points are distributed over the range [0-4]. This shows that MPC

gives a better interaction rejection on output 1 than PI.

From J3 plot, both controllers' points seem to be clustered around the same

values hence gives no signi�cant di�erence in output 2 interaction rejection.

In general, PI gives better set-point tracking performances but worse in

interaction rejection performances.

For the controller e�ort plots, i.e J5 and J8, all points for both controller seem

to be widely spread for all objective values. This means that in terms of the

amount of the controller e�ort applied, both controllers perform similarly.

However for MPC, it can be observed that the norm of the objectives decrease

with an increase in objective values until a certain value (i.e J5 ≈ 1.7, J6 ≈

0.3,J7 ≈ 0.25,J5 ≈ 1.9) and then start increasing.

Figure 5.3 shows the plots for MPC tuning parameters. For all the tuning

parameters, the points seem to be distributed over the whole range of values

with no range preferably better than any other. This shows the di�culty of
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tuning MPC parameters. This is di�erent for PI tuning parameters (Figure

5.4), as it can be seen from KI1 and KI2 plots that lower norms can be

achieved with lower absolute values of KI1and KI2.

5.3.2 Performance Measures Results

Quality indicators as opposed to visualisation tools can be used to compare

the Pareto fronts in a qualitative manner. Two of the mostly applied indica-

tors IH and IH2 discussed in section 3.3 are applied to compare the Pareto

fronts generated from MPC and PI controllers. These performance indicator

coverage region is hard to visualise in an n-D space (n>3). This is because

of the computer graphical space (for now) which can clearly visualize dimen-

sions up to 3-D. As a result, to enable an easier indicators space region view,

an illustrative example using a 2-D Pareto front from two cost functions for

both MPC and PI controllers is shown in Figure 5.5.

From Figure 5.5, REGION A is in a set of points (or objectives) which can

be achieved only by a PI controller. MPC controller cannot achieve any of

the given objective in this region because its Pareto set lie above the region.

As a result, if the design objective is to achieve a performance in this region,

then the control designer will be forced to use a PI control method. This

region lie inside the hypervolume of PI, (REGION A ∈ IH(PI)) but outside

the hypervolume of MPC, (REGION A /∈ IH(MPC)). This set of points in

this region is denoted by IH2(PI,MPC).

REGION C gives a set of points (or objectives) which can be achieved only

by MPC controller. Similarly, the region lie inside the hypervolume of MPC,

(REGION A ∈ IH(MPC)) but outside the hypervolume of PI, (REGION A

/∈ IH(PI)). This is denoted by IH2(MPC,PI). The points in REGION B,
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Figure 5.5: Performance Measures in a 2-D space

Controller IH IH2

MPC 0.53737 0.1098

PI 0.51923 0.09166

Table 5.1: The Performance Measure Results for MPC and PI

can be achieve by both control methods since they lie inside both controllers

hypervolume, i.e, REGION B ∈ IH(MPC) and REGION B ∈ IH(PI).

The space region covered by these indicators is mostly given in percentage.

This gives the number (in percentage) of the points that are found in that

region as per total number of points that are uniformly distributed for the

entire space coverage.

Using the design objectives given in Table 4.1, the results for the 8-D Pareto

front for each control method are tabulated as shown in Table 5.1.
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Using dominance relations discussed in Table 3.1 in section 2.5, a number

of observations can be drawn from Table 5.1. MPC coverage space is better

than PI since IH(MPC) � IH(PI). Thus it shows that MPC dominate a

bigger portion of the objective space, and therefore gives more chances of

obtaining di�erent performances in a given space.

Looking at the IH2 indicator both controllers give a value which is closer to

0.1 i.e. IH2(MPC,PI) ≥ IH2(PI,MPC). This shows that both MPC and

PI can considerably produce similar portions that each controller is not able

to produce indivisually. From all these, it can be concluded that MPC Pareto

front gives a better space coverage than PI front (MPC . PI). However, it is

di�cult to decide which controller is actually better than the other from the

indicators values because both controllers do not seem to entirely dominate

the other.

