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Abstract

Kriging is a widely used group of techniques for predicting unobserved responses
at specified locations using a set of observations obtained from known locations.
Kriging predictors are best linear unbiased predictors (BLUPs) and the precision
of predictions obtained from them are assessed by the mean squared prediction er-
ror (MSPE), commonly termed the kriging variance. Expressions for the BLUPs
are readily derived assuming that the covariance function and its parameters are
known. However, in practice the covariance function and its parameters are usually
not known and have to be inferred and estimated from the data respectively. This
thesis is concerned with examining suitable estimators for the MSPE of the empir-
ical best linear unbiased predictor (EBLUP), which is the BLUP with estimates of
the covariance parameters, given here by maximum likelihood (ML) and restricted
maximum likelihood (REML) estimators, “plugged-in” in place of the unknown pa-
rameters. Five such estimators which are the empirical mean squared prediction
error (EMSPE), the Kacker-Harville and Prasad-Rao estimators and two bootstrap
estimators, the unconditional and conditional bootstrap estimators, are examined
in detail. A simulation study with the aim of identifying the best performing esti-
mator in terms of bias within the context of the study is described. In addition the
feasibility of calculating and using the estimators in the spatial analysis of two real
data sets, one a widely used example in the geostatistical literature and the other
a South African data set comprising measurements on micronutrients at locations
in the Gauteng area, is also presented. A suite of R programs for calculating the
estimators of the MSPE of the EBLUP is provided.
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Chapter 1

Introduction

1.1 Background

Kriging is a set of optimal spatial linear prediction methods that result in predictions
with minimum mean squared prediction errors (Cressie 1993). These methods of
interpolation are akin to the optimal prediction methods first developed by Wold
(1938), Kolmogorov (1941) and Wiener (1949). Kriging arises from the work of
the South African mining engineer Krige (1951) who collaborated with fellow South
African, the statistician Sichel, to develop methods for determining the distribution
of ore grades in the Witwatersrand based on a set of samples ore grades. The
techniques and concepts developed by Krige were then later formalized and pooled
into one body of knowledge by French mathematician Matheron (1963; 1973; 1975;
1989) who coined the term “kriging” in recognition of Krige’s pioneering work.

Although the method has its roots firmly in mining, kriging has found wide ap-
plication in various other earth science disciplines as an interpolation method such
as in hydrology (Kitandis and and Vomoris, 1993), soil science (Goovaerts, 1999;
Webster and Oliver, 2001), petroleum geology (Hohn, 1999) and agriculture (Cahn
et al, 1994). It has also found uses outside of the earth sciences such as in public
health (Carret and Vellaron, 1992) and increasingly in the arena of the design and
analysis of computer experiments (DACE) (Sacks et al, 1989; Welch et al, 1992;
Bernardo et al, 1992; Jones et al, 1998; Jones, 2001; Santer et al, 2003; Martin and
Simpson, 2005; Fang et al, 2006; Kleijnen, 2009). In DACE, kriging models are
used as response surface models and model the input/output behaviour of complex
simulation models (den Hertog et al, 2006). In this setting they fall within a class
of models which are termed metamodels (Kleijnen, 1987).

There are several reasons for the popularity of kriging as an interpolation method
some of which are noted below:

• In the absence of measurement error, referred to as a nugget, it interpolates
observations exactly.
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• Kriging allows the user to interpolate over areas or volumes that are larger
than the sample sites (Journel and Huijbregts, 1978; Burrough and McDonnell,
1998).

• It allows the interpolation of binary data.

• It can also make use of additional information such as covariate information
which is cheaply obtainable at the sample and prediction locations.

• It assigns a prediction error to each predicted value.

The squared prediction error is termed the kriging variance and is a measure of a
predictions accuracy. It can also be used to judge the overall quality of a fitted
model. The kriging variance, which is in fact a mean squared prediction error
(MSPE), besides just being used for gauging the quality of predictions or the quality
of the kriging models has other applications. For instance it is used in the following
settings:

• To build maps of uncertainty for interpolated surfaces in the earth sciences
(Todini, 2001).

• To build confidence intervals for predicted ore grades in mining (Journel and
Huijbregts, 1978).

• To design “optimal” environmental monitoring networks (Cressie et al, 1990;
Zimmerman, 2006).

• To construct application-driven sequential designs for computer experiments
(Sacks et al, 1989; Kleijnen et al, 2004).

• To select new input design points to find the global optimum of complex
computer simulation models (Booker et al, 1999; Sasena et al, 2002).

1.2 Research Problem

The expressions for obtaining kriging predictions and the corresponding kriging vari-
ances contain unknown covariance parameters. In practice the covariance structure
is usually modelled using one of various parametric covariance functions and the
unknown covariance parameters, θ, are estimated by θ̂ using the existing data. The
estimate, θ̂, is then plugged into the kriging predictor, producing the empirical best
linear unbiased predictor (EBLUP), and the corresponding kriging variance is ob-
tained similarly by “plugging-in” θ̂ into the expression for MSPE resulting in an
estimated kriging variance.

A major practical question is how to incorporate the “uncertainty” that arises from
using estimated instead of known covariance parameters in the determination of the

1-2
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mean squared prediction error (MSPE) of the EBLUP. By ignoring the fact that θ
is estimated, the resulting MSPE, which is termed the empirical MSPE (EMSPE),
leads to the underestimation of the MSPE of the EBLUP (Zimmerman and Cressie,
1992; Cressie, 1993; Abt 1998; Abt 1999; Wang and Wall, 2003; den Hertog et al,
2006).

1.3 Aims of Research

The aims of this research are as follows.

• To explore EMSPE, alternative methods of estimating the MSPE of the EBLUP
and possibly develop another method of estimating the MSPE of the EBLUP
all with the final aim of finding the most “optimal” estimator.

• It is also the intention of the research to avail means by which practitioners
can calculate the “optimal” estimator and the various other estimators that
will be investigated by developing flexible and portable programs.

• Lastly, we intend to investigate, though somewhat briefly, the consequences of
using the various estimators as the basis of design criteria in optimal sampling
design.

Section 1.4 provides a summary of the specific research objectives of this study.

1.4 Research Objectives

1. To investigate the performance of the empirical mean squared prediction error
(EMSPE) in estimating the mean squared prediction error (MSPE) of the
empirical best linear unbiased predictor (EBLUP).

2. To investigate and develop alternative methods to the EMSPE for estimating
the MSPE of the EBLUP and the evaluation of the performance of these
alternative estimators.

3. To develop portable programs in R (R Development Core Team, 2010) that
provide the user with the various estimators of the MSPE of the EBLUP.

4. To illustrate and test the flexibility of the alternative methods of estimating
the MSPE of the EBLUP mentioned in 3 on real data sets.

5. To examine how sampling designs based on the different kriging variance es-
timators as the basis of design criteria in optimal sampling design differ from
each other.
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1.5 Outline of thesis

In Chapter 2, the theory underlying kriging models is given, basic kriging equa-
tions, predictors and variances, are carefully derived and a discussion of the kriging
assumptions undertaken. The semivariogram and covariance, their role in kriging
and the estimation of the parameters of these functions, namely via least squares
and likelihood estimation methods, are then discussed. Lastly the research problem
is introduced and reasons as to why the empirical mean squared prediction error
(EMSPE) is a biased estimator of the MSPE of the empirical best linear unbiased
predictor (EBLUP) are discussed. Existing alternative methods to the EMSPE for
estimating the kriging variance when the covariance parameters are estimated are
explored and a novel approach involving bootstrapping is briefly outlined.

Chapter 3 details the setup, execution and the results of a simulation study intended
not only to investigate the bias of the EMSPE but also to identify the estimator with
the smallest bias from two analytic estimators proposed by Zimmerman and Cressie
(1992), which are the Kacker-Harville and Prasad-Rao estimators and two bootstrap
estimators, namely the unconditional and conditional bootstrap estimators.

In Chapter 4 the estimators investigated in Chapter 3 are applied to two real world
data sets. The first data set is the well known Meuse data set which consists of mea-
surements of heavy metals from the soils in the flood plain of the River Meuse (see
Burrough and McDonnell, (1998)). The second data set is a local, South African,
data set on which kriging methods have not been applied before. This involves
measurements of micronutrients in the Witwatersrand area. and is a subset of data
used in de Villers et al (2010).

Chapter 5 summarizes the important findings and contributions of this research. The
limitations of the research are also documented and directions for further research
are briefly discussed.

Appendix A gives the R functions that were developed during the course of this
research, namely functions for calculating the various estimators investigated here
and functions for executing the simulation experiment reported in Chapter 3.

Appendix B gives R documentation for the functions that compute the estimators
of Chapter 3. The documentation is important as, as mentioned earlier on, it is
intended that the functions be used by other geostatistical practitioners in their
own work.

Appendix C gives R syntax for conducting the analysis reported in Chapter 4. Also
given are some of the Routput, namely the fitted models, reported in the chapter.
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Chapter 2

Spatial Prediction and Kriging

A common problem in geosciences is to predict the value of a physical process at
an unobserved location x0 using n observations z = [z(x1), . . . , z(xn)]> obtained at
n locations x1, . . . ,xn within a study area D, see Figure 2.1. Conventionally the
physical process is modelled as a spatial process

Z(·) = {Z(x) : x ∈ D ⊂ Rd}, (2.1)

operating in d dimensions over the entire domain D (Schabenberger and Gotway,
2005). The practical problem is to predict Z(·) at x0 ∈ D using z = [z(x1), . . . , z(xn)]>

under the assumption that z is a realization of the n random variables Z = [Z(x1), . . . ,
Z(xn)]> which form one partial realization of Z(·). The dimensions over which the
process operates is commonly d = 2 but may also be d = 1 or d = 3.

0 1 2 3 4 5

0
1

2
3

4
5

1

2

3

4

Figure 2.1: Spatial prediction scenario. An attribute is observed at four locations
(1, 1), (2, 3), (3, 4), (4, 1) (black dots). Prediction of the attribute at the unsampled lo-
cation x0 = (3, 2) (cross) is required.

A variety of interpolation methods can be used to predict a value at an unsampled
location. The prediction of the unknown value z(x0) is then a weighted average of
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the neighbouring observations, for example:

ẑ(x0) =

n(x0)∑
i=1

λiz(xi), (2.2)

where λi is the weight associated with the ith observation z(xi) and n(x0) is the
number of points in a search neighbourhood around the prediction location x0.
The weighting is usually a function of the distance h0i = ||x0 − xi|| between the
observation location xi and the point of interest x0, i = 1, . . . , n(x0). The distance
measure hij between any two points xi and xj may be defined in various ways. Let
xi = (x1i, x2i) and xj = (x1j, x2j) denote the coordinates of two points in Euclidean
space. Then hij, the Euclidean distance between xi and xj, is given by

hij =
√

(x1i − x1j)2 + (x2i − x2j)2.

Similarly if xi = (ui, υi) and xj = (uj, υj) are points on the earth’s surface, where
u represents latitude and υ longitude, then the distance hij can be defined as the
great arc distance

hij = 6378 · arccos[sin ui sin uj + cos ui cos uj cos(υi − υj)].

The constant 6378 is the radius of the spherical earth in kilometres (Diggle and
Riberio, 2007). In this research we use Euclidean distance exclusively.

Some common prediction and interpolation methods include:

• Inverse distance weighting (IDW)
This deterministic method is the least sophisticated of all the interpolation
methods. The weight λi in expression (2.2) is a function of the distance h0i,
usually 1/h0i, such that λi = (1/h0i)

p, i = 1, . . . , n where p is some integer
(Davis, 2002).

• Interpolation splines
Interpolation splines are a set of deterministic functions that depend on dis-
tance only. These “piecewise functions” act like flexible surfaces which pass
through observation points when interpolating a surface (see Wahba, 1990).
These splines are rarely used in geosciences as they do not pass through ob-
servation points.

• Local and global polynomials
These deterministic methods are based on mathematical functions that model
the mean function over D. Global polynomials fit one function over the whole
domain. Local polynomial interpolation fits a polynomial in a moving window
(specific neighbourhood) over the domain D (Davis, 2002).

• Kriging
This is a geostatistical method based on the concept that spatial variables
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can be considered as partly deterministic and partly stochastic (see Journel
and Huijbregts, 1978, §II.A). In kriging the weights in expression (2.2) are
determined by minimizing the prediction error E{[z(x0) − ẑ(x0)]

2} (Krige,
1951; Matheron,1963; Cressie, 1990).

Note that for deterministic methods, the only way to judge the accuracy of pre-
dictions is to estimate the Root Mean Square Prediction Error (RMSPE) using
cross-validation. The RMSPE is defined as

RMSPE =
1

n

√√√√
n∑

i=1

{z(xi)− ẑ(−i)(xi)}2,

where z(xi) is the observed value at xi and ẑ(−i)(xi) is the predicted value obtained
by fitting the data over all locations other than xi. The RMSPE measures the overall
accuracy of the predictions. For kriging, the accuracy of predictions can not only
be judged by use of the RMSPE but may also be gauged using the Mean Squared
Prediction Error (MSPE)

E{[ẑ(x0)− z(x0)]
2} = Var{z(x0)}+ Var{ẑ(x0)} − 2 Cov{ẑ(x0), z(x0)}, (2.3)

which is the prediction error associated with each prediction ẑ(x0).

2.1 Kriging

It is the norm to denote random variables by capital letters Z = [Z(x1), . . . , Z(xn)]>

and observations by small letters z = [z(x1), . . . , z(xn)]>. However, from hence forth
we will use capital letters to denote both random variables and observations. It
should however be clear as to which we are referring to from the context of each
discussion.

Kriging models are based on the assumption that the random variables which form
the spatial process are generated by the model

Z = µ + η + ε, (2.4)

where the components of the realization vector Z reflect the various scales of varia-
tion of the physical process (Cressie, 1993). The decomposition of spatial processes
is not unique and depends on the nature of the problem and statistical analysis to
be carried out. In decomposition (2.4), µ = E{Z} is the large scale determinis-
tic variation and the other two components, which are stochastic processes, reflect
spatial variation.

The stochastic process η is a zero mean process:

η ∼ (0, σ2
0R(φ)),
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where R(φ) is the spatial correlation matrix with ijth element

Rij(φ) = Corr{Z(xi), Z(xj)}

depending on some function of the vector (xi − xj) and on an unknown distance
parameter φ. The distance parameter φ is commonly known as the range and the
term σ2

0 is referred to as the partial sill. The stochastic process ε, the nugget, which
is random noise is also a zero mean process:

ε ∼ (0, τ 2In),

where In is the n×n identity matrix and τ 2 is the nugget variance. The nugget can
be attributed to two sources. These are spatial variation on a scale smaller than the
available minimum distance between two observation points and measurement error
(Cressie, 1993; Riberio and Diggle, 2007). Commonly the stochastic components
of Z are grouped together to form the component δ = η + ε with zero mean and
variance-covariance matrix V(θ) = σ2

0R(φ) + τ 2In where θ = (τ 2, σ2
0, φ).

The deterministic trend µ is commonly modelled as a function of the observation
locations x1, . . . ,xn by polynomial functions fk(·) and unknown parameters βk for
k = 1, . . . , K such that µ = Fβ where

F =




1 f1(x1) . . . fK(x1)
...

...
...

...
1 f1(xn) . . . fK(xn)




n×(K+1)

with f0(x) ≡ 1 and β = [β0, . . . , βK ]> is a (K + 1) × 1 vector. The structure Fβ
can be modified to give a variety of models. The general kriging model, which is the
universal kriging model, is given by

Z = Fβ + δ, δ ∼ (0,V(θ)). (2.5)

In this model, the mean is unknown and is assumed to vary throughout the obser-
vation domain D. Ordinary kriging is another form of kriging. In this model the
mean is assumed to be constant over D, that is stationary, but is unknown, that is
f0(x) ≡ 1, F = 1 is a n × 1 vector of ones and β is a scalar. The ordinary kriging
model is then given as

Z = 1β + δ, δ ∼ (0,V(θ)), (2.6)

where 1β = µ. The broader concept of stationarity is discussed in detail in Section
2.2.1. Though it is uncommon in practice, the mean may not only be assumed
constant but it may also be taken as known. This produces a kriging model similar
to that specified in (2.6) but in which the mean is not estimated. This kriging model
is termed the simple kriging model. The mean assumptions and the mean models
for the universal, ordinary and simple kriging models are summarized in Table 2.1.
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Table 2.1: Universal, ordinary and simple kriging model assumptions and models of the
mean.

Type Assumption Mean model

Universal kriging non-stationary, unknown mean Fβ
Ordinary kriging constant, unknown mean 1β
Simple kriging constant, known mean β 1β

2.1.1 Optimal prediction

Given the n observations Z(x1), . . . , Z(xn) at the n locations x1, . . . ,xn and the un-
known value Z(x0) at the location x0, the aim of kriging is to find the best predictor
Ẑ(x0) of Z(x0). This can be done in the absence of any distributional assumptions
on Z. The best predictor is defined to be the predictor that is:

1. Linear in Z = [Z(x1), . . . , Z(xn)]>:

Ẑ(x0) = λ>Z (2.7)

where λ = [λ1, . . . , λn]> is an n× 1 vector of weights.

2. Unbiased:
E{Ẑ(x0)} = E{Z(x0)} = f>0 β, (2.8)

where f0 = [f0(x0), . . . , fK(x0)]
> is a (K + 1)× 1 vector of regressors.

3. Minimizes the expected MSPE:

E{[Ẑ(x0)− Z(x0)]
2}.

Thus we seek to find a linear unbiased minimum mean-squared predictor. Formally
the statistical criterion for obtaining such a predictor involves the minimization of
the mean squared prediction error (MSPE)

min
λ

E{[λ>Z− Z(x0)]
2},

with respect to the weights λ=[λ1, . . . , λn]> under the constraint of unbiasedness
(2.8). The resulting predictor Ẑ(x0) is termed the Best Linear Unbiased Predictor
(BLUP) (Cressie, 1993).
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2.1.2 Derivation of predictors and kriging variances

Given the universal kriging model (2.5)

Z = Fβ + δ, δ ∼ (0,V(θ))

a predictor Ẑ(x0) of Z(x0) at x0 is required, which is the BLUP. Under model (2.5)
the expected value of Ẑ(x0) = λ>Z is

E{Ẑ(x0)} = E{λ>Z}
= E{λ>Fβ + λ>δ}
= λ>Fβ ≡ f>0 β,

and thus F>λ ≡ f0.

As noted in Section 2.1.1, to obtain the BLUP the prediction variance

E{[λ>Z− Z(x0)]
2} = Var{Z(x0)}+ Var{λ>Z} − 2Cov{Z(x0),λ

>Z}
= σ2 + λ>V(θ)λ− 2λ>v(θ), (2.9)

where σ2 = τ 2 +σ2
0 = Var{Z(x0)} and v(θ) is the observation location {x1, . . . ,xn}

to prediction location x0 covariance vector, must be minimized. To simplify the
notation we omit the symbol θ from the terms V(θ) and v(θ) and use V and v
respectively.

To obtain a predictor that minimizes the prediction variance, expression (2.9) must
be minimized with respect to the weights λ. However, the constraint of unbiasedness
F>λ ≡ f0 must also be imposed. Thus Lagrange parameters are introduced to allow
for unconstrained optimization. The resulting Lagrangian function is

` = σ2 + λ>Vλ− 2λ>v + 2ϕ>(F>λ− f0) (2.10)

where ϕ = [ϕ0, . . . , ϕK ]> is a (K + 1) × 1 vector of the Lagrange parameters, and
the term (F>λ− f0) incorporates the unbiasedness condition. Differentiating (2.10)
with respect to λ and ϕ and setting the results to zero yields

∂`

∂λ
= 2Vλ− 2v + 2Fϕ = 0

∂`

∂ϕ
= 2(F>λ− f0) = 0.

Rearranging the terms and dividing by 2 yields what are termed the kriging system
of equations [

V F
F> 0

] [
λ
ϕ

]
=

[
v
f0

]
.

Since [
V F
F> 0

]−1

=

[
V−1 −V−1F∆−1F>V−1 V−1F∆−1

∆−1F>V−1 −∆−1

]
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where ∆ = F>V−1F, solving the kriging system of equations for ϕ and λ simulta-
neously results in the expressions

ϕ = ∆−1(F>V−1v − f0)

and

λ = V−1v −V−1F∆−1F>V−1v + V−1F∆−1f0

= V−1v −V−1F∆−1(F>V−1v − f0)

= V−1(v − Fϕ). (2.11)

Substituting (2.11) into expression (2.7) gives the BLUP

Ẑ(x0) = λ>Z

= f>0 ∆−1F>V−1Z + v>V−1Z− v>V−1F∆−1F>V−1Z

= f>0 β̂ + v>V−1(Z− Fβ̂) (2.12)

where
β̂ = (F>V−1F)−1F>V−1Z

is the Generalized Least Squares (GLS) estimate of β. If V is known β̂ is the
Maximum Likelihood Estimator (MLE). The variance of the predictor, the kriging
variance, is obtained by substituting the value of the optimal weights given in (2.11)
into the expression for the prediction variance (2.9). The kriging variance of Ẑ(x0)
is then given as

σ2(x0) = σ2 − v>V−1v + (f>0 − v>V−1F)(F>V−1F)−1(f0 − F>V−1v).

(2.13)

2.1.2.1 Ordinary kriging

For ordinary kriging F = 1 with
∑n

i=1 λi = 1. Thus the ordinary kriging predictor

Ẑ(x0) is given as
Ẑ(x0) = β̂ + v>V−1(Z− 1β̂). (2.14)

where
β̂ = (1>V−11)−11>V−1Z.

The ordinary kriging variance σ2
OK(x0) is then given as

σ2(x0) = σ2 − v>V−1v + (1− v>V−11)(1>V−11)−1(1− 1>V−1v).

(2.15)
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2.1.2.2 Simple kriging

As noted before, in simple kriging the mean is assumed to be a known constant.
Because as in ordinary kriging the mean is assumed constant, ordinary and simple
kriging are similar with the only difference being that there is no unbiasedness
constraint for simple kriging so λ = V−1v. The simple kriging predictor is thus

Ẑ(x0) = β + v>V−1(Z− 1β), (2.16)

with the variance estimator

σ2(x0) = σ2 − v>V−1v. (2.17)

2.2 Kriging Assumptions

2.2.1 Stationarity

One of the assumptions in kriging is that of stationarity of the spatial process Z(·).
Various levels of stationarity can be assumed.

2.2.1.1 Strict stationarity:

The process Z(·) is said to be strictly stationary if the multivariate cumulative
distribution function (cdf) is invariant under translation of the coordinates (Journel
and Huijbregts, 1978; Goovaerts, 1997). That is, the two n-component random
vectors {Z(x1), . . . , Z(xn)} and {Z(x1+h), . . . , Z(xn+h)} have the same n variable
distribution law whatever the translation vector h and the value of n. This definition
can be formally expressed as

Pr[Z(x1) ≤ z1, . . . , Z(xn) ≤ zn] = Pr[Z(x1 + h) ≤ z1, . . . , Z(xn + h) ≤ zn].

This implies that a strictly stationary spatial process “repeats itself” throughout
the domain in which it operates (Schabenberger and Gotway, 2005, p43). Thus, in
particular, the means and variances of Z(·) are constant across the domain.

2.2.1.2 Second order stationarity:

The process Z(·) is second order stationary if the following two conditions hold.

• Condition 1: The expectation E{Z(x)} exists and does not depend on the
location x; thus,

E{Z(x)} = E{Z(x + h)} = µ ∀ x ∈ D. (2.18)
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• Condition 2: For each pair of random variables {Z(x), Z(x+h)} the covari-
ance exists and depends only on the separation vector h, that is

Cov{Z(x), Z(x + h)} = E{[Z(x)− µ][Z(x + h)− µ]}
= E{Z(x + h) · Z(x)} − µ2

= C(h), ∀ x, x + h ∈ D. (2.19)

The function C(h) is commonly referred to as the covariance function and is used
to build the matrix specified by σ2

0R(φ).