5.4 Simulation and Experimental Time Responses

Time responses are also signi�cant since they show the behaviour of the

system in time domain. These enable the control designer to observe some

important control measures like overshoots, settling time, oscillations on the

output, and saturation on the input. These control measures cannot be

observed from the Level Diagrams plots.

5.4.1 MPC Time Responses

Three points for MPC controller that give the minimum (min), maximum

(max) and medium (mid) norms (noted with black square, left-faced trian-

gle, right-faced triangle respectively) were selected from the Level Diagrams
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Norm Norm Values Input Parameters Cost Objectives Values

Min 0.428

NC = 2, λ1 = 0.6073

λ2 = 0.841, β1 = 0.659

β2 = 0.9026

J1 = 3.74, J2 = 0.028
J3 = 0.02, J4 = 3.96
J5 = 2.73, J6 = 0.73
J7 = 0.45, J8 = 2.93

Max 1.704

NC = 1, λ1 = 0.221

λ2 = 0.067, β1 = 0.738

β2 = 0.165

J1 = 3.20, J2 = 0.064
J3 = 0.054, J4 = 3.27
J5 = 5.159, J6 = 1.26
J7 = 1.048, J8 = 8.944

Mid 1.206

NC = 9, λ1 = 0.0028

λ2 = 0.183, β1 = 0.031

β2 = 0.748

J1 = 2.607, J2 = 0.221
J3 = 0.241, J4 = 2.997
J5 = 7.814, J6 = 0.63
J7 = 0.4381, J8 = 7.8

Table 5.2: Di�erent MPC Norm values and corresponding cost and input
parameters

plots. Their cost objectives and input parameters values are tabulated as

shown in Table 5.2. The given time response plots are shown in Figure 5.6.

From Table 5.2 and Figure 5.6, the performances of these controllers seem

to be competitive with each other. Generally, all the responses do not have

overshoots in their output responses and have settling time ( t±2%) below 11.5

seconds. Moreover, the mid norm gives a good set-point tracking responses

as compared to both max and min norms with min norm worse than both.

However, by looking at the interaction rejection responses (or cost values),

the minimum norm is far better than both mid and max norms with mid

worse than max. Looking more closely on the controller action responses, mid

and max seem to be having larger values of controller actions as compared to

min and their controller responses saturate faster and remain in saturation

longer than the min norm. In fact, there seem to be a trade-o� between
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Figure 5.6: Di�erent MPC Norms Time Responses
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the set-point tracking, interaction rejection and amount of controller action

applied. Summarising these, it can be concluded that the better the set-point

tracking, the worse the interaction rejection and the more the controller e�ort

needed.

These results might be dictated by the input parameters given to the con-

troller especially the penalty weights on the inputs. This is because the more

the penalty weight on a certain input, the less the movement in the control

action of that input, hence a slower response on the corresponding output.

In conclusion, by observing the responses and the cost objective values, on

average the min norm seem to be giving the better performance as compared

to the other norms.

5.4.2 PI Time Responses

Similar to MPC, three points that gives min, max and mid responses (noted

with white square, left-faced triangle, right-faced triangle respectively) were

picked and their cost objectives and input parameters values are tabulated

as shown in Table 5.3 with the corresponding time responses shown in Figure

5.7.

The time responses for the PI look more interesting as the number of obser-

vations can be singled out. Looking at the set-point tracking for output 1,

the max norm gives lower value for this cost objective (i.e, J1 ) than both

min and mid norms, but the corresponding response is oscillatory. If a lower

value for this objective is of priority, it could be tempting to use tuning pa-

rameters that o�er this cost value, but as it seems, it is a worse controller

choice due to oscillations on the output response. However, the interaction

rejection encountered on the other output (i.e. output 2) while tracking
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Norm Norm Values Input Parameters Cost Objectives Values

Min 0.669

KP1 = −1.221

KP2 = −1.489

KI1 = −0.587

KI2 = −0.509

J1 = 3.26, J2 = 0.98
J3 = 0.75, J4 = 3.59
J5 = 2.23, J6 = 0.36
J7 = 0.21, J8 = 2.45

Max 1.628

KP1 = −1.195

KP2 = −0.186

KI1 = −1.968

KI2 = −0.171

J1 = 2.30, J2 = 0.038
J3 = 2.41, J4 = 9.66
J5 = 6.62, J6 = 0.15
J7 = 0.071, J8 = 0.32

Mid 0.945

KP1 = −1.993

KP2 = −0.030

KI1 = −0.185

KI2 = −0.876

J1 = 5.95, J2 = 2.50
J3 = 0.19, J4 = 3.42
J5 = 2.43, J6 = 0.13
J7 = 0.14, J8 = 1.95

Table 5.3: Di�erent PI Norm values and corresponding cost and input pa-
rameters
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Figure 5.7: Di�erent PI Norms Time Responses
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output 1 seems worse than other norm even though it's a bit oscillatory.

The set-point tracking for output 2 seem to be a di�erent scenario. The max

norm gives a far worse response than min and mid norms. In fact, the cost

value for this objective (or J4) is almost double in value as compared with

corresponding values of other norms. This might be due to small gains (KP2

and KI2) that are associated with this output. However, when it comes to

interaction rejection output 1 when tracking output 2, this seems to give a

far much better response, with a cost value which is almost near zero. In

essence, the best set-point tracking on one output is achieved at the expense

of worse interaction rejection on the other output. This trade-o� can even

be observed on the other norms' responses.

By observing the overshoots encountered by all norms, it can be seen that

both max and mid norms give responses with considerable amount of over-

shoot when tracking the corresponding set-points while min norm gives a

minimal overshoots. Furthermore, on average the controller e�ort used on

both set-point tracking and interaction rejection is better for min norm as

compared with other norms.

These observations found results due to the fact that an attempt to drive one

output to its set-point in a short time span (or small settling time), makes

the controller e�ort of the corresponding input harsh. Since the system is

fully interactive, the other output is considerably a�ected hence results into

bigger interaction response.

5.4.3 MPC versus PI

For controllers comparison, the minimum norms from both controllers were

used since on average, they provide a better performance and a best compro-
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Controller Norm Values Input Parameters Cost Objectives Values

MPC 0.428

NC = 2, λ1 = 0.6073

λ2 = 0.841, β1 = 0.659

β2 = 0.9026

J1 = 3.74, J2 = 0.028
J3 = 0.02, J4 = 3.96
J5 = 2.73, J6 = 0.73
J7 = 0.45, J8 = 2.93

PI 0.669

K = −1.221

KP2 = −1.489

KI1 = −0.587

KI2 = −0.509

J1 = 3.26, J2 = 0.98
J3 = 0.75, J4 = 3.59
J5 = 2.23, J6 = 0.36
J7 = 0.21, J8 = 2.45

Table 5.4: Tuning Parameters and Cost Values for MPC and PI

mise solution that is closest to the ideal point (i.e. point with norm closest

to zero) in the objective space. The tuning parameters for these points are

noted with square brackets on Figure 5.3 and 5.4. Their norm values, tuning

parameters and cost objective values are also tabulated in Table 5.4. The

time responses are compared as shown in Figure 5.8.

The experimental results sampled at 0.5 seconds for the same parameters

given in Table 5.4 were conducted and plotted as shown in Figure 5.9.

From the results in Figure 5.8 and 5.9, MPC gives a better response in

interaction elimination than PI controller. The PI gives slower interaction

responses which are also oscillatory. However, when it comes to set-point

tracking, PI controller seem to perform somehow better than MPC. These

might be due to the fact that the PI design (contrary to the MPC design)

does not include knowledge of the interaction model and hence when the

interaction occurs it appears to controller as a disturbance. However, its
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Figure 5.8: Simulation results for system response
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Figure 5.9: Experimental results for the controllers
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competitive performance for set-point tracking might be due to the high

gains introduced in the gain parameters. In general, these plots are also

found to conform to the analysis and conclusions derived from the Level

Diagrams plots.
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Chapter 6

Conclusions

6.1 General Conclusions

The MOO designs for MPC and PI controllers have been outlined for a

multi-variable process. The optimum performances of these controllers were

generated and comparisons were conducted using the Level Diagrams visu-

alization tool.

It was found that both controllers are competitive when compared to each

other. MPC was found to be better in interaction rejection than PI but

however when it comes to set-point tracking both controllers' performance

were relatively competitive with PI better in most scenarios.