2.2.1.3 Intrinsic stationarity:

The process Z(·) is said to be intrinsically stationary if Condition 1 given in (2.18)
holds and in addition the following condition holds.

• Condition 3: For all vectors h the difference Z(x + h) − Z(x) has a finite
variance which depends on the separation vector h but not on the location x,
that is

Var{Z(x + h)− Z(x)} = E{[Z(x + h)− Z(x)]2} = 2γ(h), ∀ x.

The function 2γ(h) is termed the variogram and half of its value is termed the
semivariogram. The semivariogram is thus

γ(h) =
1

2
Var{Z(x + h)− Z(x)}. (2.20)

The semivariogram features prominently in the geostatistical literature and applica-
tions and is the main tool used to study spatial correlation rather than the covariance
function (Chilés and Delfiner, 1999, Section 2.2; Schabenberger and Gotway, 2005,
Section 4.2.2; Diggle and Riberio, 2007, Section 5.2). This is because C(·) is only
defined for second order stationary processes whilst γ(·) is defined for second order
and intrinsic stationary processes.

It can be shown that second order stationarity implies intrinsic stationarity using the
relationship between the semivariogram and covariance function as follows. Since

Var{Z(x)} = E{[Z(x)− µ]2} = τ 2 + C(0), ∀ x ∈ D

where τ 2 is the nugget variance and C(0) is the variance of Z(x) under second order
stationarity, it follows that

1

2
Var{Z(x + h)− Z(x)} =

1

2

[
Var{Z(x)}+ Var{Z(x + h)} − 2Cov{Z(x), Z(x + h)}

]

=
1

2

[
2 · Var{Z(x)} − 2 · C(h)

]

= τ 2 + [C(0)− C(h)] = γ(h).
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Although second order stationarity automatically implies intrinsic stationarity the
converse is not true. Intrinsic stationarity does not automatically imply second order
stationarity (Cressie, 1993; Schabenberger and Gotway, 2005).

Philip and Watson (1986) sharply attack the validity of the assumption of stationar-
ity of Z(·). They state that it is impossible for a spatial process Z(·) to be stationary.
That is, it is unrealistic to think that spatial variables can have mean and covariance
values which are independent of location (Philip and Watson, 1986). They go on to
state that, even as a model property the assumption of stationarity is inappropriate.
However, Journel (1986) vehemently defends the stationarity assumption. Journel
(1986) states that the assumption does not imply that the actual physical process
is itself stationary but is only a model assumption needed for inference as replica-
tion is not possible. Specifically, the assumption allows the model to accommodate
some desired aspects of the data and in addition facilitates modelling of the spatial
dependence. For instance, it enables one to pool data over areas that are believed
to be homogenous (Journel, 1986; Goovaerts, 1997).

2.2.2 Gaussian model

A spatial process Z(·) is said to be a Gaussian spatial process if the joint distribution
of the n random variables Z(x1), . . . , Z(xn) is multivariate Gaussian for any integer
n and any set of locations x ∈ D ⊂ Rd (Diggle and Riberio, 2007). Gaussian
spatial processes are completely specified by their first two moments, that is their
mean function E{Z(x)} = µ and covariance function C(h). For Gaussian spatial
processes strict and second order stationarity coincide (Cressie, 1993). This feature
of the Gaussian model is very convenient when it comes to inference.

Use of the Gaussian spatial model rarely has any physical justification (Diggle and
Riberio, 2007). However this “leap of faith” (Chilès and Delfiner, 1999, p17) is
often made. The primary reason for the use of the Gaussian model is its tractabil-
ity. Gaussian models are “convenient empirical models” that allow one to capture
different types of spatial behaviour according to the specification of the correlation
structure (Diggle and Riberio, 2007, p46).

Due to increased computational power over the last decade, computer intensive
methods of inference are now common. This means that the analytical tractability
of Gaussian models is becoming less of an incentive to use them as models for spatial
processes (Diggle and Riberio, 2007). For instance simulation based methods of
inference have made it possible to carry out inference on spatial processes in the
absence of the Gaussian model assumption (Goovaerts, 1997, Chapter 7; Chilès and
Delfiner, 1999, Chapter 7; Goméz-Hernádez et al, 1997; Pachepsky and Acock, 1998;
Goovaerts 1999; 2001).
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2.2.3 Parametric models for the spatial covariance structure

The correlation structure of Z(·) can be modelled through parametric functions
where the q parameters, θ ∈ Θ, of the functions correspond to some aspect of the
correlation structure. Hence for kriging, γ(·) and C(·) are assumed to come from
some parametric family of models and the parameters of that function are estimated
from the data to give estimates of the functions which are then used in kriging.

0 1 2 3 4

0.
0

0.
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0.
4

0.
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0

h

γ(
h)

sill

range

nugget

partial sill

Figure 2.2: A typical semivariogram with the structural parameters indicated.

In order for a function to serve as a parametric model of the spatial correlation
it must be continuous. In addition the variance-covariance matrices constructed
from it must be non-negative definite. The continuity condition ensures that the
models can provide autocorrelation estimates at any desired lag whilst the covariance
condition ensures that the functions always lead to non-negative kriging variances.
If the functions C(·) and γ(·) are functions of only distance they are termed isotropic
models. If they are functions of distance and direction they are termed anisotropic
models. Some of the most common isotropic functions that are used as parametric
models for the spatial correlation in geostatistical applications are given in Table
2.2. Journel and Huijbregts (1978) and Chilès and Delfiner (1999) also give a myriad
of other functions. Of the functions given in Table 2.2 the exponential, Gaussian,
Matérn and spherical models are the more commonly used models.

Figure 2.2 illustrates how the parameters of the models of the stationary component
of spatial processes are captured by semivariogram models. For instance, when
a nugget term ε is present, the semivariogram cuts the y-axis at τ 2, the nugget
variance. This indicates that at observation locations the variance is greater than
zero because of, say, measurement error. The sill σ2 which is τ 2 plus the partial sill
σ2

0, is the asymptote of γ(·) and it corresponds to Var{Z(x)}. The range φ then
indicates how rapidly the function approaches the asymptote or sill.
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Table 2.2: Commonly used isotropic γ(·) models valid in R2. Kκ denotes the modified
Bessel function of order κ, τ2 the nugget variance, σ2

0 the partial sill, φ the range parameter,
and h the lag between two points.

Model γ(h)

Exponential τ 2 + σ2
0{1− e−3h/φ}

Gaussian τ 2 + σ2
0{1− e−3h2/φ2}

Matérn τ 2 + σ2
0

{
1− 1

2κ−1Γ(κ)

(
h
φ

)κ

Kκ

(
h
φ

)}

Cauchy τ 2 + σ2
0

{
1−

[
1 +

(
h
φ

)2]−κ
}

Circular τ 2 + σ2
0

{
1− 2

π

[
arccos

(
h
φ

)
−

(
h
φ

)√
1−

(
h
φ

)2 ]}
, for h ≤ φ,

0, otherwise

Spherical τ 2 + σ2
0

{
3h
2φ
− h3

2φ3

}
, for 0 < h ≤ φ,

τ 2 + σ2
0, for h ≥ φ

Cardinal-sine τ 2 + σ2
0

{
1−

(
φ
h

)
sin

(
h
φ

)}

(Wave)

Because some functions never reach the sill but only approach it asymptotically
there is a need to define the practical range φp (Goovaerts, 1997; Schabenberger and
Gotway, 2005). The practical range is the value of h at which the function γ(h)
attains 95% of its sill, that is

γ(φp) = 0.95× (τ 2 + σ2
0).

Also, at the practical range correlations are approximately equal to 0.05, that is
C(φp) w 0.05. The practical range is useful for comparing the correlation for different
semivariogram models (Schabenberger and Gotway, 2005). Figure 2.3 shows the
shapes of the commonly employed exponential, Gaussian and spherical models with
the same sill value and practical range.
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Figure 2.3: Some common semivariogram models. Models have the same range, φ = 5
sill, σ2 = 1 and nugget variance τ2 = 0.

2.3 Estimation of Parameters

2.3.1 Least squares methods

Consider a spatial process Z(·) with an unknown stationary mean, that is following
an ordinary kriging model (2.6)

Z = 1β + δ, δ ∼ (0,V(θ)).

Various least squares (LS) methods have been proposed to estimate the variance
components θ and the mean β of such a process. These include ordinary least squares
(OLS), generalized least squares (GLS) and weighted least squares (WLS). These
methods are based on fitting curves, that is fitting generic semivariogram models
γ(h), to M estimates of γ(·): γ̃ = [γ̃(h1), . . . , γ̃(hM)]> the empirical semivariogram,
so as to minimize the sum of squares between γ = [γ(h1), . . . , γ(hM)]> and γ̃. The
parameters of the fitted semivariogram models provide estimates θ̃ of θ. The mean
β is then obtained by evaluating β̃ = (1>V(θ̃)−11)−11>V(θ̃)−1Z.

The M estimates of the empirical semivariogram at each lag are commonly obtained
through the Matheron estimator (Matheron, 1963)

γ̃(hij) =
1

2 |N(hij)|
∑

N(hij)

{Z(xi)− Z(xj)}2, hij ∈ R, (2.21)

where
N(hij) ≡ {(xi,xj) : ||xi − xj|| = hij; i, j = 1, . . . , n}
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expresses the set of location pairs (xi,xj) with coordinate distance ||xi − xj|| = hij

and |N(hij)| is the number of distinct pairs in this set. Typically there are few, if
any, pairs of data that are exactly a distance hij apart. Thus lag classes with class
midpoints hm,m = 1, . . . , M are formed using a histogram approach (Diggle and
Riberio, 2007). This practice is referred to as binning.

If there exists a trend in the spatial process, that is the mean is not constant and
Z(·) follows the model (2.5)

Z = Fβ + δ, δ ∼ (0,V(θ)),

the empirical semivariogram based on the data Z cannot be used in the estimation
of θ. This is because in such instances the empirical semivariogram of Z is dom-
inated by the trend and hence fitting a curve to it leads to poor estimates for θ
(Cressie, 1993; Schabenberger and Gotway, 2005; Diggle and Riberio, 2007). To
obtain accurate estimates of θ the empirical semivariogram of the mean corrected
data Z − Fβ̃, which are the residuals obtained by fitting an appropriate trend,
should be used. The fitting process can be expressed as an algorithm, see Schaben-
berger and Gotway (2005, p257). Firstly β is estimated by the OLS estimator of
the mean β̂OLS = (F>F)−1F>Z. This then allows the residuals to be estimated as
r = Z−Fβ̂OLS. Next the empirical semivariogram of the residuals is computed and
a generic semivariogram model γ(h) is fitted by one of the LS fitting criterion, dis-
cussed below, to obtain θ̃. The covariance parameter estimates θ̃ are then plugged
into the LS estimate for β to give β̃ = (F>V(θ̃)−1F)−1F>V(θ̃)−1Z as an improved
estimate of the mean. The estimation of θ and β may be repeated until the dif-
ferences between the estimates of θ and β for successive iterations of the algorithm
are suitably small (Schabenberger and Gotway, 2005).

As mentioned earlier, LS methods of fitting semivariogram models to the empirical
semivariogram include OLS, GLS and WLS. In OLS the fitting criterion is the sum
of squares between observed and fitted semivariogram values

(γ̃ − γ)>(γ̃ − γ),

which must be minimized with respect to θ. Although the OLS method of semivar-
iogram model fitting is easily implemented, its major shortcoming is its inability to
take into account the distributional variation and covariation of the generic estima-
tor γ̃ (Cressie, 1985).

The GLS method for fitting curves to the empirical semivariogram is intended to
overcome the shortcoming of the OLS method. In GLS the fitting criterion is

(γ̃ − γ)>Vγ(θ)−1(γ̃ − γ),

where Vγ(θ) = Var{γ̃} is the variance-covariance matrix of γ̃. The minimization
process is carried out iteratively if the variance-covariance Vγ does not depend on
θ. However, the generalized sum of squares can be difficult to implement as it is
not straight forward to obtain Vγ (Cressie, 1985; 1993).
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The formulation of the WLS fitting criterion is similar to that for GLS semivariogram
fitting. However, the WLS approach uses only the diagonals of Vγ(θ) which can be
approximated as

Var{γ̃(hm)} ≈ 2
γ(hm)2

|N(hm)| ,

where |N(hm)| expresses the number of pairs in lag class hm, m = 1, . . . , M (Cressie,
1985). Thus the variance-covariance matrix of γ̃, Vγ(θ), is replaced by a diagonal
matrix Wγ(θ) = diag{Var{γ̃(hm)}}. The WLS fitting criterion becomes

(γ̃ − γ)>Wγ(θ)−1(γ̃ − γ).

The above expression can be minimized through any iterative non-linear estimation
algorithm. An attractive feature of WLS semivariogram model fitting is that the
weighting scheme automatically assigns more weight to small lags and to lags where
there are more pairs and down-weights lags with a small number of pairs (Cressie,
1985).

The performance of the various LS methods of model fitting to the empirical semi-
variogram is comparable. For instance, OLS and WLS methods perform more or
less similarly (Zimmerman and Zimmerman, 1991). Although Wγ(θ) gives a poor
approximation to Vγ(θ), Cressie and Grondona (1992) show that there is not much
loss in efficiency from using WLS instead of GLS in terms of estimating the param-
eters. Therefore no method is uniformly superior. There are other more complex
LS methods of fitting semivariogram models, all of which are based on these three
variants, OLS, GLS and WLS, of least squares fitting. These methods are often su-
perior to their simpler counterparts but they are complex and difficult to implement
(Zimmerman and Zimmerman, 1991).

Least squares (LS) methods of estimating θ are popular for several reasons (Cressie,
1993; Schabenberger and Gotway, 2005);

• They make no distributional assumptions about the data Z or empirical semi-
variogram γ̃.

• They are quick and easy to use as they do not require much computational
power.

• They produce semivariogram models that give visually appealing fits to the
empirical semivariogram.

A major shortcoming of LS methods of model fitting is that estimation of the semi-
variogram at the origin involves extrapolation if no duplicate measurements are
available at some of the observation locations (Diggle and Riberio, 2007). Other
criticisms of LS methods are due to the binning process. The binning process gives
rise to serious concern. It results in semivariogram models being fitted to pseudo-
data instead of the actual data Z = [Z(x1), . . . , Z(xn)]>. This can lead to an analyst
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inadvertently “constructing” data that fit a particular semivariogram model instead
of looking for a model which fits the data (Stein, 1999; Schabenberger and Gotway,
2005).

2.3.2 Likelihood methods

The most widely used likelihood methods for obtaining estimates of the parameters
in a spatial linear model are maximum likelihood (ML) and restricted maximum like-
lihood (REML) estimation. Likelihood methods require that the spatial distribution
of Z(·) be known and a Gaussian distribution is usually assumed (Schabenberger
and Gotway, 2005). An assumption of second-order stationarity is not made ex-
plicitly but is implied in that for the Gaussian model, intrinsic and second order
stationarity coincide (see Section 2.2.1). The likelihood approach to estimation is
the same whether the model has a constant or a non-constant mean, so a general
development of the methods is given here.

For ML estimation, we assume the model

Z ∼ G(Fβ,V(θ)),

which indicates that the data are assumed to follow a Gaussian distribution with
mean Fβ and variance-covariance V(θ). Estimation of β and θ = [θ1, . . . , θq]

>

involves maximizing the log-likelihood

l(θ; β,Z) = −1

2

[
n ln{2π}+ ln{|V(θ)|}+ (Z− Fβ)>V(θ)−1(Z− Fβ)

]
. (2.22)

If F is an n× (K +1) matrix of rank K +1, then the optimization problem involves
q + (K + 1) parameters.

To ease the computational burden the mean β and partial sill σ2
0 may be profiled

from (2.22) so that numerical optimization is done over a reduced parameter space
with only q − 1 dimensions instead of the q + (K + 1) dimensions of the original
problem. Profiling is achieved by making use of the fact that there exists closed
form expressions for the ML estimates of β and σ2

0 in terms of the other parameters.
These are

β̂ = (F>V(θ†)−1F)−1F>V(θ†)−1Z (2.23)

and

σ̂2
0 =

1

n
(Z− Fβ̂)>V(θ†)−1(Z− Fβ̂), (2.24)

respectively, where θ† is the q−1 vector of the parameters with the elements altered
to reflect the factoring of σ2

0. The matrix V(θ†) = R(φ) + ν2In is obtained by
defining ν2 = τ 2/σ2

0 so that V(θ) = σ2
0V(θ†) (Diggle and Riberio, 2007).

The expressions for β̂ and σ̂2
0 in (2.23) and (2.24) are substituted into the log-

likelihood (2.22) to give

lβ,σ2
0
(θ†;Z) = −1

2

[
n(1 + ln{2π}+ ln{σ̂2

0}) + ln{|V(θ†)−1|}
]
, (2.25)
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the objective function profiled for β and σ2
0. Numerical optimization is then carried

out on (2.25) with respect to θ† to give ML estimates for θ† as θ̂
†
ML. Upon conver-

gence the ML estimate of the mean β̂ML is obtained by evaluating (2.23) at θ̂
†
ML.

Then, the ML estimate of σ2
0 is obtained by evaluating (2.24) at β̂ML and θ̂

†
ML.

Besides reducing the optimization problem to a smaller and more easily managed
problem, profiling is also beneficial in that maximizing the full log-likelihood (2.22)
can lead to numerical instabilities (Fang et al, 2006).

Maximum likelihood estimators (MLE’s) have many desirable statistical proper-
ties. For instance, they are asymptotically Gaussian and efficient under standard
regularity conditions (Diggle and Riberio, 2007). However, the ML estimates for
the variance components θ̂ML are usually biased downwards. This bias arises from
the fact that ML estimation does not take into consideration the loss of degrees
of freedom in estimating θ that is incurred when simultaneously estimating mean
parameters (Cressie, 1993; Schabenberger and Gotway, 2005).

To overcome the problem of biased estimates for θ arising from ML estimation
restricted maximum likelihood estimation (REML) can be used instead. REML
controls the bias of the MLE’s and in some cases completely eliminates it (Patterson
and Thompson, 1971). REML estimators are obtained by applying ML estimation
to transformed data KZ, where K is an (n−K − 1)× n matrix of error contrasts,
instead of the actual data Z. The matrix K is chosen so that

E{KZ} = 0

and
rank{K} = n−K − 1,

that is, such that K is an (n−K−1)×n matrix whose rows are linearly independent
of the rows of

In − F(F>F)−1F>. (2.26)

Such a matrix will not depend on θ or β (Harville, 1977).

For REML estimation we thus have the model

KZ ∼ G(0,KV(θ)K>)

and the log-likelihood function which must be minimized is

lr(θ;KZ) = −1

2

[
(n−K−1) ln{2π}+ln{|KV(θ)K>|}+Z>K>(KV(θ)K>)−1KZ

]
.

This REML objective function is independent of the choice of K and can be ex-
pressed by eliminating K to give

lr(θ;KZ) = −1

2

[
(n−K − 1) ln{2π}+ ln{|F>V(θ)−1F|}+ ln{|V(θ)|}

− ln{|F>F|}+ (Z− Fβ̂)>V(θ)−1(Z− Fβ̂)

]
. (2.27)
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As in ML estimation, σ2
0 may be profiled from the REML objective function (2.27).

This process is similar to profiling in ML estimation as it also exploits the closed

form expression for σ2
0 in terms of θ̂

†
and β̂, which in this case is

σ̂2
0 =

1

n−K − 1
(Z− Fβ̂)>V(θ̂

†
)−1(Z− Fβ̂).

The divisor (n − K − 1) in σ̂2
0 adjusts the estimate of σ2

0 for the (K + 1) mean
parameters β = [β0, β1, . . . , βK ]>. Substitution of the expression for the REML
estimate of σ2

0 into (2.27) then results in the profile restricted log-likelihood

lr(θ
†;KZ) = −1

2

[
(n−K − 1)(1 + ln{2π}+ ln{σ̂2

0}) + ln{|V(θ†)|}

+ ln{|F>V(θ†)−1F|}
]

(2.28)

which is a function of θ† only. The REML estimate of the mean β̂REML is obtained

by evaluating (2.23) at θ̂
†
REML. A major shortcoming of REML estimation is the

fact the it is developed only for the case where the mean is a linear function of the
parameters, that is for Gaussian linear models (Schabenberger and Gotway, 2005).
Thus if the mean is not a linear function it is uncertain how the matrix of error
contrasts K may be constructed.

Clearly likelihood methods are heavily dependent on the Gaussian assumption. How-
ever this is not a major problem as transformations, such as the Box-Cox family of
transformations, can be applied to the data so that Z is approximately Gaussian
(Cressie, 1993; Schabenberger and Pierce, 2002; Diggle and Riberio, 2007). Also, if
the data are non-Gaussian but from an exponential family, generalized linear models
(GLM) may be introduced to estimate the parameters of Z(·) (Diggle and Riberio,
2007). The only real problems of likelihood estimation are computational, especially
for large data sets (Diggle and Riberio, 2007).

Inspite of the problems of likelihood estimation methods of model fitting, the ap-
proach possesses some very desirable properties.

• For likelihood methods θ is estimated based on the actual data instead of
pseudo-data by avoiding the binning process in constructing an empirical semi-
variogram (Stein, 1999). The methods thus optimize an objective function,
such as (2.22) or (2.27), in the space of the data Z and the model residuals
have a sensible interpretation (Todini and Ferraresi, 1996).

• Likelihood methods lead to a statistical basis for inferences on parameters.
Specifically the standard errors of the estimates of the parameters can be
obtained as the squared rooted terms on the diagonal of the large sample
covariance matrix. In addition, confidence bounds can be estimated. This is
typically done using the profile likelihood (Diggle and Riberio, 2007).
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• Likelihood methods are the only methods that produce a reliable basis for
model comparisons based on statistical grounds (Schabenberger and Gotway,
2005). Models can be compared using the values of the Akaike Information
Criterion (AIC)

AIC = −2 ln{L̂}+ 2p

or the Bayesian Information Criterion (AIC)

BIC = −2 ln{L̂}+ p log{n},

where L̂ is the value of the maximized log likelihood, p is the number of
parameters in the model and n is the number of observations. Using these
criteria a model is said to be the best fitting model for a data set if it has the
smallest AIC or BIC value amongst competing models.

2.4 The Estimated Kriging Variance

Recall that if the covariance parameter vector θ is known, the kriging predictor at
the location x0 is given by

Ẑ(x0) = Ẑ1(x0; θ)

= f>0 β̂ + v(θ)>V(θ)−1(Z− Fβ̂)

where β̂ = (F>V(θ)−1F)−1F>V(θ)−1Z, and is termed the best linear unbiased
predictor (BLUP). This predictor has mean squared prediction error (MSPE)

m1(θ) = E{[Ẑ1(x0; θ)− Z(x0)]
2}

which is given by (2.13), that is

σ2−v(θ)>V(θ)−1v(θ)+(f>0 −v(θ)>V(θ)−1F)(F>V(θ)−1F)−1(f0−F>V(θ)−1v(θ)).

Also recall that since the parameter vector θ is in general unknown, it has to be
estimated by, say, one of the methods described in Section 2.3. The kriging predictor
at x0 is then obtained by plugging-in the estimate of θ, θ̂, into (2.12) to produce
Ẑ2(x0; θ̂) which is termed the empirical best linear unbiased predictor (EBLUP). The
estimator θ̂ is commonly a translation-invariant estimator, that is θ̂(Z+Fψ) = θ̂(Z)
for every vector ψ and all values of Z, such as θ̂ML and θ̂REML. The EBLUP has
MSPE error

m2(θ) = E{[Ẑ2(x0; θ̂)− Z(x0)]
2}

which is a function of the unknown parameters θ.