Further, Level Diagrams were found to be useful tool for visualization and

interpretation of the higher dimensions of the Pareto fronts which seem to

have been di�cult with other methods. However, care must be taken in

the analysis using this tool since some points which are better in some ob-

jectives might be the worst in other objectives. Level Diagrams further

help and guide the Decision Maker in selection of the tuning parameters for
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a given controller that gives a compromise or better average performance.

The parameters of this controller were used for controller designs which were

implemented or tested experimentally on the system.

Quantitative analysis of the controllers' Pareto fronts were also investigated

using quality measures (unary and binary hypervolume). Although these

indicators do not give a clear vision of which objective is better as compared

to the corresponding one on another controller, they do help in giving a view

of which controller would dominate another in terms of the coverage space

in the objective space.

Furthermore, time response plots have also helped in giving an inside into

performance of the controllers in time domain. This has enabled a more

detailed analysis and comparison of the controllers since some control per-

formance measures (e.g. oscillations, overshoots, saturation of controller

actions, settling time of the responses) that were not observed in Level Dia-

grams plots were further quanti�ed.

Finally, testing the controllers in a physical system was also a challenge since

bigger gains on the controller and observer had to be avoided. This is because

a small noise that comes into the system might be greatly ampli�ed by these

higher gains hence resulting in oscillatory responses.

6.2 Future Work

Investigation is further needed in the accuracy of the approximation of the

Pareto fronts generated from the Evolutionary algorithms so as to improve

the accuracy of comparisons and design for di�erent control methods using

these tools.
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Increase in the number of cost objectives to represent more performance

measures (for example damping, overshoots, etc) should also be considered.

However care must be taken because with the increase in cost objectives, the

complexity of the Pareto fronts analysis and interpretation becomes more

di�cult. As a result, the analyses of the higher dimensional Pareto fronts

still remain a challenge. Hence visualization tools for n-D Pareto front that

are easier and straight forward to interpret their plots need to be invented.

Moreover, because of the increases in complexity of the Pareto front analysis

when dealing with many cost objectives, deep investigation into the reduction

of the number of cost objectives that can be used without losing signi�cant

information might be a breakthrough.

Furthermore introducing the controller gain values as cost objectives should

also be investigated, especially for PI controllers since their larger gain pa-

rameters can greatly a�ect the performance of the controller both negatively

and positively. This is because larger gains seem to improve the set-point

tracking performance of the controller but at the expense of oscillatory re-

sponse.
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Appendix A

Cost Optimization

In model predictive control, the objective is to �nd the best control parameter

vector such that the error between the set-point and the predicted output is

minimized.

The cost function J that is to be optimised is given as

J = (Rs − Y )T Q̄(Rs − Y ) +4UT R̄4U (A.1)

RT
s =

[
1 1 1 ... 1

]
r(k)

R̄ = λI(Nc×Nc)

Q̄ = βI(Np×Np)

where Y is the predicted output vector, r(k) represent the set-point, Q & R

are the weighting coe�cients for the output error and control action velocities

respectively, with β > 0 and λ ≥ 0. Nc and NP represent the control horizon
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and prediction horizon respectively.

The predicted output Y is expressed in compact form as:

Y = Fx(k) + Φ4u (A.2)

where

F =



C̃Ã

C̃Ã2

C̃Ã3

...

C̃ÃNP


,Φ =



C̃B̃ 0 0 ... 0

C̃ÃB̃ C̃B̃ 0 ... 0

C̃Ã2B̃ C̃ÃB̃ C̃B̃ ... 0

...
...

...
. . .

...