Following Kacker and Harville (1984) the prediction error of the EBLUP can be seen
to consist of two parts:

Ẑ2(x0)− Z(x0) = [Ẑ1(x0)− Z(x0)] + [Ẑ2(x0)− Ẑ1(x0)], (2.29)
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where Ẑ2(x0) and Ẑ1(x0) are the EBLUP and BLUP respectively, expressed without
θ for economy of notation. Following from (2.29) we have

m2(θ) = m1(θ) + E{[Ẑ2(x0)− Ẑ1(x0)]
2}+ 2E{Ẑ1(x0)− Z(x0), Ẑ2(x0)− Ẑ1(x0)}

= m1(θ) + Var{[Ẑ2(x0)− Ẑ1(x0)]}+ 2Cov{Ẑ1(x0)− Z(x0), Ẑ2(x0)− Ẑ1(x0)}
since Ẑ1(x0) is unbiased, that is E{Ẑ1(x0)} = f>0 β. If Z is Gaussian then

Cov{Ẑ1(x0)− Z(x0), Ẑ2(x0)− Ẑ1(x0)} = 0

and m2(θ) can be simply be expressed as

m2(θ) = m1(θ) + Var{[Ẑ2(x0)− Ẑ1(x0)]}. (2.30)

The first term in (2.30) is the prediction error of the BLUP and the second term
is the error incurred in the estimation of θ with m2(θ) ≥ m1(θ) (Zimmerman and
Cressie, 1992).

Since m2(θ) in (2.30) cannot be evaluated directly, at least in general, it is commonly
estimated by the empirical mean squared prediction error (EMSPE). This traditional
estimator of m2(θ) is obtained by plugging in θ̂ into (2.13) to give

m1(θ̂) = σ2 − v(θ̂)>V(θ̂)−1v(θ̂) + (f>0 − v(θ̂)>V(θ̂)−1F)(F>V(θ̂)−1F)−1

×(f0 − F>V(θ̂)−1v(θ̂)).

However, a major shortcoming of m1(θ̂) as an estimator of m2(θ) is that on average
it results in the underestimation of the prediction error of the EBLUP (Zimmerman
and Cressie, 1992; Cressie, 1993; Wang and Wall, 2003; Schabenberger and Gotway,
2005; den Hertog et al ; 2006). This is because it does not take into account the
variability due to the estimation of θ that is introduced into the EBLUP . It is
also evident that m1(θ̂) estimates E{[Ẑ1(x0)− Z(x0)]

2} the prediction error of the
BLUP and not m2(θ), the mean squared prediction error it should be estimating
(Zimmerman and Cressie, 1992; Schabenberger and Gotway, 2005). Therefore m1(θ̂)
is not only an underestimator of m2(θ) but it is in fact an estimator of an incorrect
quantity.

Other results obtained by Zimmerman and Cressie (1992) which relate E{m1(θ)} to
m1(θ̂) and m2(θ) and thus give an indication of the bias in using m1(θ) to estimate
m2(θ̂) are:

• If the covariance function C(h) is linear in the elements θ and θ̂ is unbiased,
then

E{m1(θ̂)} ≤ m1(θ),

that is the EMSPE underestimates the MSPE itself.

• If Z is Gaussian, C(h) is linear in the elements θ and θ̂ is unbiased, then

E{m1(θ̂)} ≤ m1(θ) ≤ m2(θ),
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• If Z is Gaussian, C(h) is linear in the elements θ and θ̂ is complete and
sufficient, then

E{m1(θ̂)} = m2(θ)− 2[m2(θ)−m1(θ)].

The final result implies that the bias of m1(θ̂) is of magnitude 2[m2(θ)−m1(θ)] as
bias due to E{m1(θ̂)} ≤ m2(θ) and the fact that m1(θ) ≤ m2(θ) contribute equally
to the total bias of m1(θ̂). The result also gives an idea of the form of an unbiased
estimator of m2(θ). However, the conditions under which such an estimator can be
obtained are stringent and rarely hold.

2.4.1 Alternate analytical estimators to the EMSPE

From the discussion above it is clear that m1(θ̂), the EMSPE is an unsatisfactory
estimator of m2(θ), the MSPE of the EBLUP. There is therefore a need for alterna-
tive methods of estimating m2(θ). One such estimator is based on an approximation
that originates from work done on mixed linear models where it was first suggested
by Kacker and Harville (1984) for use in mixed linear models with estimated vari-
ance parameters. Later Harville and Jeske (1992) as well as Zimmerman and Cressie
(1992) gave details and suggested its use in general linear models and spatial linear
models with estimated covariance parameters respectively. The approximation is
developed as follows.

Firstly, the EBLUP is approximated by a first-order Taylor series expansion of
Ẑ2(x0) about θ. The Taylor series expansion leads to

Ẑ2(x0) ≈ Ẑ1(x0) +
∂Ẑ1(x0)

∂θ

⌋>

θ

(θ − θ̂),

where ∂Ẑ1(x0)/∂θ is a q × 1 vector with ith element ∂Ẑ1(x0)/∂θi. Thus

Ẑ2(x0)− Z(x0) ≈ Ẑ1(x0)− Ẑ(x0) +

(
∂Ẑ1(x0)

∂θ

)>
(θ − θ̂).

Squaring on both sides and taking expectations then leads to the approximation

m2(θ) ≈ m1(θ) + E

{[(
∂Ẑ1(x0)

∂θ

)>
(θ − θ̂)

]2}

+ 2 E

{
[Ẑ1(x0)− Z(x0)][Z

>(θ − θ̂)]

}
. (2.31)

If it is assumed that θ̂ was obtained from previous data as in Kacker and Harville
(1984) or if it is assumed that θ̂ and Z are independent (Harville and Jeske, 1992;
Zimmerman and Cressie, 1992), then the approximation can be simply expressed as

m2(θ) ≈ m1(θ) + E

{[(
∂Ẑ1(x0)

∂θ

)>
(θ − θ̂)

]2}
. (2.32)
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Although the assumption of independence between θ̂ and Z may be unrealistic, the
ability of (2.32) to satisfactorily approximate m2(θ) is not adversely affected. Abt
(1999) found that estimators based on approximation (2.32) perform similarly to
estimators based on the full approximation of m2(θ) given in (2.31).

Note that

E

{[(
∂Ẑ1(x0)

∂θ

)>
(θ − θ̂)

]2}
= E

{
tr

{(
∂Ẑ1(x0)

∂θ

)(
∂Ẑ1(x0)

∂θ

)>

× (θ − θ̂)(θ − θ̂)>
}}

= tr

{
E

{(
∂Ẑ1(x0)

∂θ

)(
∂Ẑ1(x0)

∂θ

)>}

× E{(θ − θ̂)(θ − θ̂)>}
}

.

Now E{Ẑ(x0)} = f>0 β so

E

{
∂Ẑ1(x0)

∂θ

}
=

∂

∂θ
E{Ẑ1(x0)} = 0,

and it follows that

E

{(
∂Ẑ1(x0)

∂θ

)(
∂Ẑ1(x0)

∂θ

)>}
= Var

{(
∂Ẑ1(x0)

∂θ

)}
= A(θ).

Also
E{(θ − θ̂)(θ − θ̂)>} = MSE(θ̂) = B(θ),

hence the overall approximation is

m2(θ)
.
= m1(θ) + tr{A(θ)B(θ)}. (2.33)

The second term in (2.33), tr{A(θ)B(θ)}, approximates Var{[Z2(x0)−Z1(x0)]} the
error incurred by the EBLUP due to θ being unknown.

Now consider the form of the variance matrix A(θ). Recall that Ẑ1(x0) = λ>Z
where the kriging weights are given by (2.11) as

λ = V−1v −V−1F∆−1F>V−1(f0 − F>V−1v)

with ∆ = F>V−1F. In the discussion that follows the parameter vector θ is omitted
from v(θ) and V(θ) for ease of notation. It thus follows that

∂Ẑ1(x0)

∂θ
=

(
∂λ

∂θ

)>
Z (2.34)

where ∂λ/∂θ is an n× q matrix with columns ∂λ/∂θi, i = 1, . . . , q. It can be shown
that

∂λ

∂θi

= M1

(
∂v

∂θi

− ∂V

∂θi

(M2f0 + M1v)

)
,
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where
M1 = V−1F(F>V−1F)−1 and M2 = V−1 −M1F

>V−1.

It thus follows immediately from (2.34) that

Var

{
∂Ẑ1(x0)

∂θ

}
= A(θ) =

(
∂λ

∂θ

)>
V

(
∂λ

∂θ

)
. (2.35)

Specifically the ijth element of the q × q symmetric matrix A(θ) can be seen to be

aij =

(
∂λ

∂θi

)>
V(θ)

∂λ

∂θj

i, j = 1, . . . , q.

Consider now the q×q mean square matrix B(θ). This matrix is typically intractable
and is usually approximated by the large sample covariance matrix Σ(θ) of θ̂ and
hence (2.33) takes on the form

m2(θ)
.
= m1(θ) + tr{A(θ)Σ(θ)}. (2.36)

The large sample covariance matrix of variance components is, under certain regular-
ity conditions, given by the inverse of the information matrix of θ, I(θ) (Zimmerman
and Cressie, 1992; Abt 1998; Zhu and Stein 2005; Zimmerman, 2006) such that

B(θ) + Σ(θ) w I(θ)−1. (2.37)

For I(θ) associated with θ̂ML the ijth element of the information matrix is

Iij(θ) =
1

2
tr

{
V−1∂V

∂θi

V−1∂V

∂θj

}
.

For I(θ) associated with θ̂REML the ijth element of the information matrix is

Iij(θ) =
1

2
tr

{
P

∂V

∂θi

P
∂V

∂θj

}

with P = V−1 −V−1F(F>V−1F)−1F>V−1 (Harville, 1977; Zimmerman, 2006).
The estimator based on approximation (2.36) is termed the Kacker-Harville esti-
mator. If we further use approximation (2.37) then the estimator is given as

σ2(θ̂)KH = m1(θ̂) + tr{A(θ̂)I(θ̂)−1}, (2.38)

and is obtained by plugging in the appropriate θ estimate into m1(θ) and A(θ) and
using the Hessian matrix

−
(

∂2l

∂θ̂∂θ̂
>

)
= −H(θ̂) = I(θ̂),

that is the matrix of second order derivatives of the appropriate likelihood function.
The Hessian is usually found numerically. For ML, I(θ̂) is the Hessian of the Gaus-
sian log-likelihood (2.22) evaluated at θ̂ML and for REML it is the Hessian of the
restricted log-likelihood (2.27) evaluated at θ̂REML.
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Abt and Welch (1998) and others (Abt, 1998; Zhu and Stein, 2005; Zimmerman,
2006) have shown that the use of the inverse of I(θ) to estimate Σ(θ) and therefore
B(θ) is appropriate. In a simulation study Zhu and Stein (2005) found that I(θ)−1

provides a fair approximation to B(θ) when the sample size is “moderately large”.
However, they also found that when the sample size is small the approximation
is poor. If the parameter estimates are on the boundary of the parameter space,
namely when the estimated nugget is zero, then I(θ̂)−1 tends to overestimate the
standard errors of θ̂ (Abt, 1998; Abt and Welch; 1998). In such situations, Abt
(1998) recommends using I(θ)−1 with the first row and first column deleted. That
is, deleting all elements involving derivatives of the nugget. Another approach for
approximating B(θ) in (2.33) involves the use of bootstrapping as in Zhu and Stein
(2005), Zimmerman (2006) and Gonzáles-Manteiga et al (2008). In this approach
B(θ) is approximated as

B∗(θ) =
1

B

B∑

b=1

(θ̂
∗
b − θ̂)(θ̂

∗
b − θ̂)>, b = 1, . . . , B,

where θ̂ is the original vector of likelihood parameter estimates and θ̂
∗
b is the pa-

rameter vector of the likelihood estimates for the bth bootstrap sample.

Although an improvement on m1(θ̂), the estimator σ2(θ̂)KH in (2.38) also results in
the underestimation of m2(θ) if m1(θ̂) underestimates m1(θ) (Harville and Jeske,
1992; Zimmerman and Cressie, 1992). A modified estimator for m2(θ), first proposed
by Prasad and Rao (1986; 1990) and then by Harville and Jeske (1992), which is
intended to eliminate the negative bias of σ2(θ̂)KH is the Prasad-Rao estimator

σ2(θ̂)PR = m1(θ̂) + 2tr{A(θ̂)I(θ̂)−1}. (2.39)

Although σ2(θ̂)PR, the Prasad-Rao estimator, reduces the bias seen in σ2(θ̂)KH the
Kacker-Harville estimator, it is also biased as it tends to overestimate the MSPE
of the EBLUP m2(θ) (Zimmerman and Cressie, 1992). The magnitude of the bias
varies depending on the closeness of the estimated parameters θ̂ to the true but
unknown parameters θ (Harville and Jeske, 1992).

Other results regarding the performance of σ2(θ̂)KH and σ2(θ̂)PR are not clear and
may be considered somewhat inconclusive. It is reported that the unbiasedness of
these estimators in estimating the MSPE of the BLUP, m2(θ), and the degree of
improvement on the EMSPE, m1(θ̂), depend on how many of and which of the
following assumptions are true (Prasad and Rao, 1986; 1990; Harville and Jeske,
1992; Zimmerman and Cressie, 1992):

• The observations Z follow a multivariate Gaussian distribution.

• θ̂ is unbiased.

• θ̂(Z) is a complete, sufficient statistic for the distribution of Z.
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• The generic covariance function C(h) is a linear function of the elements of θ.

The number of data n, their spatial configuration and the strength of the spatial
correlation also play a major role on the quality of estimates obtained from σ2(θ̂)KH

and σ2(θ̂)PR (Zimmerman and Cressie, 1992; Abt, 1999). According to Zimmerman
and Cressie (1992), to avoid obtaining estimates that are more biased than those of
the EMSPE m1(θ̂), the Kacker-Hariville and Prasad-Rao estimators should only be
used if

• V(θ)− E[V(θ̂)] is non-negative definite.

• The spatial correlation is weak.

The second condition is based on the notion that moderate-to-strong spatial corre-
lation compensates for the inherent negative bias of m1(θ̂) (Zimmerman and Zim-
merman, 1991; Zimmerman and Cressie; 1992). Thus adding the addtional terms
of (2.38) and (2.39) to m1(θ̂) only serves to worsen the precision of the estimates.
However, when the observations Z are very weakly correlated, the large sample co-
variance matrix Σ(θ) w I(θ)−1 in the term tr{A(θ)Σ(θ)} ≈ Var{[Ẑ2(x0)− Ẑ1(x0)]}
overestimates the variability of the parameter estimates such that (2.38) and (2.39)
overestimate m2(θ) (Abt, 1998). Abt (1998) mentions that this may however be
countered by increasing n, the size of the sample and by the inclusion of small lags
hij = ||xi − xj|| for model fitting. If feasible, one may also use different designs for
model fitting and prediction.

2.4.2 Bootstrap alternatives

Wang and Wall (2003) were the first to propose bootstrapping for estimating the
MSPE of the EBLUP, m2(θ), in the light of some of the constraints associated
with the Kacker-Harville and Prasad-Rao estimators as given by (2.38) and (2.39)
respectively. The first concern is that in order to compute (2.38) and (2.39), θ̂ must
be an estimator for which B(θ) can be calculated. Secondly, the assumption that
the covariance function C(h) is linear in θ needed for the estimators to be unbiased
is not valid for most of the commonly used models of covariance functions such as
the exponential, Gaussian and spherical covariance models (Wang and Wall, 2003).

In one approach, Wang and Wall (2003) use bootstrapping for estimating the term
tr{A(θ)B(θ)} ≈ Var{[Ẑ2(x0; θ̂) − Ẑ1(x0; θ)]} in (2.33). The term is approximated
as

s2 =
1

B − 1

B∑

b=1

{Ẑ(x0; θ̂
∗
b )− Ẑ2(x0; θ̂)}2, b = 1, . . . , B, (2.40)

where Ẑ2(x0; θ̂) = λ>(θ̂)Z is the EBLUP, with the dependence of the kriging weights

on θ indicated explicitly, and Ẑ(x0; θ̂
∗
b) = λ>(θ̂

∗
b)Z is the kriging prediction made
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using a kriging model fitted with the estimated parameters θ̂
∗
b from the bth boot-

strap sample. Note that Ẑ(x0; θ̂
∗
b) uses the original and not the bootstrapped data.

According to Wang and Wall (2003), making the prediction with the bootstrapped
parameter estimates θ̂∗

b and the original data Z instead of the bootstrapped data

Z∗ captures the variability due to θ̂ only such that

s2 ≈ Var{[Ẑ2(x0; θ̂)− Ẑ1(x0; θ)]}.

The approximation s2 can then be used to calculate bootstrap equivalents of the
σ2(θ̂)KH in (2.38) and σ2(θ̂)PR in (2.39). The bootstrap version of the Kacker-
Harville estimator is then given as m1(θ̂) + s2 whilst the bootstrap version of the
Prasad-Rao estimator is given as m1(θ̂) + 2s2. This approach of obtaining the
Kacker-Harville and Prasad-Rao estimators seems, arguably, rather contrived and
appears not have been used by other researchers.

In another approach Wang and Wall (2003) use bootstrapping, in particular para-
metric simulation, to estimate m2(θ) directly by estimating the distribution of
E{[Ẑ2(x0)− Z(x0)]

2}. This approach has been adopted by Zimmerman (2006) and
den Hertog et al (2006). The generic algorithm behind the approach is straight for-
ward. Suppose that data Z are observed at the n locations x1, . . . ,xn. Firstly, the
distribution of Z is estimated. To calculate the estimated kriging variance at a test
point, x0, the algorithm proceeds by drawing the bth parametric bootstrap sample in
the observed data locations and at x0 simultaneously from the fitted distributional
model. Next a kriging model is fitted to the bootstrapped data corresponding to
the observation locations x1, . . . ,xn and used to make a prediction Ẑ∗

b (x0) at the
test point x0. Lastly, the squared error between the predicted value Ẑ∗

b (x0) and the
simulated value Z∗

b (x0) at the test point x0 is calculated. These steps are repeated
for b = 1, . . . , B and the squared errors between the kriging prediction at x0 for the
bth simulation and the bth simulated value at x0 are then averaged over the number of
iterations B to give a bootstrap estimate of the kriging variance at the test location
x0. The generic bootstrap kriging variance estimator is thus given by

σ2(x0; θ̂)BS =
1

B

B∑

b=1

{Ẑ∗
b (x0)− Z∗

b (x0)}2, b = 1, . . . , B. (2.41)

Zimmerman (2006) calls this type of bootstrapped MSPE estimate of the EBLUP
the “finite sample prediction error variance”. Wang and Wall (2003) use the boot-
strapped MSPE estimate to set confidence bounds for predictions and to examine
the coverage probabilities of these bounds.

Confidence bounds for the bootstrapped MSPE itself may also be set based on the
central limit theorem (see Efron and Tibshirani, 1993). Den Hertog et al (2006)
give the (1− α)100% bootstrap confidence interval for σ2(x0; θ̂)BS as

σ2(x0; θ̂)BS ± zα/2

√
σ̂2

SE{Ẑ∗(x0)}
B

, (2.42)

2-26



Univ
ers

ity
 of

 C
ap

e T
ow

n

where σ̂2
SE{Ẑ∗(x0)} is the sample variance of the bootstrapped squared errors, that

is

σ̂2
SE{Ẑ∗(x0)} =

1

B − 1

B∑

b=1

(
{Ẑ∗

b (x0)− Z∗
b (x0)}2 − σ2(x0; θ̂)BS

)2

. (2.43)

The performance of the bootstrap method and therefore the estimator (2.41) relies
on whether the distribution from which the bootstrap samples are generated is
correctly specified (Wang and Wall, 2003). Commonly, the spatial process Z(·) is
assumed to be a Gaussian process and the observations Z obtained at the locations
x1, . . . ,xn are assumed to come from a multivariate Gaussian distribution, that is
Z ∼ G(Fβ,V(θ)). According to Wang and Wall (2003) this method performs well
for normal data as well as for exponentiated data which are incorrectly assumed to
be Gaussian, if the sample is large. They warn, however, that the method may not
perform as favourably for other types of non-normal data if the distribution from
which bootstrap samples are generated is incorrectly specified.

Den Hertog et al (2006) take the bootstrap approach of directly estimating m2(θ)
further by presenting various specific algorithms for generating the bootstrap sam-
ples. The algorithms are designed to be used in different practical applications and
the major difference between these algorithms is in how and where bootstrap esti-
mates of the kriging variance are to be made and thus how bootstrap samples are
generated. There are three algorithms which are summarized as follows:

• Fixed test set algorithm
For use when there is a finite set of prespecified prediction locations at which
the kriging variance is to be estimated. Hence bootstrap samples are taken
at the n observation locations x1, . . . ,xn and at m test locations x01, . . . ,x0m

simultaneously.

• Variable test set algorithm
For use when the locations at which the kriging variance is to be estimated
are not known beforehand. It is also used when the kriging variance has been
estimated at some points and there is a need to estimate at further, that is
additional, locations.

• Algorithm for adding test points one at a time
For use when it is not known beforehand at which locations the kriging variance
is to be estimated and such locations will be introduced later, one at a time.

In the next sub-sections the exact steps of two versions of the fixed test set algorithm
are set out. The variable test set algorithm and the algorithm for adding test points
one at a time are beyond the scope of the current research. The first algorithm is
the original fixed test set algorithm of den Hertog et al (2006) where unconditional
simulation is used in the bootstrap process. The second algorithm is a proposal of
an alternate algorithm in which conditional instead of unconditional simulation is
employed.
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2.4.2.1 Fixed test set: Unconditional simulation

The unconditional bootstrap algorithm for the estimation of the MSPE of the
EBLUP, m2(θ), is presented in Table 2.3. The required bootstrap sample in Step 2
is denoted

Z∗ = [Z∗(x1), . . . , Z
∗(xn), Z∗(x01), . . . , Z

∗(x0m)]>

and is obtained by sampling from the multivariate Gaussian distribution (den Hertog
et al, 2006)

G(Fsβ̂,Vs(θ̂)),

where

Fs =




1 f1(x1) . . . fK(x1)
...

...
...

...
1 f1(xn) . . . fK(xn)
1 f1(x01) . . . fK(x01)
...

...
...

...
1 f1(x0m) . . . fK(x0m)




(n+m)×(K+1)

and the symmetric positive-definite variance-covariance matrix is

Vs(θ̂) =

[
V(θ̂) V01(θ̂)

V01(θ̂)> V0(θ̂)

]

(n+m)×(n+m)

wherein V01(θ̂) is the n×m variance-covariance matrix between realizations at the
observed locations and at the predictions sites and V0(θ̂) is the m × m variance-
covariance matrix for realizations at the m prediction sites x01, . . . ,x0m.

Table 2.3: Unconditional Bootstrap Estimation of the Kriging Variance; fixed test set.

1. For a given covariance function and kriging model, estimate the mean µ and
the spatial dependence parameters θ using the observations Z to obtain

G(Fβ̂,V(θ̂)) the estimated distribution of Z(·).

2. Sample from G(Fsβ̂,Vs(θ̂)) at the observation locations x1, . . . ,xn and at
the test locations x01, . . . ,x0m simultaneously.

3. Use the bootstrap sample at the observation locations to fit a kriging model.

4. Use the fitted kriging model to predict at the m test locations x01, . . . ,x0m.

5. Calculate the squared prediction error at each test point.

6. Repeat steps 2 to 5 B times and then compute the MSPEs at each test point.
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The samples Z∗ are obtained without regard to the original observations Z, that is
sampling is carried out unconditionally. A simulation is said to be unconditional
if samples at the observation locations do not correspond to the observed data Z
(Schabenberger and Gotway, 2005).

Yin et al (2008; 2009) note that for stochastic simulations, which is what the boot-
strap samples generated by this algorithm essentially are, the range parameter φ
may be estimated poorly such that it approaches infinity, that is the likelihood es-
timates φ̂∗b may become much larger than the true φ. If a large proportion of the
bootstrap samples have such estimates, this may bias the bootstrap estimate of the
MSPE. Hence the estimates of the range from the bootstrap samples have to be
bounded within a sensible range.

2.4.2.2 Fixed test set: Conditional simulation

A modification of the fixed test set algorithm of den Hertog et al (2006) is proposed
here and summarized in Table 2.4. In this modified fixed test set algorithm, values at
the test locations {x01, . . . ,x0m} are sampled conditionally on the original observed
data Z at the observation locations x1, . . . ,xn.

Table 2.4: Conditional Bootstrap Estimation of the Kriging Variance; fixed test set.

1. For a given covariance function and kriging model, estimate the mean µ and
the spatial dependence parameters θ using the observations Z to obtain

G(Fβ̂,V(θ̂)), the estimated distribution of Z(·).

2. Use the kriging model fitted from the observations Z to make predictions at
the m test locations x01, . . . ,x0m.

3. Take a bootstrap sample at the test locations x01, . . . ,x0m conditional on
the observations Z, that is sample from the conditional distribution

Z0|Z ∼ G
(
µ0 + V01(θ̂)>V(θ̂)−1(Z− µ),V0(θ̂)−V01(θ̂)>V(θ̂)−1V01(θ̂)

)
.

4. Calculate the squared differences of predictions and the realizations obtained
from steps 2 and 3 respectively.

5. Repeat steps 3 to 4 B times and then compute the mean squared
prediction errors at each test point.

Conditional sampling involves the multivariate Gaussian distribution (Schabenberger
and Gotway, 2005; den Hertog et al, 2006)

[
Z
Z0

]
= G

([
µ
µ0

] [
V(θ) V01(θ)

V01(θ)> V0(θ)

])
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where Z0 are observations at the prediction sites with sampling being carried out
from the conditional distribution Z0 given the observed data Z, that is

Z0|Z ∼ G
(
µ0 + V01(θ)>V(θ̂)−1(Z− µ),V0(θ)−V01(θ)>V(θ)−1V01(θ)

)
.
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Chapter 3

Simulation Experiment

This chapter describes a simulation study designed to test the performance of var-
ious estimators of the mean squared prediction error (MSPE) of the empirical best
linear unbiased predictor (EBLUP), m2(θ). The estimators in question are the
traditional estimator of m2(θ), namely the empirical mean squared prediction error
(EMSPE) m1(θ̂), the Kacker-Harville and Prasad-Rao estimators which are denoted
σ2

KH(θ̂) and σ2
PR(θ̂) respectively and two bootstrap estimators, the unconditional

and conditional bootstrap estimators, σ2
UBS(θ̂) and σ2

CBS(θ̂) respectively.

The performance of the estimators was investigated at several prediction locations
in Gaussian random fields exhibiting different degrees of spatial correlation. Such
a set up for the experiment was employed in order to identify an estimator that is
optimal in some sense, namely has the smallest relative bias, for a range of prediction
problems. For this study only the exponential covariance structure, a widely used
covariance model in geostatistics, was employed. The parametrization

C(h) = σ2
0 exp

{
− h

φ

}
, (3.1)

was used as it leads to a well-conditioned minimization problem for parameter es-
timation (Etman, 1994, p5). Though the exponential covariance model has been
criticized by Whittle (1954) as being too “artificial” it was felt that its study here
was justifiable as it is widely used.

The Gaussian and spherical covariance models, two of the other widely used co-
variance models in geostatistics, are not invoked here. Reasons for not using the
Gaussian covariance model

C(h) = σ2
0 exp

{
−

(
h

φ

)2}
,

in this study are as follows:

• The Gaussian covariance model has been criticized as being too smooth to rep-
resent physical processes as it is infinitely differentiable (Stein and Handcock,
1989; Schabenberger and Gotway, 2005).
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• Variance-covariance matrices V(θ) associated with the Gaussian covariance
function are plagued by problems of computational singularity. This is a
formidable concern in studies involving a significant amount of computation
such as the simulation studies performed here.

Reasons for not using the spherical covariance model

C(h) = σ2
0

{
1− 1.5

h

φ
+ 0.5

(
h

φ

)3}
, 0 ≤ h ≤ φ,

= 0 otherwise

are as follows:

• Correlations are zero beyond the range, that is C(h) = 0 for h ≥ φ. This
property of the spherical model has been criticized by Stein (1999) who does
not perceive any apparent statistical benefit emanating from having a distance
at which the covariances are exactly zero.

• Maximum likelihood (ML) estimation is sub-optimal when used to estimate
the parameters of the spherical covariance model (Todini and Ferraresi, 1996;
Diggle and Riberio, 2007). This is because for “ML to be minimum variance
requires the likelihood function to be continuous and twice differentiable with
respect to the parameters over the entire field of existence” (Todini and Fer-
raresi, 1996). This condition does not apply to the spherical covariance model
because of its discontinuity in the first derivative at h = φ.

3.1 Setup

3.1.1 Domain

A square domain D = [0, 15]× [0, 15] was set up. A grid of 112 observation locations
specified by the set

S = {xi = (u, v) : u = 2k, v = 2l+1 and u = 2l+1, v = 2k; k = 1, . . . 7, l = 0, 1, . . . 7}
were then introduced into the domain. A regular sampling design for the observation
locations x1, . . . ,x112 was chosen to ensure even coverage of the study domain.

A set of five points {x01, . . . ,x05} = {(3, 1), (13, 0), (8, 8), (3, 13), (15, 15)} was also
introduced into the study domain D as prediction locations. The m = 5 predic-
tion locations were located so as to enable the effective study of location and data
configuration on the various m2(θ) estimators. Points x01,x02 and x05 were located
such that they had different data-to-point variance-covariance vectors v(θ), whilst
x03 and x04 had similar v(θ) vectors. The study domain D with the configuration
of the n = 112 observation locations and m = 5 prediction locations is shown in
Figure 3.1.

3-2



Univ
ers

ity
 of

 C
ap

e T
ow

n
0 5 10 15

0
5

10
15

u

v

Figure 3.1: Spatial configuration of the n = 112 observation locations and m = 5
test points. Observation locations are indicated by open circles and test points by
solid circles.

3.1.2 Model settings

The performance of the various kriging variance estimators was studied for three
Gaussian random fields with the form

Z = 1β + δ, δ ∼ G(0,V(θ))

and different specifications for the parameter vector θ = (τ 2, σ2
0, φ). The only varia-

tion in the parameter vectors for the fields under consideration was in the values of
the range φ since various authors, such as Zimmerman and Cressie (1992) and Abt
(1999) have found the strength of the spatial correlation to be one of the key factors
that influences the performance of kriging variance estimators. The same values for
the partial sill σ2

0 and nugget τ 2 values were used as changing these parameters has
been found to only lead to rescaling of the kriging variance estimates (Abt, 1999).

The mean for each of the fields was specified as β = 0 and partial sill and nugget
values of σ2

0 = 1 and τ 2 = 0.25 respectively were used. The nugget value τ 2 = 0.25
was chosen such that it was 20% of the total variance, that is the sill σ2 = τ 2 + σ2

0.
In passing it is noted that Zimmerman (2006) used τ 2 values that were 25% and
50% of σ2 in simulation studies on optimal designs involving two of our estimators of
interest, σ2(θ̂)KH , the Kacker-Harville estimator and σ2(θ̂)UBS, the unconditional
bootstrap estimator. Range values of φ = 1.5, φ = 2.5 and φ = 4.2 were selected
to be used in the experiment. These values were intended to correspond to weak,
moderate and strong spatial correlations respectively. The choice of φ = 1.5 as the
smallest range value was made to avoid computational problems in the estimation
of the parameters, such as near-singularity in the variance-covariance matrices. The
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three random fields Z1, Z2 and Z3 studied with their attendant parameter vectors
θ1, θ2 and θ3 are summarized in Table 3.1.

Table 3.1: Specifications of the three Gaussian random fields Z1, Z2 and Z3 used in the
simulation.

Field β τ2 σ2
0 φ Correlation Description

Z1 0 0.25 1 1.5 Weak
Z2 0 0.25 1 2.5 Moderate
Z3 0 0.25 1 4.2 Strong

3.2 Approach

The simulation experiment was carried out in two parts. One part of the simulation
was done in order to estimate through stochastic simulation, that is parametric boot-
strapping, the expected values at the prediction locations for each of the estimators
m2(θ) under investigation, that is the EMSPE

m1(θ̂) = σ̂2 − v(θ̂)>V(θ̂)−1v(θ̂) + (f>0 − v(θ̂)>V(θ̂)−1F)

×(F>V(θ̂)−1F)−1(f0 − F>V(θ̂)−1v(θ̂)),

the Kacker-Harville estimator

σ2(θ̂)KH = m1(θ̂) + tr{A(θ̂)I(θ̂)−1},
the Prasad-Rao estimator

σ2(θ̂)PR = m1(θ̂) + 2tr{A(θ̂)I(θ̂)−1},
the unconditional bootstrap estimator σ2(θ̂)UBS which is calculated using the al-
gorithm in Table 2.3 and the conditional bootstrap estimator σ2(θ̂)CBS which is
calculated using the algorithm given in Table 2.4. The second part of the simulation
experiment involved numerical simulation in order to obtain a Monte Carlo (MC)
estimate for m2(θ) the true MSPE of the EBLUP at each of the prediction locations.

All simulations, that is realizations from the Gaussian random fields Z1, Z2 and
Z3, were generated by multiplying a vector of standardized normal errors by a
square root of the variance-covariance matrix V(θ) and adding the result to a mean
function. This method is well known and its description can be found in most
texts on geostatistics, such as in Cressie (1993), Chilès and Delfiner (1999) and
Schabenberger and Gotway (2005).
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Since the square root of a matrix is not uniquely defined it may be found using
various methods. One such method is through the Cholesky decomposition of V(θ),
which was employed for the simulations here. In the Cholesky method of simulating
Gaussian spatial processes, a realization of a random field is obtained from the model

Z = Fβ + Lε∗ (3.2)

where ε∗ is the vector of standard normal random errors ε∗ ∼ N(0, In) and L,
the square root of V(θ), is a lower triangular matrix obtained from the Cholesky
decomposition of V(θ) so that Var{Z} = LL> = V(θ).

The entire simulation experiment was executed in R (R Development Core Team,
2010) with the aid of functions from the geostatistics package geoR (Riberio and
Diggle, 2001). The generation of Gaussian random fields for given covariance param-
eters was carried out by use of the geoR function grf(). Purpose built functions
were written to compute the various kriging variance estimators, namely the bias
corrected estimators σ2(θ̂)KH and σ2(θ̂)PR and the bootstrap estimators σ2(θ̂)UBS

and σ2(θ̂)CBS. Codes for each of the functions for calculating the above mentioned
estimators are found in Appendix A and their attendant documentation in Appendix
B.

3.2.1 Parametric bootstrap procedures for the estimators of
the kriging variance

For each random field Z1, Z2 and Z3, 1000 realizations were generated at the ob-
servation locations and for each of the realizations kriging models were fitted by
estimating θ as both θ̂ML and θ̂REML. For each realization, the kriging variances
m2(θ) at the m = 5 prediction locations were then estimated via each of the 5
kriging variance estimators under study. The bootstrap estimators σ2(θ̂)UBS and
σ2(θ̂)CBS were calculated over B = 1000 iterations for each of the 1000 realizations.
At each prediction location the estimates of m2(θ) from each of the five estimators
were then averaged over the 1000 realizations of each field. These values are reported
in Tables 3.4 and 3.5 which are given towards the end of the chapter.

Because 3 parameter vectors, 5 kriging variance estimators, 2 parameter estimation
methods and 5 test points were used in the numerical experiment, the experiment
was of order 3 × 5 × 2 × 5 = 150. Computing the bootstrap estimates, namely
unconditional bootstrap estimates σ2(θ̂)UBS over B = 1000 iterations for each of
the 1000 realizations of the numerical experiments and also θ̂ML plus θ̂REML meant
the experiment was computationally expensive as 1000× 1000× 2 = 2000000 krig-
ing models had to be fitted. This consideration limited the number of realizations
that could be used for each numerical experiment to only 1000 instead of the 5000
executed by Zimmerman and Cressie (1992, Section 4.3) in a similar but less com-
prehensive study. Other key differences between this study and that of Zimmerman
and Cressie (1992) are as follows.
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1. They use a 1-dimensional example whilst we use a 2-dimensional example.

2. They introduced a generalized covariance function which is not often used in
practice whilst we use the widely used exponential covariance function.

3. They only apply restricted maximum likelihood (REML) estimators of the
parameters θ, θ̂REML, whilst we apply maximum likelihood estimators (MLE)
θ̂ML in addition to θ̂REML.

4. Their study only features 2 prediction points whilst this study features 5 pre-
diction points.

5. They study the performance of 3 estimators whilst in this study we study the
performance of their 3 estimators, the EMSPE m1(θ̂), the Kacker-Harville es-
timator σ2(θ̂)KH and the Prasad-Rao estimator σ2(θ̂)PR and two additional
ones, the unconditional bootstrap estimator σ2(θ̂)UBS and the conditional
bootstrap estimator σ2(θ̂)CBS.

Lastly, as will be seen in the next section, and unlike in Zimmerman and Cressie
(1992), simulations of the order of 60000 and not 5000 were used in the approxima-
tion of the MSPE of the BLUP, m2(θ) . This was done in order to minimize the
sampling bias in the estimates of m2(θ) which is our “gold standard”, that is the
values against which the various kriging variance estimators were to be compared
to.

3.2.2 Monte Carlo approximation of m2(θ)

3.2.2.1 Algorithm

Since no analytical expression for

m2(θ) = E{[Ẑ(x0; θ̂)− Z(x0)]
2}

where Ẑ(x0; θ̂) is the EBLUP and Z(x0) is the unknown value, is available, it was
approximated by Monte Carlo simulation. For each Gaussian random field Z1, Z2

and Z3, realizations were generated over the entire grid of observation and prediction
locations in D. For each realization the variance parameters θ along with the mean
β were estimated via ML and REML estimation using the data at the observation
locations. Next for each realization the EBLUP Ẑ(x0; θ̂) for each prediction location
in x01, . . . ,x05 was computed. Differences between the the predicted values Ẑ2(x0)
and the actual values Z(x0) at the prediction locations were then computed. For
each random field, these values were averaged over the realizations of that field to
give numerical approximations to m2(θ) = E{[Ẑ(x0; θ̂)−Z(x0)]

2} at each prediction
location x01, . . . ,x05. The algorithm is outlined in Table 3.2.
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Table 3.2: Algorithm used to approximate m2(θ), the MSPE of the EBLUP, at the
prediction locations for each of the Gaussian random fields Z1, Z2 and Z3 used in the
simulation experiment.

1. Set r = 1.

2. Generate a spatial process over the grid of observation and prediction locatio-
ns.

3. For the rth realization fit a kriging model by using the data at the observation

locations to obtain estimates θ̂r of θ and β̂r of β.

4. Calculate [Ẑ(x0; θ̂r)− Zr(x0)]
2 the squared difference between Ẑ(x0; θ̂r) the

predicted value and Zr(x0) the observed value at x0.

5. Repeat steps 2 to 4 updating r to r + 1, R times and then compute the average
squared differences between the predicted and simulated values at each prediction
location x0 as

1
R

∑R
r=1[Ẑ(x0; θ̂r)− Zr(x0)]

2.

3.2.2.2 Pilot study

A pilot study was run in order to determine the number of iterations of the algorithm
in Table 3.2 needed to approximate m2(θ) with an accuracy comparable to the
(mean) standard errors obtained for the 5 estimators in the stochastic simulation
described in Section 3.2.1, that is to an accuracy of d = ±0.004. For each of the
Gaussian random fields, test runs of the algorithm in Table 3.2 were carried out
with 1000 iterations and the sample standard deviations s at each point were noted.
These are given in Table 3.3 along with the average sample standard deviations s̄
for each of the fields.

In order to determine the approximate sample size, that is the number of iterations
of the algorithm needed to approximate m2(θ) with an accuracy of d± 0.004 units,
the following procedure was followed. Firstly the overall mean value for the sample
standard deviations ¯̄s was calculated as 1.0178. Taking the standard error to be
d = s/

√
n, it can be seen that the approximate sample size needed to estimate

m2(θ) with an average value of d for the standard error is given by n = (s/d)2.
Using this formula with s = 1.0178 and d = 0.004, we obtain n=64745. Thus 60000
iterations of the algorithm will produce estimates with a mean standard error of
about ±0.004.

The approximate m2(θ) values at each prediction point calculated over 60000 iter-
ations of the algorithm along with their standard errors obtained are reported in
Tables 3.4 and 3.5 where θ̂ML and θ̂REML are the ML and REML estimators of θ
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Table 3.3: Sample standard deviations of the squared prediction error estimates at the
prediction locations under ML and REML obtained from the pilot study for the various
Gaussian random fields.

FIELD Z1 Z2 Z3

Estimator θ̂ML θ̂REML θ̂ML θ̂REML θ̂ML θ̂REML

x0

(3,1) 1.1788 1.1752 0.9296 0.9365 0.7563 0.7601
(13,0) 1.6154 1.6374 1.3434 1.3558 1.0790 1.0863
(8,8) 1.0073 1.0134 0.7847 0.7876 0.6319 0.6295
(3,13) 1.0837 1.0918 0.8419 0.8454 0.6834 0.6832
(15,15) 1.2899 1.2981 1.0469 1.0506 0.8521 0.8538

Mean Sample 1.2350 1.2342 0.9893 1.0453 0.8006 0.8026
Standard deviation (s̄)

respectively.

3.3 Results

3.3.1 Presentation of results

Tables 3.4 and 3.5 report at each point across each of the random fields in the
simulation, the values the MSPE of the BLUP, m1(θ), the MSPE of the EBLUP,
m2(θ) and the EMSPE m1(θ̂) together with the values of the 4 alternate kriging
variance estimators, namely m1(θ̂), σ2

0(θ̂)KH , σ2
0(θ̂)PR, σ2

0(θ̂)CBS and σ2
0(θ̂)UBS,

under both ML and REML estimation of the covariance parameters. Table 3.6
reports the relative bias values

E{σ2
E(θ̂)} −m2(θ)

m2(θ)
, (3.3)

where σ2
E(θ̂) is any generic estimator of m2(θ), of the estimators also at each point

across all the 3 random fields, Z1, Z2 and Z3. The relative bias of the estimators
is also represented diagrammatically in Figure 3.2 for each of the fields and kriging
variance estimators under both estimators of θ, θ̂ML and θ̂REML. Figures 3.3 and
3.4 display the absolute relative bias in percentages of the estimators, under θ̂ML

and θ̂REML respectively.
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Figure 3.3: Graphical comparisons of the absolute relative bias (in percentages) of the 5
estimators of m2(θ) at the 5 prediction locations in the three fields, Z1 (left panel), Z2

(middle panel) and Z3 (right panel). Parameters are estimated via ML estimation.

3.3.2 Findings

From Tables 3.4 and 3.5 it can be clearly seen that m1(θ) is smaller than m2(θ)
whilst m1(θ̂) is smaller than both of these. Thus the inequality of Theorem 3.1
given by Zimmerman and Cressie (1992, Section 3.1)

m1(θ̂) ≤ m1(θ) ≤ m2(θ)

is demonstrated. This is despite the conditions of the Theorem not being satisfied
here, namely that of the covariance function C(h) being linear in the elements of θ.

The EMSPE m1(θ̂) underestimates m2(θ) by 1.1-6.4% for θ̂ML and by 2.5-5.2% for
θ̂REML, across the 3 Gaussian random fields, with mean absolute relative bias values
of 4.16% and 3.85% respectively. The degree of underestimation of m2(θ) seen in
m1(θ̂) increases with an increase in the spatial correlation exhibited by the random
fields, such that it is largest when the spatial correlation is strong. This effect is
seen when both θ̂ML and θ̂REML are used as estimators of θ.

The performance of the conditional bootstrap estimator σ2(θ̂)CBS is similar to that
of m1(θ̂) at each point across all the random fields in the simulation and under
both estimators θ̂ML and θ̂REML. In fact it can be seen from Figures 3.3 and
3.4 that the pattern of the absolute relative bias of these two estimators is almost
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estimators of m2(θ) at the 5 prediction locations in the three fields, Z1 (left panel), Z2

(middle panel) and Z3 (right panel). Parameters are estimated via REML estimation.

indistinguishable as is the degree to which they underestimate m2(θ), see Figure
3.2.

The Kacker-Harville σ2(θ̂)KH and unconditional bootstrap σ2(θ̂)UBS estimators also
exhibit very similar behaviour, but only when the spatial correlation is moderate
to strong. As can be seen from Tables 3.4 to 3.6 and Figure 3.2, both estimators
tend to underestimate m2(θ) by the same degree under moderate to strong spatial
correlation. When the correlation is weak σ2(θ̂)KH has a propensity to lead to
overestimates of m2(θ) when calculated with θ̂ML whilst σ2(θ̂)UBS exhibits a high
degree of accuracy with an absolute relative bias as small as 0.3% at one point. With
θ̂REML the estimators are more evenly matched when the spatial correlation is weak.
We note that in simulation studies on optimal designs in spatial statistics, that is
optimal network designs, Zimmerman (2006) found that design criteria based on
σ2(θ̂)KH and σ2(θ̂)UBS lead to similar designs. In particular he found that designs
that have small values for

max
s∈S

{σ2(θ̂)KH}
coincide with designs that minimize

max
s∈S

{σ2(θ̂)UBS}

where S is the set of all possible sites and s are the sites that form the design, that
is the set of observation locations.
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From the simulation study the Prasad-Rao estimator σ2(θ̂)PR does not seem to ex-
hibit behaviour that is very close to any of the other four kriging variance estimators
studied here. The estimator exhibits a large positive bias of up to 11.7% with θ̂ML

and 2.3% with θ̂REML when the spatial correlation is weak. This is to be expected
as it was noted earlier in Section 2.4.1, that when a random field exhibits very weak
correlation the large sample covariance matrix which is given by the inverse of the
information matrix Σ(θ) ' I(θ)−1, overestimates the variability of the parameter
vector θ such that the second term in the expression

σ2(θ̂)PR = m1(θ̂) + 2tr{A(θ̂)I(θ̂)−1}

is very large (Abt, 1998). Thus, as observed here, this leads to σ2(θ̂)PR overestimat-
ing m2(θ). The same explanation can be given as to why σ2(θ̂)KH has a propensity
to be positively biased when the spatial correlation is weak.

The Prasad-Rao estimator σ2(θ̂)PR however appears to be the most optimal estima-
tor when spatial correlation is moderate to strong as it exhibits the smallest absolute
relative bias at all points when compared to the other 4 estimators of m2(θ). The
estimator performs well with both θ̂ML and θ̂REML in these situations, with a bias
as small as 0.5% and 0.1% under the respective estimators of θ is some situations.
The estimator exhibits mean absolute relative bias value of 3.33% with θ̂ML and 1%
with θ̂REML. This makes σ2(θ̂)PR unequivocally a superior alternative estimator to
m1(θ̂) as it leads to reductions in the mean absolute relative bias of m1(θ̂) of 19.95%
and 73.96% for θ̂MLand with θ̂REML respectively.

3.3.3 Conclusions

Keeping in mind that “it is difficult to make general conclusions” as to how the
performance of m1(θ̂) and alternate estimators is affected by a number of factors
(Zimmerman and Cressie, 1992) the following tentative conclusions may be drawn
from the results of the simulation experiment.

The EMSPE m1(θ) results in severe underestimation of m2(θ) especially when the
spatial correlation is strong regardless of whether θ̂ML or θ̂REML is used as an
estimator of θ. This finding that results in this conclusion is contrary to the findings
of Zimmerman and Zimmerman (1991) as well as Zimmerman and Cressie (1992)
who found the performance of m1(θ̂) to be, in the words of Zimmerman and Cressie
(1992), “adequate” when the spatial correlation is strong.

The Prasad-Rao estimator with θ̂REML as an estimator of θ is the most optimal
estimator of the 5 estimators studied here in all situations, that is, for Gaussian
random fields with weak, moderate and strong spatial correlation.
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3.3.4 General recommendations

In line with the above conclusions the following recommendations can be made
concerning suitable estimators of m2(θ).

• The use of the EMSPE m1(θ̂) should be avoided.