C̃ÃNP−1B̃ C̃ÃNP−2B̃ C̃ÃNP−3B̃ ... C̃ÃNP−NC B̃



and

Y =

[
y(k + 1|k) y(k + 2|k) y(k + 3|k) ... y(k +Np|k)

]T

4U =

[
4u(k) 4u(k + 1) 4u(k + 2) ... 4u(k +Nc − 1)

]T

and Ã, B̃, & C̃ are the augmented matrix given by:

Ã =

 A 0

CA I

 , B̃ =

 B

CB

 , C̃ =

[
0 I

]

To �nd the optimal change in control actions, 4U , J in Equation A.1 is

rewritten as:
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J = (Rs−Fx(k))T (Rs−Fx(k))−24UTΦT (Rs−Fx(k))+∆UT (ΦTΦ+R)4U

(A.3)

Di�erentiating the cost function J in terms of 4U , we get

∂J

∂4U
= −2ΦT (Rs − Fx(k)) + 2(ΦTΦ +R)4U (A.4)

For optimal condition:

∂J

∂4U
= 0

from which we get the optimal solution for control actions as

4U =
(
ΦTΦ +R

)−1
ΦT (Rs − Fx(k)) (A.5)
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Appendix B

The Pareto Di�erential

Evolution (PDE) algorithm

Pareto Di�erential Evolution is one of the popular Evolutionary Algorithms

(EA) that is used to generate the Pareto front approximation. Its Pseu-

docode is described in Section B.1.

B.1 Pseudocode

let G denote a generation, P a population of size M , and −→x j
G=k the jth

individual of dimension N in population P in generation k, and CR denotes

the crossover probability

input N , M ≥4,α,CR ∈ [0, 1], and initial bounds: lower (xi), upper (xi) ,

i = 1, . . . , N

initialize PG=0 =
{−→x 1

G=0, . . . ,
−→xM

G=0

}
as

for each individual j ∈ PG=0:
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−→x j
i,G=0 = Guassian(0.5, 0.15), i = 1, . . . , N

Repair −→x j
G=k if any variable is outside its boundaries

end for each

evaluate PG = 0

k = 1return

while the stopping criterion is not satis�ed do

remove all dominated solutions from PG=k−1,

if the number of non-dominated solutions in PG=k−1 > α,

then apply the neighborhood rule

end if

for j = 0 to number of non-dominated solutions in PG=k−1

−→x j
G=k ←

−→x j
G=k−1

end for

while j ≤M

randomly select r1, r2, r3 ∈ (1, . . . , α), from the non-dominated

solutions of PG=k−1, where r1, 6= r2, 6= r3

randomly select irand ∈ (1, . . . , N)

forall i ≤ N

−→x j
i,G=k =


−→x r3

i,G=k−1 +Guassian(0, 1)×
(−→x r1

i,G=k−1 −
−→x r2

i,G=k−1

)
if (random [0, 1) < CR ∧ i = irand

−→x j
i,G=k−1 otherwise

end for all
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Repair −→x j
G=k if any variable is outside its boundaries

if −→x j dominates −→x r3
G=k−1 then

−→x j
G=k ←

−→x j

j = j + 1

end if

end while

k = k + 1

end while

return the set of non-dominated solutions

B.2 Test Problems

The Python code of the Pseudocode was generated and tested using the two

benchmark problems used in ref. [24]. Both test problems used have two

objective functions to be optimised and thirty input variables. The optimiser

was run for a maximum of 200 generation with an initial population set to

400. The crossover rate was set to 0.15. The �rst benchmark problem

(Test Problem 1 (Equation B.1)) gives a convex Pareto-front as shown in

Figure B.1 while the second problem (Test Problem 2 (Equation B.2)) gives

a discontinuous Pareto-front shown in Figure B.2.

85



Univ
ers

ity
 of

 C
ap

e T
ow

n

f1(x) = x1

f2(x) = g × (1−
√

f1
g )

g = 1 + 9× (
∑n

i=2 xi)
(n−1)

xi ∈ [0, 1], i = 1, . . . , 30

(B.1)

f1(x) = x1

f2(x) = g ∗ (1−
√

f1
g − (f1g )sin(10πf1))

g = 1 + 9× (
∑n

i=2 xi)
(n−1)

xi ∈ [0, 1], i = 1, . . . , 30

(B.2)

86



Univ
ers

ity
 of

 C
ap

e T
ow

n

Figure B.1: The Convex Pareto-front (Test Problem 1)

Figure B.2: The Discontinuous Pareto-front (Test Problem 2)
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Appendix C