• The Prasad-Rao estimator σ2(θ̂)PR should be employed when the spatial cor-
relation is moderate to strong.

• When θ is estimated by θ̂ML and the spatial correlation is weak the uncondi-
tional bootstrap estimator σ2(θ̂)UBS should be employed to estimate m2(θ) if
θ is estimated by θ̂REML then σ2(θ̂)PR may be used.

• The use of θ̂REML instead of θ̂ML as an estimator of θ is recommended. How-
ever, in some instances, for example the Meuse example in Chapter 4, the ML
estimator may be more stable.
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Chapter 4

Applications

4.1 River Meuse Heavy Metals Data

4.1.1 Description

The Meuse data set contains measurements of the concentration levels of heavy
metals, in parts per million (ppm), from soil samples at 155 locations on the flood
plain of the river Meuse near the village of Stein in the Netherlands. Also included in
the data set is information on the flood frequency, elevation, land use, soil type and
two “distance to the river” measures of the sample locations. A grid of prediction
locations is also included, consisting of 3103 sites, and information comprising the
flood frequency, soil type and one of the distance measures, normalized distance,
recorded at the sample sites is also available for the prediction locations. According
to Pebesma (2001), the normalized distances from the Meuse, which are accurate to
20 m, were obtained through a spread GIS operation and were scaled to lie between
0 and 1.

For the analysis carried out here, the data were obtained from the R package gstat

(Pebesma, 2004) where it is used to demonstrate the functionality of the package.
The data were however originally collected by Rikken and van Rijn (1993) with the
intention of studying the concentrations of the heavy metals throughout the flood
plain. This objective can be addressed using kriging as is done here.

Though the concentration of various heavy metals, namely cadmium (Cd), zinc (Zn),
lead (Pb) and mercury (Hg), were measured at the sample sites, this research focuses
solely on the Zn levels in the flood plain as in Burrough and McDonnell (1998) and
Pebesma (2010). Table 4.1 shows an extract of the data. The coordinates of the data
are in Rijksdriehoek (RDH), the Netherlands topographical map coordinates. The
system is based on the reference, in metres, to a tower in Amersfoort, Netherlands.
Also shown in Table 4.1 are the two distance measures, the raw distance in metres
to the main river channel plus the normalized distance. Figure 4.1 shows all the 155
sample locations and the reported Zn content in ppm at those locations.
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Table 4.1: A sample of the first 15 points of the Meuse data set with the coordinates,
distance to the river in metres, normalized distance, Zinc (Zn) concentrations in ppm and
log(Zn) values.

x (Easting) y (Northing) distance (m) distance (normalized) Zn (ppm) ln(Zn)

181072 333611 50 0.00135803 1022 6.929517
181025 333558 30 0.01222430 1141 7.039660
181165 333537 150 0.10302900 640 6.461468
181298 333484 270 0.19009400 257 5.549076
181307 333330 380 0.27709000 269 5.594711
181390 333260 470 0.36406700 281 5.638355
181165 333370 240 0.19009400 346 5.846439
181027 333363 120 0.09215160 406 6.006353
181060 333231 240 0.18461400 347 5.849325
181232 333168 420 0.30970200 183 5.209486
181191 333115 400 0.31511600 189 5.241747
181032 333031 300 0.22812300 251 5.525453
180874 333339 20 0.00000000 1096 6.999422
180969 333252 130 0.11393200 504 6.222576
181011 333161 220 0.16833600 326 5.786897

The Zn, and indeed the other heavy metals, in the soil samples originate from
polluted sediment that is carried by the river from up stream and then deposited
on the flood plain. Since it appears that the governing process for the sediment
deposition dictates that most of the polluted sediment is deposited close to the river
bank (Pebesma, 2004) the concentration levels at each location should depend on
their distance to the river. Following Pebesma (2004) the normalized distance to the
river was therefore considered as an important covariate for all subsequent analysis.
The raw distance to the river was not used as it is not given at the prediction
locations as noted earlier.

4.1.2 Exploratory data analysis

An exploratory analysis of the Zn data using geoR (Riberio and Diggle, 2001) was
firstly carried out. It was found that the concentration data have minimum and
maximum values of 113.0 ppm and 1839.0 ppm respectively, with a median value
of 326.0 ppm and a mean value of 469.0 ppm. The minimum value is located at
(180328, 331158), a sample site that is at a considerably large distance from the
river channel and the maximum value observed is at (179973, 332255), a sample site
on the river bank.

A graphical exploratory data analysis that is produced by geoR is shown in Figure
4.2 In the upper-left panel of the figure, red crosses indicate data in the upper
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Figure 4.1: Zinc (Zn) concentration in the soil samples, in ppm, at 155 sample sites on
the flood plain of the river Meuse (near Stein, Netherlands). The Meuse river is located
on the west of the sample points. The area of the circles in the figure are proportional
to the observed concentration levels at the locations. The legend gives the five number
summary of the data.

quartile, blue circles, data in the lower quartile, yellow crosses and green rectangles
data in the third and second quartiles, respectively. The locally weighted regression
smoother (LOWESS) curves fitted to the scatter plots of the Zn concentrations
against the spatial coordinates, shown in the upper-right and lower-lower panels of
Figure 4.2, are used to determine whether the data exhibit a trend in that coordinate.

From the upper-left panel of Figure 4.2, it is apparent that data points with high
values of Zn levels are mostly located on the west of the study area, that is on the
bank of river, as is to be expected. This is also apparent from the lower-left panel
of Figure 4.2. In this latter panel it is apparent that the LOWESS curve slopes
downwards, which indicates that the concentrations decrease with an increase in
the x coordinate, that is on moving away from the river. This suggests the inclusion
of distance to the river as a covariate for kriging. The histogram of the data shown
in the lower-right panel of Figure 4.2 reveals that the data are heavily skewed to
the right, implying that the process generating the data does not follow a Gaussian
distribution. This deviation of the data from a Gaussian distribution is confirmed
by the normal Q-Q plot of the data, given in the left panel of Figure 4.3. This would
suggest the need for transformation of the data in order to make it approximately
Gaussian and thus enable the use of Gaussian kriging.

4-3

A. , ... .. .,., . 
,J •••• -.-" 

~
fII' •• ; • . . : . ..-

o •• .. :. : , .... 
I~. 0 '" 

• 0 

•• 4. ~ ':./: 0 

. ~l~· . ... - .. • • • • • • • • • •• • • • 
• 

• 
• • • 



Univ
ers

ity
 of

 C
ap

e T
ow

n

178000 179000 180000 181000 182000

33
00

00
33

10
00

33
20

00
33

30
00

X Coord

Y
 C

oo
rd

 

500 1000 1500

33
00

00
33

10
00

33
20

00
33

30
00

data

Y
 C

oo
rd

178000 180000 182000

50
0

10
00

15
00

X Coord

da
ta

data

D
en

si
ty

0 500 1000 1500 2000

0.
00

00
0.

00
04

0.
00

08
0.

00
12

Figure 4.2: Upper-left panel shows the quartiles of the zinc data, the upper-right and
lower-left panels show the data plotted against the x and y coordinates respectively, with
LOWESS lines fitted to them. The lower-right panel shows the histogram of the zinc data.
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Figure 4.3: Normal Q-Q plots of (a) the zinc concentrations and (b) the log transformed
zinc concentrations of the 151 observation locations in the Meuse data set.
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Figure 4.4: Log transformed zinc values, log(Zn), against the coordinates.
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Figure 4.5: Upper-left panel shows the quartiles of the residuals resulting from removing
the trend in the log(Zn) data, the upper-right and lower-left panels show the data plotted
against the x and y coordinates respectively. The diagram in the lower-right panel shows
the histogram of the residuals.
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A log transform was applied to the data, as is done in the analysis by Pebesma
(2010). The normal Q-Q plot of the log-transformed data, shown in the right-panel
of Figure 4.3, suggests that the resulting data are not strictly Gaussian but that
it is not unreasonable to assume that they were generated by a Gaussian process.
The log transformed zinc data, log(Zn), were checked in order to determine if the
trend seen in the Zn data persisted. This was done through a plot of log(Zn) against
each of the coordinates as shown in Figure 4.4. These plots reveal that the trend in
the x coordinate is still present. There is a trend in the y-coordinate but it is not
clear. The normalized distance to the river, which accommodates the trend in the
x-coordinate, was therefore included as covariate information similar to Pebesma
(2010).

The log(Zn) data was detrended by regressing against the normalized distance to
the river and an exploratory analysis performed on the residuals in order to confirm
the near-Gaussian nature of the data The results of this analysis are shown in Figure
4.5. It can be seen from the plot of the residuals in the upper-left panel of the figure,
that large and small values are more evenly distributed over the study area. The
histogram, lower-right panel, suggests that the residuals follow an approximately
Gaussian distribution.

4.1.3 Model fitting

Four ordinary kriging models with various covariance functions were fitted to the log-
transformed data, log(Zn), via ML estimation. REML estimation of the covariance
parameters was not employed as it resulted in multi-modal profile likelihoods. The
covariance functions employed were an exponential, Gaussian, spherical and Matérn
covariance functions with κ values of 1.5 and 2.5. Five universal kriging models
with normalized distance to the river as a covariate were also fitted with the same
covariance functions and using ML estimation. Parameter estimates, values of the
maximized likelihood and the AIC and BIC values for the four resultant ordinary and
the four universal kriging models are shown in Table 4.2. Plots of semivariograms
obtained from fitting the various ordinary and universal kriging models are shown
together with the corresponding empirical semivariograms in Figure 4.6.

From Table 4.2 it can be seen from the AIC and BIC values of the four ordinary
kriging models that the model with a Matérn covariance function with κ=1.5 is the
best fitting model to log(Zn). It can also be seen from the table that of the four
universal kriging models, the model with a Gaussian covariance function is the best
fitting model. Comparisons between ordinary and universal kriging models with
similar covariance functions indicate that in each case the universal kriging models
provide better fits with a marked reduction in the estimated nugget τ 2, partial sill
σ2

0 and range φ values. The reduction in the estimates of τ 2, σ2
0 and φ reflect the

fact the covariate, normalized distance to the river, is able to explain a substantial
amount of the spatial variation.
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Table 4.2: Estimates of the parameters of various ordinary and universal kriging models
together with the maximized log-likelihood values and the AIC and BIC. The universal
kriging models were formed by taking the normalized distance to the river as a covariate.

Ordinary kriging models
Model κ β̂ τ̂2 σ̂2

0 φ̂ L AIC BIC

Exponential - 6.5577 0.0335 1.4987 1700.0000 -99.16 206.3 218.5

Matérn 1.5 6.4910 0.0950 1.4140 440.1270 -97.38 202.8 214.9
2.5 6.3780 0.1040 1.1470 259.5440 -97.82 203.6 215.8

Gaussian - 6.2391 0.1146 0.8743 572.2880 -99.43 206.9 219.0
Spherical - 6.1653 0.0332 0.6961 1200.5092 -97.88 203.8 215.9

Universal kriging models
Model κ β̂0 β̂1 τ̂2 σ̂2

0 φ̂ L AIC BIC

Exponential - 6.5958 -2.8186 0.0309 0.2298 220.8617 -86.01 182.0 197.2

Matérn 1.5 6.5912 -2.8201 0.0742 0.1882 122.9547 -84.78 179.6 194.8
2.5 6.5853 -2.8138 0.0808 0.1793 90.4478 -84.48 179.0 194.2

Gaussian - 6.5662 -2.7861 0.0873 0.1653 247.1482 -84.28 178.6 193.8
Spherical - 6.6413 -2.9108 0.0660 0.2367 738.3997 -84.71 179.4 194.6

As noted earlier, of the kriging models fitted with covariate information, the kriging
model with a Gaussian covariance is the best fitting model with AIC and BIC
values of 178.6 and 193.8 respectively. However, the AIC and BIC indicate there is
not much difference between this kriging model and the model fitted with Matérn
covariance functions. Semivariograms of these three models are also fairly similar as
shown in the right-hand panel of Figure 4.6. The kriging model with an exponential
covariance function is the worst performing model with AIC and BIC values of 182.0
and 197.2. The best kriging model, that is the model with a Gaussian covariance,
was thus selected for further investigations.

The profile likelihoods of each of the variance parameters of the selected kriging
model, that is the universal kriging model with a Gaussian covariance structure

τ 2 + σ2
0 exp−(h/φ)2 ,

were then calculated and plotted using the geoR functions proflik and plot.prolik

respectively. The plotted profile likelihoods are shown in Figure 4.7. From the fig-
ures it can be seen that all the variance parameters have profile likelihoods that
have clearly defined maxima. This indicates that all the parameters are estimated
with good precision. Approximate 95% confidence intervals (CI), for the parameters
in the universal kriging model with a Gaussian covariance function, based on the
profile likelihoods, are given in in Table 4.3.
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Figure 4.6: Comparison of various fitted semivariogram models to the empirical semivar-
iogram (a) of the data and (b) of the residuals from a trend in the x coordinate. The
dashed lines correspond to fits with the exponential, solid lines to a Matérn with κ = 1.5,
the dotted lines to a Matérn with κ = 2.5, the heavy dots to a model with a Gaussian and
the heavy solid line to the spherical covariance model. The circles represent the empirical
semivariograms.
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Figure 4.7: Profile likelihoods of σ2
0 (left panel), φ (middle panel) and τ2 (right panel) for

the universal kriging models with a Gaussian covariance model. The two horizontal lines
on each of the plots define approximate 90% and 95% confidence intervals of each of the
parameters, based on the asymptotic 1

2χ2(1)-distribution of the log likelihood ratio.
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Table 4.3: Estimates of the variance parameters and their approximate 95% confidence
bounds, in parenthesis, for the universal kriging model with a Gaussian covariance func-
tion.

Parameters
τ2 σ2

0 φ

Estimates 0.0873 0.1653 247.1482
95% CI (0.051, 0.180) (0.10, 0.27) (175, 400)

4.1.4 Kriging and kriging variance estimation

Kriging predictions at the 3103 locations forming the prediction grid were made
using the universal kriging model fitted with a Gaussian covariance function model.
The resulting predicted log(Zn) values were then mapped and the mapped values are
shown in the left panel of Figure 4.8 and the associated kriging standard deviations
in the right panel of that figure.
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Figure 4.8: (a) Universal kriging surface of the log-zinc values on the flood plain of the
river Meuse obtained using the kriging model with a Gaussian covariance function and (b)
a map of the corresponding kriging standard deviations.
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The kriging variance at each of the 3103 prediction locations was then estimated via
the empirical mean squared prediction error (EMSPE) m1(θ̂), the Kacker-Harville
σ2(θ̂)KH and Prasad-Rao σ2(θ̂)PR estimators as well as the conditional and un-
conditional bootstrap estimators σ2(θ̂)CBS and σ2(θ̂)UBS. The approximate 95%
confidence bounds of the range parameter φ, as shown in Table 4.3, were used to
bound the range estimates in the unconditional bootstrap so as to ensure that the
kriging models fitted to the bootstrapped data were representative of the actual krig-
ing models under study (see Section 2.4.2.1). The bootstrap estimators σ2(θ̂)CBS

and σ2(θ̂)UBS were calculated over 5000 iterations of their respective algorithms.

Summary statistics of the kriging variance estimates are displayed in Table 4.4 and
the associated notched box and whisker plots are shown in Figure 4.9. The nothches
in the box plot tell us if the are any differences in the medians of the values they
represent. If the notches of two plots do not overlap this is indicates that the two
medians differ. Maps of the kriging variance estimates obtained using the various
estimators are shown in Figure 4.10. Although an assessment of how well each of the
estimators approximate the mean squared prediction error (MSPE) of the empirical
best linear unbiased predictor (EBLUP), m2(θ), cannot be made the following ob-
servations are noted.

Table 4.4: Summary statistics of the MSPE of the EBULP estimates at the 3103 predic-
tion locations obtained using various kriging variance estimators. Bootstrap estimators,
σ2(θ̂ML)CBS and σ2(θ̂ML)UBS , were calculated over 5000 iterations of their respective
algorithms.

KRIGING VARIANCE ESTIMATORS

Summary Statistics m1(θ̂ML) σ2(θ̂ML)KH σ2(θ̂ML)PR σ2(θ̂ML)CBS σ2(θ̂ML)UBS

Minimum 0.1026 0.1065 0.1090 0.0989 0.0987
1st Quartile 0.1203 0.1254 0.1291 0.1205 0.1222

Median 0.1323 0.1364 0.1414 0.1324 0.1342
Mean 0.1456 0.1499 0.1534 0.1466 0.1476

3rd Quartile 0.1618 0.1635 0.1653 0.1612 0.1625
Maximum 0.2712 0.2719 0.2727 0.2790 0.2613

Standard deviation 0.0367 0.0355 0.0346 0.0369 0.0353
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Figure 4.9: Notched box and whisker plot of the kriging variance estimates at the 3103
prediction locations obtained for the 5 kriging variance estimators.

4.1.4.1 Some observations on the estimates and estimators

Firstly, it is apparent from Table 4.4 and Figure 4.9 that the Prasad-Rao estimator,
σ2

PR(θ̂) produces, on average, the highest estimates of the variance with a mean value
of 0.1534. This observation of σ2

PR(θ̂) is consistent with the findings of the simulation
experiment of Chapter 3. Further, from Table 4.4 and Figure 4.9 it can be seen that
the EMSPE, m1(θ̂), and the conditional bootstrap estimator, σ2(θ̂)CBS, produce the
smallest kriging variance estimates on average and furthermore these are similar in
value as can be seen by closeness of the mean and median values of these estimators
which are 0.1456 and 0.1323, respectively for m1(θ̂) and 0.1466 along with 0.1324 for
σ2(θ̂)CBS. This again is in line with the results from the simulation experiments. In
addition, the estimates obtained from the Kacker-Harville estimator, σ2(θ̂)KH , and
unconditional bootstrap estimator, σ2(θ̂)UBS, appear from Figure 4.9 to be similar
as was observed in the simulation experiment.

Since the kriging variance estimates for this log(Zn) data obtained from the various
estimators exhibit behaviour, in terms of the relationships to one another, similar
to that seen in the simulation experiment, it would lead one to suggest that the
performance of the estimators in approximating m2(θ) for the real data here is
similar to that observed in the simulation experiment. That is, the Prasad-Rao is
the best estimator of m2(θ).
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A few observations regarding the kriging variance surfaces obtained from each of
the estimators and shown in Figure 4.10 can also be made. From Figure 4.10 it is
apparent that the estimates from σ2(θ̂)KH and σ2(θ̂)PR produce kriging variance
surfaces that are smoother than the surface produced by m1(θ̂). It can also be
seen that though the surface produced by σ2(θ̂)CBS has characteristics that are very
similar to those of the surface produced by m1(θ̂), the surface produced by the former
estimator is less smooth than that obtained from the latter estimator. Similarly the
surface produced by σ2(θ̂)UBS seems rough as compared to those produced by the
three analytic estimators m1(θ̂), σ2(θ̂)KH and σ2(θ̂)PR.

4.1.4.2 An brief exploration into optimal design

As noted earlier, the kriging variance is used in various ways as the basis for a
design criterion in optimal sampling design (Cressie et al, 1990; Zimmerman, 2006).
For instance, for any particular kriging variance estimator, a common approach
to determining which points should be included in future sampling is to rank the
estimates in terms of their magnitude. Those points with the highest kriging variance
are then identified as future sample locations because the kriging predictions are
associated with low precision. To examine how the different estimators studied here
would affect the decision as to where future observations should be taken, the 10
locations with the highest kriging variance were identified for each estimator. The
results are summarized in Table 4.5 and Figure 4.11.

It is clear that the rankings of the kriging variance for the estimators m1(θ̂), σ2(θ̂)KH

and σ2(θ̂)PR are the same and that the maximum value occurs at (180900, 331860),
a location far from the river and close to the edge of the study area. The conditional
bootstrap estimator σ2(θ̂)CBS provides the same set of 10 locations with the highest
kriging variance, but in a completely different order to that of the three analytic
estimators m1(θ̂), σ2(θ̂)KH and σ2(θ̂)PR. In contrast, although some of the set of
10 locations with the highest kriging variance values for σ2(θ̂)UBS are also identified
for the other estimators this set of locations does not coincide exactly with those for
the other estimators.
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Figure 4.11: Circles show sample locations and crosses show locations the 10 lo-
cations which have the highest kriging variance under: (a) the EMSPE, Kacker-
Harville, Prasad-Rao and conditional bootstrap estimator, (b) unconditional boot-
strap estimators .
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4.2 South African Micronutrient Data

4.2.1 Description

The data set of 214 soil samples used here is part of data from a study by de Villiers
et al (2010) in which surface soil samples were collected at approximately 1000
locations across South Africa between 2005 and 2008. The intention of the study
was to estimate, by inverse distance interpolation (IDW), the micronutrient content
in soils across the country. Though data on various micronutrients were collected,
the study focused specifically on lead (Pb) and cadmium (Cd) content. The soil
samples were collected at locations that did not exhibit signs of any prior human
activity such as mining or agricultural activity. Each of the samples is a composite
sample of subsamples taken within a 100 m2 area from the upper 10 cm of the soil
sequence and the reported micronutrient values of the samples were determined by
use of the Mehlich-3 extraction method (de Villiers et al, 2010).

Longitude

La
tit

ud
e

−29

−28

−27

−26

−25

27 28 29 30

1.827
7.086
12.5
20.186
236.85

Figure 4.12: Iron (Fe) levels at the 214 sample locations between longitudes 26.32 to
30.79 and latitudes -28.98 to -24.40. The area of the circles in the figure are proportional
to the observed concentration levels at the locations. The legend gives the five number
summary of the data.

In this study, focus is on the amounts of iron (Fe) in the soil samples in and around
the Witwatersrand area in the Gauteng province of South Africa. Figure 4.12 shows
the study area which is between longitudes 26.32 and 30.79 and latitudes -28.98
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Table 4.6: A sample of the iron (Fe) data set. The first 15 data points of the data, with
the coordinates, Iron (Fe) concentrations and log(Fe) values.

Longitude Latitude Fe (ng/g) log(Fe)

27.61660 -28.90322 42.13319 3.740836
27.84943 -28.89308 9.42192 2.243039
27.90203 -28.83018 7.07119 1.956029
28.12537 -28.68503 9.05852 2.203706
28.36962 -28.63455 13.38876 2.594416
28.46692 -28.52972 12.19404 2.500947
28.65308 -28.52965 8.64924 2.157471
28.98972 -28.37685 11.60196 2.451174
29.06987 -28.50855 45.84092 3.825177
29.15915 -28.64143 8.65618 2.158274
29.34805 -28.71025 14.72193 2.689338
29.55713 -28.59552 9.57662 2.259325
29.83258 -28.50325 5.6238 1.727008
29.97493 -28.02055 16.58198 2.808317
29.89837 -27.72882 10.83388 2.382678

and -24.40. The figure also shows the levels of Fe, in nanograms per gram (ng/g),
measured in each of the soil samples at the 214 observation locations. On the side
of the map is a legend illustrating the five number summary of the data. An extract
of the data is presented in Table 4.6.

4.2.2 Exploratory data analysis

The data have minimum and maximum values of 1.827 ng/g and 236.900 ng/g
respectively, with a mean value of 19.360 ng/g and a median value of 12.500 ng/g.
From the upper-left panel in Figure 4.13 which shows a map of the quartiles of the
data, the iron levels can be seen to be evenly spread over the study domain with a
few clusters of similar values but no indication of the presence of a trend. The plots
of the data against the coordinates shown in the upper-right and lower-left panels of
Figure 4.13 also point towards there being no apparent trend but only to the data
being heavily skewed. This is shown more clearly in the histogram of the data, in
the lower-right panel of Figure 4.13. The histogram of the data indicates that the
Fe data are markedly non-Gaussian as the histogram is heavily skewed to the right.
The normal Q-Q plot, left panel Figure 4.14, also indicates departure of the data
from a Gaussian distribution.
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Figure 4.13: Upper-left panel shows a map of the quartiles of the iron data, the upper-right
and lower-left panels show the data plotted against the y and x coordinates respectively.
The diagram in the lower-right panel shows the histogram of the data.
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Figure 4.14: Normal Q-Q plot of iron measurements (left panel) and the log(Fe) values
(right panel) at the 214 sample locations.

A log transformation was applied to the Fe data. Figure 4.15 shows a graphical
exploratory data analysis (EDA) of the log-transformed data, termed log(Fe), similar
to that shown in Figure 4.13. It can be seen from this figure that the histogram of
the log(Fe), lower-right panel, is more symmetric than that of the original data. This
indicates that the log transform of the data was adequate in normalizing the data, at
least approximately. The normal Q-Q plot of the log(Fe) data, right panel of Figure
4.14 also confirms that the log-transform was adequate in generating approximately
normally distributed data since the values of log(Fe) lie close to the diagonal axis of
the plot. From the plots of log(Fe) against the coordinates shown in the upper-right
and lower-left panels of Figure 4.15, it is clear that the log-transformed data does
not seem to exhibit any trend. The map showing the quartiles of the log(Fe) data,
upper-left panel of Figure 4.15, also indicates no trend. Hence a constant mean
assumption, that is an ordinary kriging model, would seem to be applicable to the
log(Fe) data.
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Figure 4.15: Upper-left panel shows a map of the quartiles of log(Fe) the log transformed
iron levels, the upper-right and lower-left panels show log(Fe) plotted against the x and
y coordinates respectively. The diagram in the lower-right panel shows the histogram of
log(Fe).
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4.2.3 Model fitting

The spatial correlation structure for the log(Fe) data was modelled using three
Matérn covariance functions with κ = 0.5, the exponential covariance, κ = 1.5
and κ = 2.5 and also the Gaussian and spherical covariance functions. Since no
indication of any trend was found in the EDA, ordinary kriging models were fitted.
Fitting of the models was done via ML and REML estimation. Table 4.7 gives a
summary of the parameter estimates, the maximized log-likelihood value plus the
information criteria, AIC and BIC, for the fitted ordinary kriging models. Figure
4.16 shows plots of the fitted semivariogram models together with the empirical
semivariogram of the log(Fe) data.

Table 4.7: Estimates of the parameters of various ordinary kriging models of the log(Fe)
data fitted with varying covariance functions together with the maximized log-likelihood
values and the AIC and BIC.

Estimator Covariance κ β̂ τ̂2 σ̂2
0 φ̂ L AIC BIC

ML

Exponential - 2.5080 0.4340 0.2031 0.5085 -246.4134 500.8268 514.2907

Matérn 1.5 2.5186 0.4766 0.1582 0.2813 -246.4293 500.8585 514.3224
2.5 2.5223 0.4835 0.1504 0.2106 -246.4391 500.8782 514.3421

Spherical - 2.5379 0.4397 0.1871 0.9339 -246.8135 501.6270 515.0909
Gaussian - 2.5298 0.4909 0.1406 0.6034 -246.4829 500.9658 514.4297

REML

Exponential - 2.4907 0.4474 0.2080 0.6494 -244.8845 497.7690 511.2329

Matérn 1.5 2.5111 0.4817 0.1650 0.3138 -245.0273 498.0546 511.5185
2.5 2.5169 0.4872 0.1572 0.2287 -245.0790 498.1581 511.6220

Spherical - 2.5277 0.4665 0.1740 1.2882 -245.3322 498.6645 512.1284
Gaussian - 2.5268 0.4937 0.1464 0.6374 -245.2094 498.4188 511.8827

It can be seen from Table 4.7 and Figure 4.16 that the 5 models fitted using ML
estimation do not differ greatly especially with regards to estimates of the mean β,
the nugget τ 2 and the partial sill σ2

0. The fitted models can also be seen to have
maximized log-likelihood values that are very close. From Figure 4.16, left panel, it
can be seen that the fitted semivariogram models are almost indistinguishable from
each other, at least visually. Inspection of the parameters of the models fitted by
REML estimation reveals that the estimates of β and τ 2 do not differ greatly and it
can be seen from the values of the maximized log likelihood values of the five fitted
models that the resultant fitted models are similar. Furthermore, inspection of the
semivariogram models fitted via REML, right panel of Figure 4.16, reveals the close
similarity of the five fitted semivariograms.
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Figure 4.16: Comparison of various fitted semivariogram models together with the em-
pirical semivariogram. The dashed lines correspond to fits with the exponential, dotted
line to a Matérn with κ = 1.5, the solid line to a Matérn with κ = 2.5, heavy dotted line
to a spherical and heavy solid line to a Gaussian. The circles correspond to the empirical
semivariogram. Panels show (a) ML model results and (b) REML model results.

From Table 4.7 it is apparent that under both ML and REML estimation of the
parameters, the kriging models fitted with the exponential covariance model,

τ 2 + σ2
0 exp(−h/φ),

with AIC values of 500.8268 and 497.7690 for the model with θ̂ML and θ̂REML

respectively, are marginally better than the other models. Since the two models
fitted with θ̂ML and θ̂REML are not very different in term the information criterion,
AIC and BIC, and considering the fact that the differences between ML and REML
estimation usually lead to only small differences in many applications (Diggle and
Riberio, 2002) it was decided to use the kriging model with an exponential covari-
ance function and θ̂ML for the investigations conducted here. The profile likelihoods
of the parameters for the kriging model with θ̂ML are shown in Figure 4.17. The fig-
ure indicates that each of the parameters was estimated with reasonable precision as
can be seen by the well defined maxima of each profile likelihood. The approximate
95% confidence intervals of the parameters which were obtained from the profile
likelihoods, are displayed in Table 4.8.
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Figure 4.17: Profile likelihoods of σ2
0 (left panel), φ (middle panel) and τ2 (right panel)

for the ordinary kriging model with an exponential function fitted using ML. The two
horizontal lines on each of the plots define approximate 90% and 95% confidence intervals
of each of the parameters, based on the asymptotic 1

2χ2(1)-distribution of the log likelihood
ratio.

Table 4.8: Estimates of the variance parameters and their approximate 95% confidence
bounds, in parenthesis, for the ordinary kriging model with an exponential covariance
function fitted via ML estimation.

Parameters
τ2 σ2

0 φ

Estimates 0.4340 0.2031 0.5085
95 % CI (0.2,0.58) (0.12,0.46) (0.2,2.9)

4.2.4 Kriging and variance estimation

A grid of 2115 prediction locations specified by the set

S = {xi = (u, v) : u = 26.30708+0.1k, k = 0, . . . , 44; v = −29.03209+0.1l, l = 0, . . . , 46}
was set up in the study area. Predictions of the log(Fe) values at each of these
locations were then made using the selected kriging model, that is the kriging model
with an exponential covariance function fitted via ML estimation. Figure 4.18, right
panel, shows the kriging surface of the predicted log(Fe) concentrations and the left
panel shows associated kriging standard deviations.
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Figure 4.18: (a) Ordinary kriging surface obtained using the kriging model fitted with an
exponential covariance function and (b) associated standard errors of the predictions.

Next the kriging variance at each of the prediction locations was calculated as
in the Meuse data example using all the 5 kriging variance estimators, m1(θ̂),
σ2(θ̂)KH σ2(θ̂)PR, σ2(θ̂)CBS and σ2(θ̂)UBS. The bootstrap estimates, σ2(θ̂ML)CBS

and σ2(θ̂ML)UBS were computed over 5000 iterations of their respective algorithms
with the range parameter φ estimates in the σ2(θ̂)UBS algorithm being constrained
to 0.2 ≤ φ̂ ≤ 2.90, the approximate 95% confidence interval of the parameter as
obtained from the profile likelihood and given in Table 4.8. Table 4.9 gives the sum-
mary statistics of the kriging variance estimates at the prediction 2115 locations
obtained via the different kriging variance estimators as does Figure 4.19. Figure
4.20 gives a visual representation of the kriging estimates obtained by the various
estimators as surfaces.

Table 4.9: Summary statistics of the kriging variance values at the 2115 prediction loca-
tions obtained using the various kriging variance estimators.

KRIGING VARIANCE ESTIMATORS

Summary Statistics m1(θ̂ML) σ2(θ̂ML)KH σ2(θ̂ML)PR σ2(θ̂ML)CBS σ2(θ̂ML)UBS

Min 0.5109 0.5180 0.5252 0.4958 0.5092
1st Quartile 0.5440 0.5508 0.5575 0.5415 0.5499

Median 0.5534 0.5595 0.5658 0.5541 0.5612
Mean 0.5574 0.5635 0.5695 0.5575 0.5643

3rd Quartile 0.5664 0.5717 0.5772 0.5703 0.5751
Max 0.6440 0.6476 0.6511 0.6671 0.6561

Standard deviation 0.0209 0.0201 0.0194 0.0237 0.0221
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Figure 4.19: Notched box and whisker plot of the kriging variance estimates at the 3103
prediction locations obtained for the 5 kriging variance estimators: South African data.

It is clear from Table 4.9 and Figure 4.19 that the qualitative properties of the
estimators observed in the simulation experiment also hold for this real data set.
That is, σ2(θ̂)PR produced the highest estimates on average, m1(θ̂) and σ2(θ̂)CBS

produced the smallest estimates and these estimates were relatively similar to each
other and σ2(θ̂)CBS and σ2(θ̂)UBS produced estimates that were also very similar
to each other.

Examination of Figure 4.20 reveals surfaces for σ2
0(θ̂)KH and σ2(θ̂)PR that appear

to be smooth as compared to the surface of the kriging variance estimates obtained
for m1(θ̂) whilst σ2(θ̂)CBS and σ2(θ̂)UBS produce visibly rougher surfaces. It is
interesting to note that these patterns were also observed in the previous application
described in Section 4.1.

Table 4.10 shows the 10 points with the highest kriging variance estimates under
each estimator, as well as the estimates. From this table it is apparent that the
analytic estimators, m1(θ̂), σ2

0(θ̂)KH and σ2
0(θ̂)PR, have the same set and ordering of

10 points with all these estimators identifying point (26.30708, -24.43209) as having
the highest kriging variance. This point is located on the edge of the study area in the
upper-left corner. The bootstrap estimators σ2(θ̂)CBS and σ2(θ̂)UBS identify points
that are different from the each other and from the analytic estimators and unlike
in the previous example it can be seen that σ2(θ̂)CBS does not identify the same
set of locations as m1(θ̂), σ2

0(θ̂)KH and σ2
0(θ̂)PR. Figure 4.21 shows the locations

of the set of 10 points with the highest kriging variance identified by the various
estimators. The points identified by the various estimators lie in the same region,
that is, at the edge of the figure. This may be an indication of an edge effect.
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4.3 Summary

Though the accuracy of each of the estimators can not be quantified as in the
simulation experiment, it can be seen from both applications that the relationships
between the estimators observed in the simulation experiment, such as the EMSPE
and conditional bootstrap estimates being similar, also apply to real data sets. It
can also be seen that each of the estimators are easily implemented even though the
data sets may be large. All the estimators can also be seen to be applicable for a
large variety of kriging models, such as the ordinary kriging models as in the South
African data set and universal kriging models as in the Meuse data set. Though
optimal designs in their truest sense have not been explored, it can be seen from
both applications how the estimators may be used to identify an area of interest for
sampling.
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Chapter 5

Conclusions and Future Directions

5.1 Introduction

In this study various kriging variance estimators were explored and the performance
investigated with the main aim of finding the most optimal estimator. This chapter
evaluates the research objectives that were set out in the beginning of the study so
as to ascertain whether they have been met. The objectives of the study as set out
in Chapter 1 are listed here for reference. These were as follows:

1. The investigation of the performance of the empirical mean squared prediction
error (EMSPE) in estimating the mean squared prediction error (MSPE) of
the empirical best linear unbiased predictor (EBLUP).

2. The investigation and development of alternative methods to the EMSPE for
estimating the MSPE of the EBLUP and the evaluation of the performance of
these alternative estimators.

3. The development of portable programs in R (R Development Core Team, 2010)
that provide the user with code for calculating the various estimators of the
MSPE of the EBLUP.

4. The illustration and testing of the flexibility of the alternative methods of
estimating the MSPE of the EBLUP on real data sets.

5. The examination of how sampling designs based on the the different kriging
variance estimators as the basis of design criteria in optimal sampling design
differ from each other.

Insights that arise from this study are also discussed and recommendations based
on those insights are also made. Limitations of the study are briefly addressed and
finally possible avenues for future research are highlighted.
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5.2 Evaluation of Objectives

• Objective 1
The performance of the EMPSE, denoted m1(θ̂), in estimating the MSPE of
the EBLUP, m2(θ), has been investigated methodically from both a theoretical
and numerical perspective. In Chapter 2, Section 2.4, the reasons as to why
m1(θ̂) is a biased estimator of m2(θ) were set out and the direction of the bias
was also noted. From the discussion in this section it was found that m1(θ̂)
underestimates m2(θ) as it fails to take into account the additional variability
incurred by the EBLUP due to the covariance parameters, θ, being unknown
and hence being estimated.

The simulation experiment in Chapter 3 further showed that the bias of m1(θ̂)
in estimating m2(θ) can be quite large. From this experiment it was observed
that this bias is greatest when the spatial correlation is strong, and less pro-
nounced when the spatial correlation is weak. From the experiment it was also
noted that, in comparable situations, the bias of m1(θ̂) tends to be larger when
maximum likelihood (ML) estimates of θ, namely θ̂ML, are used in m1(θ̂) than
when restricted maximum likelihood (REML) estimates, namely θ̂REML, are
used.

• Objective 2
In Chapter 2 existing alternative methods to the use of m1(θ̂) for estimating
m2(θ) were discussed and the development of these methods was thoroughly
explored. Methods which appeared promising were identified. These included
analytic forms of the Kacker-Harville and the Prasad-Rao estimators and para-
metric bootstrapping. In addition, a novel parametric bootstrapping algorithm
for estimating m2(θ), the conditional bootstrapping algorithm, was developed
and also a slight detail, the constraining of the estimates of the range param-
eter φ from the samples generated in the unconditional bootstrap algorithm,
was highlighted. As noted in Section 2.4.2.1, constraining the range is essen-
tial in ensuring that the bootstrapped kriging models are representative of the
kriging model under study and hence the estimates produced by σ2

0(θ̂)UBS are
sensible.

The estimators identified as being the most suitable alternatives to m1(θ̂), that
is the Kacker-Harville σ2(θ̂)KH , the Prasad-Rao σ2(θ̂)PR, the unconditional
bootstrap σ2(θ̂)UBS and the conditional bootstrap estimators σ2(θ̂)CBS were
then tested in the numerical experiment described in Chapter 3, in settings
identical to those in which m1(θ̂) was tested, and the performance of the
estimators recorded.

From this experiment, it was observed that the performance of the estimator
based on the conditional bootstrapping algorithm, σ2(θ̂)CBS, was no better
than m1(θ̂). From these experiments its was also found that the Prasad-
Rao estimator σ2(θ̂)PR is generally the most optimal estimator though its
performance can be poor when the spatial correlation is weak. It was how-
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ever also noted that with θ̂REML as an estimator of θ the Prasad-Rao es-
timator always produces estimates with very little bias no matter what the
degree of the strength of the spatial correlation. Finally its was noted that
the Kacker-Harville estimator σ2(θ̂)KH and the estimator based on an uncon-
ditional bootstrapping algorithm, σ2(θ̂)UBS, perform more or less similarly.
However, with θ̂REML and when the spatial correlation is weak, σ2(θ̂)UBS

outperforms σ2(θ̂)KH and in fact is the best estimator as it also outperforms
σ2(θ̂)PR.

• Objective 3
Programs in R (R Development Core Team, 2010), a widely used and very pow-
erful statistical programming language and environment, were developed for
calculating the various estimators investigated. These programs were linked
to the R geostatistical package geoR (Riberio and Diggle, 2001) making them
useful and accessible to a large number of geostatistical analysts. The pro-
grams were also completely documented so that they can be used with ease
by anyone familiar with R and geoR.

• Objective 4
The flexibility of the alternative estimators of m2(θ) and the programs imple-
menting them were demonstrated on two data sets, a data set widely investi-
gated by other researchers and a local, South African data set, in Chapter 4. It
was shown that these estimators and programs can be seamlessly incorporated
into any routine and non-routine geostatistical analysis carried out in R using
the geostatistical package geoR to calculate the various estimators.

• Objective 5
In Chapter 4, using the two data sets mentioned above, we explored how the
uses of the different estimators studied here may influence decisions in opti-
mal sampling design, namely the decision as to where future samples should
be taken. It was observed that m1(θ̂), σ2(θ̂)KH and σ2(θ̂)PR identify the same
locations as sites for future sampling. This is to be expected as these estima-
tors are closely related. This finding means that when the ultimate goal of an
analysis is to identify future sampling sites any of the three estimators, namely
m1(θ̂), σ2(θ̂)KH and σ2(θ̂)PR, may be used as they will lead to the same deci-
sion. It was also observed that the conditional bootstrap estimator, σ2(θ̂)CBS,
may at times identify the same sites as those identified by the analytic esti-
mators as future sampling sites, but this is not always the case. Finally it
was also observed that the σ2(θ̂)UBS usually identifies mostly different sites as
future observation locations from m1(θ̂), σ2(θ̂)KH , σ2(θ̂)PR, and σ2(θ̂)CBS.

5.3 Limitations

Before drawing conclusions some of the most important limitations of this study need
to be stated so as to put the conclusions into perspective. These limitations relate
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mainly to the simulation experiment of Chapter 3. As noted earlier, there are many
factors that influence the performance of the various kriging variance estimators
(Zimmerman and Cressie, 1992). These include, in no order of importance, the
following:

• Strength of the spatial correlation

• Type of covariance function employed

• Absence or presence of a trend and its degree

• Ratio of nugget to variance

• Spatial configuration of data and prediction locations

• Properties of the estimator of θ employed

• Number of observations

• Density of the observation locations

• Size and shape of the observation domain

All these factors could not possibly be accounted for in the simulation experiment
though every effort was made to make the experiment as comprehensive as possible.

5.4 Conclusions

In this section the main conclusions that can be drawn from this research are sum-
marized as follows.

• The EMSPE is an unsatisfactory estimator of the MSPE of the EBLUP.
In all cases studied here it was clearly seen that the EMSPE underestimates
the MSPE of the EBLUP no matter what the degree of spatial correlation.
It was also seen that in no situation will the EMSPE lead to the least biased
estimates out of all the estimators studied here.

• The Prasad-Rao estimator provides a real alternative to the EMSPE for esti-
mating the MSPE of the EBLUP.
In most of the situations studied here the Prasad-Rao estimator was observed
to provide the least biased best estimates of the MSPE of the EBLUP. Even
in situations where the estimator may perform poorly, that is when the spa-
tial correlation is weak, it was seen that the use of the REML estimator of
θ, θ̂REML, instead of the ML estimator, θ̂ML, will result in estimates with
satisfactory precision.
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• For any estimator of the MSPE of the EBLUP the use of θ̂REML instead of
θ̂ML as an estimator of θ will generally lead to less biased estimates.
Though under any situation all the estimators will exhibit some kind of bias,
it has been observed that this bias can be reduced by using θ̂REML instead of
θ̂ML in the calculation of the estimators.

• Implementation of the alternative of estimators of the MSPE of the EBLUP
is straight forward.
It has been seen from the applications in Chapter 4 that the estimation of the
MSPE of the EBLUP using the alternative estimators is possible for practi-
cal problems involving large numbers of observation and prediction locations
and different kriging models. It was also seen that the application of these
methods to real data sets does not require any highly specialized algebra and
programming.

5.5 Recommendations

• The use of the EMSPE m1(θ̂) should be avoided as it exhibits a large bias.
However if the estimator is to be used it should be calculated using θ̂REML as
an estimator of θ instead of θ̂ML to mitigate the bias of the estimator.

• The Prasad-Rao estimator σ2(θ̂)PR should be employed when the spatial cor-
relation is moderate to strong.

• When θ is estimated by θ̂ML and the spatial correlation is weak, the uncon-
ditional bootstrap estimator σ2(θ̂)UBS should be employed to estimate m2(θ)
but if θ is estimated by θ̂REML then σ2(θ̂)PR may be used.

5.6 Further research

• Firstly the simulation experiment conducted in Chapter 3 could be extended to
account for more of the factors noted under Section 5.3 as having an influence
on the performance of estimators of the MSPE of the EBLUP, that is, it should
include various covariance functions, different degrees of trend, various nugget
to variance ratios, various estimators of θ, different sizes and shapes of the
observation domain, different sampling densities and number of observations.

• The development of other bootstrapping algorithms for the estimation the
MSPE of the EBLUP also needs further exploration and the performance of
the estimators arising from these algorithms need to be investigated.

• Though the bootstrap versions of the Prasad-Rao and Kacker-Harville esti-
mators suggested by Wang and Wall (2003) seem rather contrived it would be
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interesting to explore how these estimators compare to their analytic counter-
parts and to the other estimators investigated in this study.

• The research carried out here could also be applied to the multivariate case as
here only the univariate case is addressed.

• An in depth investigation on how the various estimators studied here can be
used to be obtain optimal designs.
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Appendix A

R codes:

These functions were built in R 2.10.1 (R Development Core Team, 2010) and are
composed mostly of functions from geoR 1.6-27 (Riberio and Diggle, 2001) and
are thus dependent on this package. The bootstrapping functions krige.uncond()
for bootstrap estimation of the kriging variance using unconditional simulation and
krige.cond() which uses conditional simulation are strictly dependent on geoR.
The functions partial.deriv() and krige.approx() though also dependent on
geoR are also dependent on numDeriv (Gilbert, 2006) for the calculation of nu-
merical derivatives. In addition the function krige.approx() requires the package
MASS (Venables and Ripley, 2002) in order to calculate generalized inverses when
lik.method =‘‘REML’’. The functions given in the last section num.compare and
num.solve() have no practical use. The were used in conducting the simulation ex-
periment and are only given here for completeness. Because they have no piratical
use no documentation on them is provided.