The Augmented State-space

m-�le

num11=-0.37;

den11=[8.0 1];

num21=-0.19;

den21=[8.0 1];

num12=-0.23167;

den12=[7.6 1];

num22=-0.3483;

den22=[8.0 1];

% Calculate Transfer Functions

sys11=tf(num11,den11);

sys21=tf(num21,den21);

sys12=tf(num12,den12);
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sys22=tf(num22,den22);

%Total System Transfer Function

SysT=[sys11 sys12;sys21 sys22]

%Convert to state-Space

Sys1=ss(SysT); [Ac,Bc,Cc,Dc]=ssdata(Sys1);

[Ap,Bp,Cp,Dp]=c2dm(Ac,Bc,Cc,Dc,0.5)

%Augument the State-space Matrices

[m1,n1]=size(Cp);

% m1 = # of outputs

[n1,n_in]=size(Bp);

% n1 = # of outputs

A_e=eye(n1+m1,n1+m1);

A_e(1:n1,1:n1)=Ap;

A_e(n1+1:n1+m1,1:n1)=Cp*Ap;

B_e=zeros(n1+m1,n_in);

B_e(1:n1,:)=Bp;

B_e(n1+1:n1+m1,:)=Cp*Bp;

C_e=(zeros(m1,n1+m1));

C_e(:,n1+1:n1+m1)=eye(m1,m1);
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Appendix D

System Modelling

The thermal system model was approximated using the �rst-order model

where the input-output relation is given by

G(s) =
Y (s)

U(s)
=

A

Tps+ 1
(D.1)

where A is the system gain which is given by

A =
4Y
4U

Tp is the time-constant of the system.

The thermal plant is a multivariable system with two outputs (temperature

sensors) and two inputs (heaters) hence its transfer function model is given

by

G(s) =

 g11 g12

g21 g22

 (D.2)
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Figure D.1: Step test 1

where g11,g12,g21and g22 takes the form in Equation D.1.

Step tests were conducted on the thermal system as shown in Figure D.1

and D.2.

From Figure D.1, the model was obtained as

G(s) =

 0.37
8.0s+1

0.2317
7.6s+1

0.19
8.0s+1

0.3483
8.0s+1

 [V ]

[V ]
(D.3)

From Figure D.2, the model was obtained as

G(s) =

 0.365
8.0s+1

0.2337
7.6s+1

0.198
7.6s+1

0.338
8.0s+1

 [V ]

[V ]
(D.4)
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Figure D.2: Step test 2

92



Univ
ers

ity
 of

 C
ap

e T
ow

n

Both model gains of the models seem to vary insigni�cantly by an error

within 0.01. As a results, the model in Equation D.5 was used and is given

in Equation D.5 with its error tolerance.

G(s) =

 0.37±0.01
(8.0±0.4)s+1

0.2317±0.002
(7.6±0.4)s+1

0.19±0.001
(8.0±0.4)s+1

0.3483±0.01
(8.0±0.4)s+1

 [V ]

[V ]
(D.5)

Step responses of the model were taken to validate whether the model gives

the same responses as the plant step tests. The graph of both responses

were compared as shown in Figure D.3, D.4, D.5, and D.6 to ensure that

they match. Response 1 and Response 2 represent the responses of output 1

due to step change in input 1 and input 2 respectively while Response 3 and

Response 4 represent the responses of output 2 due to step change in input 1

and input 2 respectively. The responses were found to approximately match

hence a model in Equation D.4 gives a good approximate of the thermal

system.
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Figure D.3: Response 1
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Figure D.4: Response 2
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Figure D.5: Response 3
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Figure D.6: Response 4
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Appendix E

Paper Submission

Some of the work in this thesis were published on a this paper.

• T. Koetje, M. Braae, M. Mohohlo, �Multi-objective Performance Eval-

uation of Controllers for a Thermal Process�, CISSE, USA, December

2010 (In Press)
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Appendix F

Resources Used

This is included in a compact disk (CD) that is submitted together with this

thesis.

The main �les are LevelGen.py and ControlCompare.py which generate the

Level Diagrams results and compare controllers respectively. The other �les

are C/C++ �les that were used for experimental testing. Text �les of the

data extracted from step tests of the thermal process are also included.
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