A.1 Bootstrapping functions

A.1.1 Parametric bootstrapping of kriging variance; un-
conditional simulation

> krige.uncond <- function(geodata, coords, data, locations, cov.pars, cov.model =
+ "matern", obj.model, mean = 0, nugget = 0, fix.nugget
+ = FALSE, kappa = .5, fix.kappa = TRUE, lambda = 1,
+ fix.lambda = TRUE, psiA = 0, fix.psiA = TRUE, psiR = 1,
+ fix.psiR = TRUE, aniso.pars = NULL, lik.method = "ML",
+ limits = pars.limits(), type.krige = "ok", trend.d =
+ "cte", trend.l = "cte", micro.scale = 0, dist.epsilon =
+ 1e-10, output = output.control(messages = FALSE), nsim =
+ 1000, sim.method = "cholesky", con.level= 0.05, RF = TRUE,
+ messages = FALSE, print.lik = TRUE)
+{
+ require(geoR)
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+ if (missing(geodata) & missing(coords))
+ { stop ( "Need to specify data and coordinates") }
+ if (missing(geodata)) {
+ spatail.data <-cbind(coords,data)
+ geodata <- as.geodata(obj= spatail.data, coords.col=1:2, data.col = 3)
+ n.obs <- nrow(geodata$coords) }
+ else { n.obs <- nrow(geodata$coords)}
+ if (missing(locations))
+ { stop("need to specify prediction locations") }
+ else{
+ dimnames(geodata$coords) <- NULL
+ if (is.data.frame(locations) == TRUE)
+ { locations <- as.matrix(locations) }
+ dimnames(locations) <- NULL
+ locs <- rbind(geodata$coords, locations)
+ dimnames(locs) <- NULL
+ locs <- unique(locs)
+ n.coords <- nrow(locs)
+ locations <- locs[(n.obs + 1) : n.coords,]
+ locations <- matrix(locations, ncol = 2, dimnames = NULL)
+ n.locs <- nrow(locations)
+ }
+ n.obs <- nrow(geodata$coords)
+ coords.data <- geodata$coords
+ dimnames(coords.data) <- NULL
+ if(missing(obj.model) == FALSE )
+ { cov.model <- obj.model$cov.model
+ cov.pars <- obj.model$cov.pars
+ nugget <- obj.model$tausq
+ mean <- obj.model$beta
+ lik.method <- obj.model$method.lik
+ kappa <- obj.model$kappa
+ lambda <- obj.model$lambda
+ aniso.pars <- obj.model$trend
+ trend.d <- obj.model$trend
+ lik.method <- obj.model$method.lik
+ check.mean <- as.matrix(mean, nrow = 1)
+ if(dim(check.mean)[[1]]>1) { mu <- sum(mean) }
+ else(mu <- mean)
+ }
+ if(missing(obj.model) == FALSE )
+ {
+ krige.settings <- krige.control(type.krige = type.krige, obj.model =
+ obj.model, dist.epsilon = dist.epsilon, micro.scale
+ = micro.scale) }
+ else {
+ if( type.krige == "sk" | type.krige == "SK")
+ { beta <- mean }
+ if(missing(obj.model) == TRUE )
+ { beta <- mean }
+ krige.settings <- krige.control(type.krige = type.krige, trend.d =
+ trend.d, trend.l = trend.l, cov.model = cov.model,
+ cov.pars = c(cov.pars[1],cov.pars[2]), kappa =
+ kappa, beta = beta, nugget = nugget, micro.scale
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+ = micro.scale, dist.epsilon = dist.epsilon ,
+ aniso.pars = aniso.pars, lambda = lambda)
+ check.mean <- as.matrix(mean, nrow = 1)
+ if(dim(check.mean)[[1]]>1) { mu <- sum(mean) }
+ else(mu <- beta)
+ }
+ krige.original <- krige.conv(geodata = geodata, locations = locations,
+ krige = krige.settings, output = output)
+ lapply.out <- lapply(1:nsim, function(i, n, grid, nsim, cov.model, cov.pars,
+ aniso.pars, mean, nugget, kappa, lambda, method, RF, messages,
+ geodata, trend, ini.cov.pars, fix.nugget, fix.kappa, fix.lambda,
+ psiR, fix.psiR, limits, lik.method, type.krige, obj.model,
+ dist.epsilon, micro.scale, locations, krige, output)
+ {
+ sim.grf <- grf(n = n.coords, grid = locs, nsim = nsim, cov.model =
+ cov.model, cov.pars = cov.pars, aniso.pars = aniso.pars,
+ mean = mu, nugget = nugget, kappa = kappa, lambda =
+ lambda, method = sim.method, RF = RF, messages = messages)
+ sim.samples <- as.matrix(sim.grf$data)
+ sim.obs <- drop(as.matrix(sim.samples[ 1 : n.obs, ]))
+ temp.data <-as.geodata(cbind(coords.data, sim.obs))
+ sim.preds <- as.matrix(sim.samples[ (n.obs + 1) : n.coords, ])
+ lik.est <- likfit(geodata = temp.data, trend = trend.d, ini.cov.pars
+ = cov.pars, nugget = nugget, fix.nugget = fix.nugget,
+ kappa = kappa, fix.kappa = fix.kappa, lambda =lambda,
+ fix.lambda = fix.lambda, psiA = psiA, fix.psiA = fix.psiA,
+ psiR = psiR, fix.psiR = fix.psiR, cov.model = cov.model,
+ limits = limits, lik.method = lik.method, messages =
+ messages)
+ if(print.lik == TRUE )
+ {print(lik.est) ; print(i); flush.console () }
+ krige.set.sim <- krige.control(type.krige = type.krige, obj.model =
+ lik.est, dist.epsilon = dist.epsilon, micro.scale
+ = micro.scale)
+ est.cov.pars <- matrix(lik.est$cov.pars,nrow=1)
+ if(fix.nugget == FALSE)
+ { est.cov.pars <- cbind(lik.est$tausq, est.cov.pars) }
+ krige.sim <- krige.conv(geodata = temp.data, locations = locations, krige
+ = krige.set.sim, output = output)
+ predictions <- as.matrix(krige.sim$predict)
+ COVS <- est.cov.pars
+ SPE <- (predictions - sim.preds)^2
+ out.boot <- list(SPE=SPE, COVS=COVS)
+ },
+ n = n.coords, grid = locs, nsim = 1, cov.model = cov.model, cov.pars =
+ cov.pars, aniso.pars = aniso.pars, mean = mean, nugget = nugget, kappa =
+ kappa, lambda = lambda, method = sim.method, RF = RF, messages = messages,
+ geodata = temp.data, trend = trend.d, ini.cov.pars= cov.pars, fix.nugget =
+ fix.nugget, fix.kappa = fix.kappa, fix.lambda = fix.lambda, psiR = psiR,
+ fix.psiR = fix.psiR, limits = limits, lik.method = lik.method, type.krige =
+ type.krige, obj.model = lik.est, dist.epsilon = dist.epsilon, micro.scale =
+ micro.scale, locations = locations, krige= krige.set.sim, output = output)
+
+ COVS <- sapply(lapply.out, function(x)x$COVS)
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+ SPE <- sapply(lapply.out, function(x)x$SPE)
+ sd <- apply(SPE,1,sd)
+ MSPE<- as.vector(apply(SPE, 1, sum)/ nsim)
+ sq.std.MSPE <- as.matrix(apply((SPE - MSPE)^2, 1, sum)/(nsim - 1))
+ std.MSPE <- sqrt(sq.std.MSPE)/sqrt(nsim)
+ if( con.level==0.05 | missing(con.level)==TRUE) { z = 1.96 }
+ else if(con.level==0.10) { z = 1.64 }
+ lb <- MSPE - z * std.MSPE
+ ub <- MSPE + z * std.MSPE
+ bounds <- cbind(lb,ub)
+ colnames(bounds) <- c("lower","upper")
+ pred.errors <- cbind(krige.original$krige.var,MSPE)
+ colnames(pred.errors) <- c("plug.in","MSPE")
+ output <- list(coords = locations, predictions = krige.original$predict,
+ pred.errors = pred.errors, std.errors = std.MSPE, sd = sd, bounds =
+ bounds, est.pars = COVS)
+ return(output)
+}

A.1.2 Parametric bootstrapping of kriging variance; con-
ditional simulation

>krige.cond <-function(geodata, coords, data, locations, cov.pars, cov.model =
+ "matern", obj.model, mean, nugget = 0, kappa = .5, lambda = 1,
+ type.krige = "ok", trend.d = "cte", trend.l = "cte",
+ aniso.pars = NULL, micro.scale = 0, dist.epsilon = 1e-10,
+ output = output.control(messages = FALSE), nsim = 1000,
+ signal = NULL, messages = FALSE)
+{
+ require(geoR) # Loading geoR package
+ if (missing(geodata) & missing(coords))
+ { stop ( "Need to specify data and coordinates") }
+ if (missing(geodata)) {
+ geodata <- list(coords = coords, data = data)
+ n.obs <- ncol(geodata$coords) }
+ else { n.obs <- nrow(geodata$coords)}
+ if (missing(locations))
+ { stop("need to specify prediction locations") }
+ n.obs <- length(geodata$coords[,1])
+ total.locs <- unique(rbind(geodata$coords,locations))
+ total.p <-length(total.locs[,1])
+ locations <- total.locs[(n.obs+1):total.p,]
+ row.names(locations) <-NULL
+ n.locs <-ncol(locations)
+ if(missing(obj.model) == FALSE )
+ { cov.model <- obj.model$cov.model
+ cov.pars <- obj.model$cov.pars
+ nugget <- obj.model$tausq
+ mean <- obj.model$beta
+ kappa <- obj.model$kappa
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+ lambda <- obj.model$lambda
+ aniso.pars <- obj.model$aniso.pars
+ }
+ # Default settings for arguement output.control;
+ if(missing(output)) {
+ output <- output.control(n.predictive = nsim, simulations.predictive
+ = TRUE, mean.var = TRUE, sim.means = TRUE, sim.vars = TRUE,
+ messages = messages, signal = signal) }
+ if(missing(obj.model) == FALSE )
+ {
+ krige.settings <- krige.control(type.krige = type.krige, obj.model =
+ obj.model, dist.epsilon = dist.epsilon, micro.scale
+ = micro.scale) }
+ else {
+ if( type.krige == "sk" | type.krige == "SK")
+ { beta <- mean }
+ if(missing(obj.model) == TRUE )
+ { beta <- NULL }
+ krige.settings <- krige.control(type.krige = type.krige, trend.d =
+ trend.d, trend.l = trend.l, cov.model = cov.model,
+ cov.pars = c(cov.pars[1],cov.pars[2]), kappa =
+ kappa, beta = beta, nugget = nugget, micro.scale
+ = micro.scale, dist.epsilon = dist.epsilon ,
+ aniso.pars = aniso.pars, lambda = lambda)
+ }
+ Ckrige <- krige.conv(geodata = geodata, locations = locations, output =
+ output, krige = krige.settings)
+ CPreds <-Ckrige$predict
+ CKrigevar <- Ckrige$krige.var
+ SPE <- (CPreds - Ckrige$simulations)^2
+ MSPE <- as.vector(apply(SPE, 1, sum)/nsim)
+ errors <-sqrt(as.matrix(apply((SPE - MSPE)^2,1,sum))/(nsim - 1))
+ std.errors <- (errors/sqrt(nsim))
+ lb <- MSPE - 1.96 * std.errors
+ ub <- MSPE + 1.96 * std.errors
+ bounds <- cbind(lb,ub)
+ colnames(bounds) <- c("lower","upper")
+ pred.errors <- cbind(Ckrige$krige.var,MSPE)
+ colnames(pred.errors) <- c("plug.in","MSPE")
+ output <- list(coords = locations, predictions = Ckrige$predict, pred.errors =
+ pred.errors, std.errors = std.errors, bounds = bounds, sim.means =
+ Ckrige$sim.means, sim.vars = Ckrige$sim.vars)
+ return(output)
+}
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A.2 Functions used in computing the Kacker-Harville

and Prasad-Rao estimator

These functions depend on numDeriv, for computing numerical derivatives and
MASS for computing generalized inverses. They are used to calculate kriging esti-
mates that use the approximation by Kacker and Harville (1984) for the bias of the
empirical mean squared prediction error (EMSPE). The function partial.deriv()

is used to calculate first derivatives of matrixes, the Jacobian. These derivatives
are needed in the calculation of the Kacker-Harville and Prasad-Rao kriging vari-
ance estimates. The function krige.approx() performs the actual calculation
of the Kacker-Harville and Prasad-Rao variance estimates and thus depends on
partial.deriv() as well as the geoR function krige.conv().

A.2.1 Function for computing Jacobian for covariance ma-
trixes

> partial.deriv <- function(cov.pars = c(sigma, phi), nugget = 0, obj,
+ cov.model = "gaussian", deriv.method = "Richardson")
+ {
+ if(missing(obj))
+ { stop ( "Need to specify data and prediction locations") }
+ if (!is.matrix(obj) == FALSE) {obj <- as.matrix(obj)}
+ n.obj <- nrow(obj)
+ if(missing(cov.pars))
+ { stop ( "Need to specify vector of covariance parameters") }
+ if( nugget != 0 )
+ { cov.pars <- matrix(cov.pars, nrow = 1)
+ I <- matrix(0, nrow = n.obj, ncol = n.obj)
+ diag(I) <- 1
+ if(ncol(obj) == 1) { I <- 1 }
+ }
+ else{I <- 1 }
+ if((ncol(cov.pars) < 2) == TRUE || (ncol(cov.pars) > 2) == TRUE)
+ { stop ( "Argument cov.pars should be a vector of size 2" ) }
+ else(
+ {sigma <- cov.pars[1,1] ; phi <- cov.pars[1,2] } )
+ cov.fun <- function(phi, sigma, nugget, lags, cov.model)
+ {
+ cov.models = c("gaussian", "exponential", "spherical")
+ model <- match.arg(cov.model, cov.models)
+ cov.struc <- switch(model,
+ gaussian = nugget * I + sigma * exp(-lags/phi)^2,
+ exponential = nugget * I + sigma * exp(-lags/phi),
+ spherical = ifelse( lags < phi, nugget * I + sigma *
+ (1 - 1.5 * (lags/phi) + 0.5 * (lags/phi)^3),
+ nugget + sigma)
+ )
+ }
+ require(numDeriv)
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+ lags <- as.vector(obj)
+ par.deriv.phi <- jacobian(cov.fun, x = phi, sigma = sigma, nugget = nugget,
+ lags = lags, cov.model = cov.model, method = deriv.method)
+ jacobian.phi<- matrix(par.deriv.phi, nrow = n.obj, byrow= TRUE)
+ par.deriv.sigma <- jacobian(cov.fun, x = sigma, phi = phi, nugget = nugget,
+ lags = lags, cov.model = cov.model, method = deriv.method)
+ jacobian.sigma <- matrix(par.deriv.sigma, nrow = n.obj, byrow= TRUE)
+ if(nugget == 0)
+ {
+ derivatives <- list(jacob.sigma = jacobian.sigma, jacob.phi =
+ jacobian.phi) }
+ else {
+ par.deriv.tau <- jacobian(cov.fun, x = nugget, phi = phi, sigma = sigma,
+ lags = lags, cov.model = cov.model, method =
+ deriv.method)
+ jacobian.tau <- matrix(par.deriv.tau, nrow = n.obj, byrow= TRUE)
+ derivatives <- list(jacob.tau = jacobian.tau, jacob.sigma =
+ jacobian.sigma, jacob.phi = jacobian.phi)
+ }
+ return(derivatives)
+}

A.2.2 Function for computing the Kacker-Harville and Prasad-
Rao estimators

> krige.approx <- function(geodata, coords, data, locations, cov.pars, cov.model =
+ "gaussian", obj.model, mean = 0, nugget = 0, type.krige =
+ "ok", trend.d = "cte", trend.l = "cte", micro.scale = 0,
+ dist.epsilon = 1e-10, aniso.pars = NULL, output =
+ output.control(messages = FALSE), lik.method = "ML",
+ deriv.method = "Richardson", tol = NULL)
+ {
+ require(geoR)
+ if (missing(geodata) & missing(coords))
+ { stop ( "Need to specify data and coordinates") }
+ if (missing(geodata)) {
+ spatial.data <-cbind(coords,data)
+ geodata <- as.geodata(obj= spatial.data, coords.col=1:2, data.col = 3)
+ n.obs <- nrow(geodata$coords) }
+ else { n.obs <- nrow(geodata$coords)}
+ if (missing(locations))
+ { stop("Need to specify prediction locations") }
+ else{
+ dimnames(geodata$coords) <- NULL
+ if (is.data.frame(locations) == TRUE)
+ { locations <- as.matrix(locations) }
+ dimnames(locations) <- NULL
+ locs <- rbind(geodata$coords, locations)
+ dimnames(locs) <- NULL
+ locs <- unique(locs)
+ n.pred <- nrow(locs)
+ locations <- locs[(n.obs + 1) : n.pred,]
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+ locations <- matrix(locations, ncol = 2, dimnames = NULL)
+ n.locs <- nrow(locations)
+ }
+ n.obs <- nrow(geodata$coords)
+ coords.data <- geodata$coords
+ dimnames(coords.data) <- NULL
+ lag.x <- matrix(rep(coords.data[,1], each = n.obs), nrow = n.obs,
+ byrow = TRUE)
+ lag.y <- matrix(rep(coords.data[,2], each = n.obs), nrow = n.obs,
+ byrow = TRUE)
+ diff.x <- (lag.x - t(lag.x))^2 ; diff.y <- (lag.y -t(lag.y))^2
+ lags.data.to.data <- as.matrix(sqrt(diff.x + diff.y))
+ if(missing(obj.model) == FALSE )
+ { cov.model <- obj.model$cov.model
+ cov.pars <- obj.model$cov.pars
+ nugget <- obj.model$tausq
+ mean <- obj.model$beta
+ lik.method <- obj.model$method.lik
+ trend.d <- obj.model$trend
+ }
+ if(missing(obj.model) == FALSE )
+ {
+ krige.settings <- krige.control(type.krige = type.krige, obj.model =
+ obj.model, dist.epsilon = dist.epsilon, micro.scale
+ = micro.scale) }
+ else {
+ if( type.krige == "sk" | type.krige == "SK")
+ { beta <- mean }
+ if(missing(obj.model) == TRUE )
+ { beta <- NULL }
+ krige.settings <- krige.control(type.krige = type.krige, trend.d =
+ trend.d, trend.l = trend.l, cov.model = cov.model,
+ cov.pars = c(cov.pars[1],cov.pars[2]), kappa =
+ kappa, beta = beta, nugget = nugget, micro.scale
+ = micro.scale, dist.epsilon = dist.epsilon ,
+ aniso.pars = aniso.pars, lambda = lambda)
+ }
+ krige <- krige.conv(geodata = geodata, locations = locations,
+ krige = krige.settings, output = output)
+ COV <- cov.spatial(lags.data.to.data, cov.model = cov.model, cov.pars =
+ cov.pars, kappa = kappa)
+ if(nugget != 0 )
+ {
+ dim.COV <- nrow(COV)
+ I.COV <- matrix(0, nrow = dim.COV , ncol = dim.COV)
+ diag(I.COV) <- 1
+ COV <- nugget * I.COV + COV }
+ if(missing(tol) == FALSE)
+ { inv.COV <- solve(COV, tol = tol) }
+ else { inv.COV <- solve(COV) }
+ cov.pars <- matrix(cov.pars, nrow = 1)
+ if(ncol(cov.pars) != 2)
+ { stop ( "Arguement cov.pars should be a vector of size 2" )
+ }
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+ derivatives.COV <- partial.deriv(cov.pars = cov.pars, nugget = nugget,
+ obj = lags.data.to.data, cov.model = cov.model,
+ deriv.method = deriv.method)
+ if( nugget != 0 )
+ { deriv.COV.tau <- derivatives.COV$jacob.tau }
+ deriv.COV.phi <- derivatives.COV$jacob.phi
+ deriv.COV.sigma <- derivatives.COV$jacob.sigma
+ trend.mat <- trend.spatial(trend = trend.d, geodata = geodata)
+ degree.trend <- ncol(trend.mat)
+ trans.trend <- matrix(t(trend.mat), nrow = degree.trend)
+ if( lik.method == "REML" | lik.method == "reml")
+ { require(MASS)
+ P <- inv.COV - inv.COV %*% trend.mat %*% ginv(trans.trend %*% inv.COV %*%
+ trend.mat) %*% trans.trend %*% inv.COV }
+ if(missing(tol) == FALSE)
+ { Bp <- inv.COV %*% trend.mat %*% solve(trans.trend %*% inv.COV %*% trend.mat,
+ tol = tol) }
+ else {Bp <- inv.COV %*% trend.mat %*% solve(trans.trend %*% inv.COV %*% trend.mat)
+ }
+ Ap <- inv.COV - Bp %*% trans.trend %*% inv.COV
+ if(lik.method == "REML" | lik.method == "reml") { M <- P }
+ else( M <- inv.COV )
+ if(nugget != 0)
+ {
+ a11 <- 0.5 * sum(diag( M %*% deriv.COV.tau %*% M %*%
+ deriv.COV.tau))
+ a12 = a21 <- 0.5 * sum(diag(M %*% deriv.COV.tau %*% M %*%
+ deriv.COV.sigma))
+ a13 = a31 <- 0.5 * sum(diag(M %*% deriv.COV.tau %*% M %*%
+ deriv.COV.phi))
+ a22 <- 0.5 * sum(diag(M %*% deriv.COV.sigma %*% M %*%
+ deriv.COV.sigma))
+ a23 = a32 <- 0.5 * sum(diag(M %*% deriv.COV.sigma %*% M %*%
+ deriv.COV.phi))
+ a33 <- 0.5 * sum(diag(M %*% deriv.COV.phi %*% M %*%
+ deriv.COV.phi))
+ info.mat <- matrix(c(a11, a12, a13, a21, a22, a23, a31,
+ a32, a33), nrow = 3, byrow = TRUE) }
+ else{
+ a11 <- 0.5 * sum(diag(M %*% deriv.COV.sigma %*% M %*%
+ deriv.COV.sigma))
+ a12 = a21 <- 0.5 * sum(diag(M %*% deriv.COV.sigma %*% M %*%
+ deriv.COV.phi))
+ a22 <- 0.5 * sum(diag(M %*% deriv.COV.phi %*%
+ M %*% deriv.COV.phi))
+ info.mat <- matrix(c(a11, a12, a21, a22), nrow = 2,
+ byrow = TRUE) }
+ if(missing(tol) == FALSE)
+ { inv.info <- solve(info.mat, tol = tol) }
+ else {inv.info <- solve(info.mat) }
+ bias.approx <- matrix(nrow = n.locs)
+ if(nugget == 0 ) { deriv.COV.tau <- NULL }
+ lapply.out <- lapply(1: n.locs, function(i, locations, cov.model, cov.pars,
+ coords, krige, nugget, obj, deriv.method, Ap, Bp, deriv.COV.tau,
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+ deriv.COV.phi, deriv.COV.sigma, COV)
+ {
+ pred.loc <- locations[i,]
+ pred.loc <- matrix(pred.loc, ncol = 2)
+ rep.x.pred <- rep(pred.loc[,1], each = n.obs)
+ rep.y.pred <- rep(pred.loc[,2], each = n.obs)
+ rep.pred <- cbind(rep.x.pred, rep.y.pred)
+ dimnames(rep.pred) <- NULL
+ data.to.point <- (coords.data - rep.pred)^2
+ lags.x.pred <- data.to.point[,1] ; lags.y.pred <- data.to.point[,2]
+ lags.data.to.point <- as.matrix(sqrt(lags.x.pred + lags.y.pred))
+ dimnames(lags.data.to.point) <- NULL
+ cov <- cov.spatial(lags.data.to.point, cov.model = cov.model,
+ cov.pars = cov.pars, kappa = kappa)
+ cov <- nugget + cov
+ lambda <- krweights(coords = coords.data, locations = pred.loc,
+ krige = krige.settings)
+ f0 <- trans.trend %*% lambda
+ derivatives.cov <- partial.deriv(cov.pars = cov.pars, nugget = nugget,
+ obj = lags.data.to.point, cov.model = cov.model,
+ deriv.method = deriv.method)
+ if( nugget != 0)
+ { deriv.cov.tau <- derivatives.cov$jacob.tau }
+ deriv.cov.phi <- derivatives.cov$jacob.phi
+ deriv.cov.sigma <- derivatives.cov$jacob.sigma
+ if(nugget != 0)
+ { lambda.tau <- Ap %*% (deriv.cov.tau - deriv.COV.tau %*%
+ (Bp %*% f0 + Ap %*% cov))
+ t.lam.tau <- t(lambda.tau)
+ }
+ lambda.phi <- Ap %*% (deriv.cov.phi - deriv.COV.phi %*%(Bp %*%
+ f0 + Ap %*% cov))
+ t.lam.phi <- t(lambda.phi)
+ lambda.sigma <- Ap %*% (deriv.cov.sigma - deriv.COV.sigma %*%
+ (Bp %*% f0 + Ap %*% cov))
+ t.lam.sigma <- t(lambda.sigma)
+ if(nugget != 0)
+ {
+ a11 <- t.lam.tau %*% COV %*% lambda.tau
+ a12 = a21 <- t.lam.tau %*% COV %*% lambda.sigma
+ a13 = a31 <- t.lam.tau %*% COV %*% lambda.phi
+ a22 <- t.lam.sigma %*% COV %*% lambda.sigma
+ a23 = a32 <- t.lam.sigma %*% COV %*% lambda.phi
+ a33 <- t.lam.phi %*% COV %*% lambda.phi
+ par.Var.Z <- matrix(c(a11, a12, a13, a21, a22, a23, a31, a32,
+ a33), nrow = 3, byrow = TRUE)
+ }
+ else {
+ a11 <- t.lam.sigma %*% COV %*% lambda.sigma
+ a12 = a21 <- t.lam.sigma %*% COV %*% lambda.phi
+ a22 <- t.lam.phi %*% COV %*% lambda.phi
+ par.Var.Z <- matrix(c(a11, a12, a21, a22), nrow = 2, byrow =
+ TRUE)
+ }
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+ bias.approx <- sum(diag(par.Var.Z %*% inv.info))
+ },
+ locations = locations, cov.model = cov.model, cov.pars = cov.pars,
+ coords = coords.data, krige = krige.settings, nugget = nugget, obj
+ = lags.data.to.point, deriv.method = deriv.method, Ap = Ap, Bp = Bp,
+ deriv.COV.tau = deriv.COV.tau, deriv.COV.phi = deriv.COV.phi,
+ deriv.COV.sigma = deriv.COV.sigma, COV = COV)
+ bias.approx <- sapply(lapply.out, function(x)x)
+ predictions <- matrix(krige$predict, nrow = n.locs)
+ plug.in <- matrix(krige$krige.var, nrow = n.locs)
+ Kacker.Harville <- plug.in + bias.approx
+ Prasad.Rao <- plug.in + (2 * bias.approx)
+ variance <- cbind(plug.in, Kacker.Harville, Prasad.Rao)
+ colnames(locations) <- c("X","Y")
+ colnames(variance) <- c("plug.in", "Kacker.Harville", "Prasad.Rao")
+ output <- list(coords = locations, predictions = predictions, variance = variance)
+ return(output)
+}

A.3 Functions used in simulation experiment

This function was used in the simulation experiment to approximate the empirical
mean square prediction error (EMSPE) of the empirical best linear unbiased pre-
dictor (BLUP). As mentioned earlier is has no practical use and is only documented
here for completeness.

> num.compare <- function(geodata, coords, data, locations, cov.pars, cov.model =
+ "gaussian", mean = 0, nugget = 0, fix.nugget = FALSE,
+ kappa = .5, fix.kappa = TRUE, lambda = 1, fix.lambda =
+ TRUE, psiA = 0, fix.psiA = TRUE, psiR = 1, fix.psiR =
+ TRUE, aniso.pars = NULL, lik.method = "ML", limits =
+ pars.limits(), type.krige = "ok", trend.d = "cte",
+ trend.l = "cte", micro.scale = 0, dist.epsilon = 1e-10,
+ output = output.control(messages = FALSE), nsim = 1000,
+ sim.method = "cholesky", RF = TRUE, messages = FALSE,
+ deriv.method = "Richardson", random.seed = NULL,
+ n.boot = 1000, tol = NULL)
+ {
+ require(geoR)
+ if (missing(geodata) & missing(coords))
+ { stop ( "Need to specify data and coordinates") }
+ if (missing(geodata)) {
+ geodata <- list(coords = coords, data = data)
+ n.obs <- ncol(geodata$coords) }
+ else { n.obs <- nrow(geodata$coords)}
+ if (missing(locations))
+ { stop("Need to specify prediction locations") }
+ else{
+ dimnames(geodata$coords) <- NULL
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+ if (is.data.frame(locations) == TRUE)
+ { locations <- as.matrix(locations) }
+ dimnames(locations) <- NULL
+ locs <- rbind(geodata$coords, locations)
+ dimnames(locs) <- NULL
+ locs <- unique(locs)
+ n.coords <- nrow(locs)
+ locations <- locs[(n.obs + 1) : n.coords,]
+ locations <- matrix(locations, ncol = 2, dimnames = NULL)
+ n.locs <- nrow(locations)
+ }
+ n.obs <- nrow(geodata$coords)
+ coords.data <- geodata$coords
+ dimnames(coords.data) <- NULL
+ if( type.krige == "sk" | type.krige == "SK")
+ { beta <- mean }
+ else{beta <- NULL }
+ krige.settings <- krige.control(type.krige = type.krige, trend.d =
+ trend.d, trend.l = trend.l, cov.model = cov.model,
+ cov.pars = c(cov.pars[1],cov.pars[2]), kappa =
+ kappa, beta = beta, nugget = nugget, micro.scale
+ = micro.scale, dist.epsilon = dist.epsilon ,
+ aniso.pars = aniso.pars, lambda = lambda)
+ output <- output.control(n.predictive = n.boot, simulations.predictive = TRUE,
+ mean.var = TRUE, sim.means = TRUE, sim.vars = TRUE, messages = messages)
+ krige <- krige.conv(geodata = geodata, locations = locations,
+ krige = krige.settings, output = output)
+ original.predict <- krige$predict
+ lik.est.data <- likfit(geodata = geodata, trend = trend.d, ini.cov.pars
+ = cov.pars, nugget = nugget, fix.nugget = fix.nugget,
+ kappa = kappa, fix.kappa = fix.kappa, lambda =lambda,
+ fix.lambda = fix.lambda, psiA = psiA, fix.psiA = fix.psiA,
+ psiR = psiR, fix.psiR = fix.psiR, cov.model = cov.model,
+ limits = limits, lik.method = lik.method, messages =
+ messages)
+ cat("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! \n")
+ cat("\n ESTIMATED PARAMETERS OF DATA \n")
+ flush.console()
+ print(lik.est.data)
+ flush.console()
+ cat("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! \n")
+ plug.in <- matrix(nrow = n.locs, ncol = nsim)
+ Kacker.Harville <- matrix(nrow = n.locs, ncol = nsim)
+ Prasad.Rao <- matrix(nrow = n.locs, ncol = nsim)
+ boot.uncond <- matrix(nrow = n.locs, ncol = nsim) #
+ boot.cond <- matrix(nrow = n.locs, ncol = nsim)
+ SPE <- matrix(nrow = n.locs, ncol = nsim)
+ cat("\n ************************************************************ \n")
+ cat("\n CALCULATING ESTIMATED PARAMETERS OF SIMULATIONS \n")
+ cat("\n ************************************************************ \n")
+ cat("\n \n")
+ flush.console()
+ if(missing(random.seed) == FALSE ){ set.seed(random.seed)}
+ for(i in 1: nsim)
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+ {
+ sim.grf <- grf(n = n.coords, grid = locs, nsim = 1, cov.model =
+ cov.model, cov.pars = cov.pars, aniso.pars = aniso.pars,
+ mean = mean, nugget = nugget, kappa = kappa, lambda =
+ lambda, method = sim.method, RF = RF, messages = messages)
+ sim.samples <- as.matrix(sim.grf$data)
+ sim.obs <- drop(as.matrix(sim.samples[ 1 : n.obs, ]))
+ temp.data <-as.geodata(cbind(geodata$coords, sim.obs))
+ sim.preds <- as.matrix(sim.samples[ (n.obs + 1) : n.coords, ])
+ lik.est <- likfit(geodata = temp.data, trend = trend.d, ini.cov.pars
+ = cov.pars, nugget = nugget, fix.nugget = fix.nugget,
+ kappa = kappa, fix.kappa = fix.kappa, lambda =lambda,
+ fix.lambda = fix.lambda, psiA = psiA, fix.psiA = fix.psiA,
+ psiR = psiR, fix.psiR = fix.psiR, cov.model = cov.model,
+ limits = limits, lik.method = lik.method, messages =
+ messages)
+ print(lik.est)
+ var.estimates <- krige.approx(geodata = temp.data, locations =
+ locations, obj.model = lik.est, dist.epsilon
+ = dist.epsilon, micro.scale = micro.scale, tol = tol)
+ cond.boot <- krige.cond(geodata = temp.data , locations = locations,
+ obj.model = lik.est, type.krige= "ok", nsim = n.boot,
+ output = output)
+ uncond.boot <- krige.uncond(geodata = temp.data, obj.model = lik.est,
+ locations = locations, type.krige = type.krige, nsim =
+ n.boot, fix.nugget = fix.nugget, limits = limits,
+ lik.method = lik.method, print.lik = FALSE)
+ plug.in[,i] <- var.estimates$variance[,1]
+ Kacker.Harville[,i] <- var.estimates$variance[,2]
+ Prasad.Rao[,i] <- var.estimates$variance[,3]
+ boot.cond[,i] <- cond.boot$pred.errors[,2]
+ boot.uncond[,i] <- uncond.boot$pred.errors[,2]
+ SPE[,i] <- matrix((sim.preds - var.estimates$predictions)^2, ncol = 1)
+ print(i)
+ flush.console()
+ }
+ sigma.p <- as.vector(apply(plug.in, 1, sum)/ nsim)
+ sq.std.p <- as.matrix(apply((plug.in - sigma.p)^2, 1, sum)/(nsim - 1))
+ std.p <- sqrt(sq.std.p)/sqrt(nsim)
+ sigma.kh <- as.vector(apply(Kacker.Harville, 1, sum)/ nsim)
+ sq.std.kh <- as.matrix(apply((Kacker.Harville - sigma.kh)^2, 1, sum)/(nsim - 1))
+ std.kh <- sqrt(sq.std.kh)/sqrt(nsim)
+ sigma.pr<- as.vector(apply(Prasad.Rao, 1, sum)/ nsim)
+ sq.std.pr <- as.matrix(apply((Prasad.Rao - sigma.pr)^2, 1, sum)/(nsim - 1))
+ std.pr <- sqrt(sq.std.pr)/sqrt(nsim)
+ EMSPE<- as.vector(apply(SPE, 1, sum)/ nsim)
+ sq.std.EMSPE <- as.matrix(apply((SPE - EMSPE)^2, 1, sum)/ (nsim - 1))
+ std.EMSPE <- sqrt(sq.std.EMSPE)/sqrt(nsim)
+
+ cond.MSPE<- as.vector(apply(boot.cond, 1, sum)/ nsim)
+ cond.sq.std.MSPE <- as.matrix(apply((boot.cond - cond.MSPE)^2, 1,
+ sum)/ (nsim - 1))
+ cond.std.MSPE <- sqrt(cond.sq.std.MSPE)/sqrt(nsim)
+
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+ uncond.MSPE<- as.vector(apply(boot.uncond, 1, sum)/ nsim)
+ uncond.sq.std.MSPE <- as.matrix(apply((boot.uncond - uncond.MSPE)^2, 1,
+ sum)/ (nsim - 1))
+ uncond.std.MSPE <- sqrt(uncond.sq.std.MSPE)/sqrt(nsim)
+
+ colnames(locations) <- c("X","Y")
+ mean.vars <- cbind(EMSPE, sigma.p, sigma.kh, sigma.pr, cond.MSPE, uncond.MSPE)
+ colnames(mean.vars) <- c("EMSPE", "plug.in", "Kacker.Harville", "Prasad.Rao",
+ "MSPE.cond", "MSPE.uncond")
+ std.errors <- cbind(std.EMSPE, std.p, std.kh, std.pr, cond.std.MSPE,
+ uncond.std.MSPE)
+ colnames(std.errors) <-c("EMSPE", "plug.in", "Kacker.Harville", "Prasad.Rao",
+ "MSPE.cond", "MSPE.uncond")
+ output <- list(coords = locations, predictions = original.predict,
+ theoratical.var = krige$krige.var, mean.vars = mean.vars, std.errors
+ = std.errors)
+ return(output)
+ }

> num.solve <- function(geodata, coords, data, locations, cov.pars, cov.model =
+ "matern", obj.model, mean = 0, nugget = 0, fix.nugget
+ = FALSE, kappa = .5, fix.kappa = TRUE, lambda = 1,
+ fix.lambda = TRUE, psiA = 0, fix.psiA = TRUE, psiR = 1,
+ fix.psiR = TRUE, aniso.pars = NULL, lik.method = "ML",
+ limits = pars.limits(), type.krige = "ok", trend.d =
+ "cte", trend.l = "cte", micro.scale = 0, dist.epsilon =
+ 1e-10, output = output.control(messages = FALSE), nsim =
+ 1000, sim.method = "cholesky", con.level= 0.05, RF = TRUE,
+ messages = FALSE, print.lik = TRUE)
+{
+ require(geoR)
+ if (missing(geodata) & missing(coords))
+ { stop ( "Need to specify data coordinates") }
+ if (missing(geodata)) {
+ n.obs <- nrow(coords) }
+ else { n.obs <- nrow(geodata$coords)
+ coords <- geodata$coords }
+ coords.data <- as.matrix(coords)
+ dimnames(coords.data) <-NULL
+ if (missing(locations))
+ { stop("need to specify prediction locations") }
+ else{
+ if (missing(geodata) == FALSE )
+ { dimnames(geodata$coords) <- NULL }
+ if (is.data.frame(locations) == TRUE)
+ { locations <- as.matrix(locations) }
+ dimnames(locations) <- NULL
+ locs <- rbind(coords.data, locations)
+ dimnames(locs) <- NULL
+ locs <- unique(locs)
+ n.coords <- nrow(locs)
+ locations <- locs[(n.obs + 1) : n.coords,]
+ locations <- matrix(locations, ncol = 2, dimnames = NULL)
+ n.locs <- nrow(locations)
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+ }
+ if(missing(obj.model) == FALSE )
+ { cov.model <- obj.model$cov.model
+ cov.pars <- obj.model$cov.pars
+ nugget <- obj.model$tausq
+ mean <- obj.model$beta
+ lik.method <- obj.model$method.lik
+ kappa <- obj.model$kappa
+ lambda <- obj.model$lambda
+ aniso.pars <- obj.model$trend
+ trend.d <- obj.model$trend
+ lik.method <- obj.model$method.lik
+ check.mean <- as.matrix(mean, nrow = 1)
+ if(dim(check.mean)[[1]]>1) { mu <- sum(mean) }
+ else(mu <- mean)
+ }
+ if(missing(obj.model) == FALSE )
+ {
+ krige.settings <- krige.control(type.krige = type.krige, obj.model =
+ obj.model, dist.epsilon = dist.epsilon, micro.scale
+ = micro.scale) }
+ else {
+ if( type.krige == "sk" | type.krige == "SK")
+ { beta <- mean }
+ if(missing(obj.model) == TRUE )
+ { beta <- mean }
+ krige.settings <- krige.control(type.krige = type.krige, trend.d =
+ trend.d, trend.l = trend.l, cov.model = cov.model,
+ cov.pars = c(cov.pars[1],cov.pars[2]), kappa =
+ kappa, beta = beta, nugget = nugget, micro.scale
+ = micro.scale, dist.epsilon = dist.epsilon ,
+ aniso.pars = aniso.pars, lambda = lambda)
+ check.mean <- as.matrix(mean, nrow = 1)
+ if(dim(check.mean)[[1]]>1) { mu <- sum(mean) }
+ else(mu <- beta)
+ }
+ lapply.out <- lapply(1:nsim, function(i, n, grid, nsim, cov.model, cov.pars,
+ aniso.pars, mean, nugget, kappa, lambda, method, RF, messages,
+ geodata, trend, ini.cov.pars, fix.nugget, fix.kappa, fix.lambda,
+ psiR, fix.psiR, limits, lik.method, type.krige, obj.model,
+ dist.epsilon, micro.scale, locations, krige, output)
+ {
+ sim.grf <- grf(n = n.coords, grid = locs, nsim = nsim, cov.model =
+ cov.model, cov.pars = cov.pars, aniso.pars = aniso.pars,
+ mean = mu, nugget = nugget, kappa = kappa, lambda =
+ lambda, method = sim.method, RF = RF, messages = messages)
+ sim.samples <- as.matrix(sim.grf$data)
+ sim.obs <- drop(as.matrix(sim.samples[ 1 : n.obs, ]))
+ temp.data <-as.geodata(cbind(coords.data, sim.obs))
+ sim.preds <- as.matrix(sim.samples[ (n.obs + 1) : n.coords, ])
+ lik.est <- likfit(geodata = temp.data, trend = trend.d, ini.cov.pars
+ = cov.pars, nugget = nugget, fix.nugget = fix.nugget,
+ kappa = kappa, fix.kappa = fix.kappa, lambda =lambda,
+ fix.lambda = fix.lambda, psiA = psiA, fix.psiA = fix.psiA,
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+ psiR = psiR, fix.psiR = fix.psiR, cov.model = cov.model,
+ limits = limits, lik.method = lik.method, messages =
+ messages)
+ if(print.lik == TRUE )
+ {print(lik.est) ; print(i); flush.console () }
+ krige.set.sim <- krige.control(type.krige = type.krige, obj.model =
+ lik.est, dist.epsilon = dist.epsilon, micro.scale
+ = micro.scale)
+ est.cov.pars <- matrix(lik.est$cov.pars,nrow=1)
+ if(fix.nugget == FALSE)
+ { est.cov.pars <- cbind(lik.est$tausq, est.cov.pars) }
+ krige.sim <- krige.conv(geodata = temp.data, locations = locations, krige
+ = krige.set.sim, output = output)
+ predictions <- as.matrix(krige.sim$predict)
+ COVS <- est.cov.pars
+ SPE <- (predictions - sim.preds)^2
+ out.boot <- list(SPE=SPE, COVS=COVS)
+ },
+ n = n.coords, grid = locs, nsim = 1, cov.model = cov.model, cov.pars =
+ cov.pars, aniso.pars = aniso.pars, mean = mean, nugget = nugget, kappa =
+ kappa, lambda = lambda, method = sim.method, RF = RF, messages = messages,
+ geodata = temp.data, trend = trend.d, ini.cov.pars= cov.pars, fix.nugget =
+ fix.nugget, fix.kappa = fix.kappa, fix.lambda = fix.lambda, psiR = psiR,
+ fix.psiR = fix.psiR, limits = limits, lik.method = lik.method, type.krige =
+ type.krige, obj.model = lik.est, dist.epsilon = dist.epsilon, micro.scale =
+ micro.scale, locations = locations, krige= krige.set.sim, output = output)
+
+ COVS <- sapply(lapply.out, function(x)x$COVS)
+ SPE <- sapply(lapply.out, function(x)x$SPE)
+ sd <- apply(SPE,1,sd)
+ MSPE<- as.vector(apply(SPE, 1, sum)/ nsim)
+ sq.std.MSPE <- as.matrix(apply((SPE - MSPE)^2, 1, sum)/(nsim - 1))
+ std.MSPE <- sqrt(sq.std.MSPE)/sqrt(nsim)
+ if( con.level==0.05 | missing(con.level)==TRUE) { z = 1.96 }
+ else if(con.level==0.10) { z = 1.64 }
+ lb <- MSPE - z * std.MSPE
+ ub <- MSPE + z * std.MSPE
+ bounds <- cbind(lb,ub)
+ colnames(bounds) <- c("lower","upper")
+ output <- list(coords = locations, MSPE = MSPE, std.errors = std.MSPE, sd = sd,
+ bounds = bounds, est.pars = COVS)
+ return(output)
+}
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Appendix B

R documentation

krige.uncond Unconditional bootstrap estimation of the kriging variance

Description

This function performs parametric bootstrap estimation of the kriging variance. The bootstrap
algorithm employed involves unconditional simulation.

Usage

krige.uncond(geodata, coords, data, locations, cov.pars, cov.model = ‘‘matern’’,
obj.model, mean = 0, nugget = 0, fix.nugget = FALSE, kappa = .5,
fix.kappa = TRUE, lambda = 1, fix.lambda = TRUE, psiA = 0, fix.psiA
= TRUE, psiR = 1, fix.psiR = TRUE, aniso.pars = NULL, lik.method =
‘‘ML’’, trend.l = ‘‘cte’’, trend.l = ‘‘cte’’, micro.scale = 0,
dist.epsilon = 1e-10, output = output.control(messages = FALSE),
output = output.control(messages = FALSE), nsim = 1000, sim.method
= ‘‘cholesky’’, RF = TRUE, messages = FALSE)

Arguments

geodata a list containing elements coords and data as described next. Typically an object
of class geodata a geoR data set. If not provided the arguments coords and data
must be provided.

coords an n× 2 matrix or data-frame with the 2-D coordinates of the n data locations. By
default it takes the component coords of the argument, geodata if provided.

data a vector with the n data values. By default it takes the component data of the arg-
ument geodata, if provided.

locations a m× 2 matrix or data-frame with the 2-D coordinates of the n prediction locations,
or a list for which the first two components are used. Input is internally checked by
the function check.locations.
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cov.model a string specifying the model for the correlation function. For further details see
documentation for cov.spatial in the geoR manual. Defaults to the Matern
model.

cov.pars a 2 elements vector with the values of the covariance parameters σ2
0 (partial sill)

and φ (range parameter).

type.krige type of kriging to be performed. Options are ‘‘SK’’ and ‘‘OK’’corresponding
to simple and ordinary kriging. Kriging with external trend and universal krig-
ing can be defined by setting type.krige=‘‘OK’’ and specifying the trend
model using the arguments trend.d and trend.l.

mean numerical value of the mean (vector) parameter.

trend.d specifies the trend (covariate) values at the data locations. See documentation
of trend.spatial in the geoR manual for further details. Defaults to ‘‘cte’’.

trend.l specifies the trend (covariate) values at prediction locations. It must be the
same as for trend.d.

obj.model a list with the model parameters. Typically an output of likfit or variofit.

micro.scale micro-scale variance. If different from zero, the nugget variance is divided into
2 terms: micro-scale variance and measurement error. This affects the precision
of the predictions. Often in practice, these two variance components are indist-
inguishable. See the section DETAILS in the documentation of output.control
in the geoR manual.

output a list specifying output options. It can take a call tooutput.control or a list
with elements as for the arguments in output.control.

fix.nugget logical indicating whether the parameter τ2 (nugget variance) should be regar-
ded as fixed (fix.nugget = TRUE) or should be estimated (fix.nugget =
FALSE). Defaults to FALSE.

nugget value of the nugget parameter. Regarded as a fixed value if fix.nugget = TRUE
otherwise as the initial value for the minimization algorithm. Defaults to zero.

fix.kappa logical, indicating whether the extra parameter kappa should be regarded as
fixed (fix.kappa = TRUE) or should be estimated (fix.kappa = FALSE).
Defaults to TRUE.

kappa value of extra parameter κ. Regarded as a fixed value if fix.kappa = TRUE
otherwise as the initial value for the minimization algorithm in covariance
parameter estimation. Defaults to 0.5. This parameter is valid only if the covari-
ance function is one of either: ‘‘matern’’, ‘‘powered.exponential’’,
‘‘cauchy’’ or gneiting.matern. For more details on covariance functions
see documentation for cov.spatial in the geoR manual.

fix.lambda logical, indicating whether the Box-Cox transformation parameter λ should be
regarded as fixed (fix.lambda = TRUE) or should be estimated (fix.lambda =
”FALSE”). Defaults to TRUE.
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lambda value of the Box-Cox transformation parameter λ. Regarded as fixed if
fix.lambda = TRUE otherwise as the initial value for the minimization algori-
thm in covariance parameter estimation. Defaults to 1. Two particular cases
are λ = 1 indicating no transformation and λ = 0 indicating log transformation.

fix.psiR logical, indicating whether the anisotropy ratio parameter ψR should be regar-
ded as fixed (fix.psiR = TRUE) or should be estimated (fix.psiR = FALSE).
Defaults to TRUE.

psiR value, always greater than 1, for the anisotropy ratio parameter ψR. Regarded
as a fixed value if fix.psiR=TRUE otherwise as the initial value in the minimi-
zation algorithm for covariance parameter estimation. Defaults to 1. See doc-
umentation on coords.aniso in the geoR manual for further details on aniso-
tropy correction.

lik.method options are ML for maximum likelihood and REML for restricted maximum like-
lihood. Defaults to ML.

nsim number of iterations. Defaults to 1000.

limits values defining lower and upper limits for the model parameters used in the
numerical minimization. The auxiliary function pars.limits is called to set
the limits. See also Limits in the documentation for the function likfit in
the geoR manual.

dist.epsilon a numeric value. Locations which are separated by a distance less than this
value are considered co-located.

sim.method simulation method with options for cholesky, svd, eigen, RF. Defaults to the
Cholesky decomposition. See DETAILS section in the documentation for grf
in the geoR manual.

fix.psiA logical, indicating whether the anisotropy angle parameter ψR should be regar-
ded as fixed (fix.psiA = TRUE) or should be estimated (fix.psiA = FALSE).
Defaults to TRUE.

aniso.pars two elements vector with the parameters for the geometric anisotropy correct-
ion. If aniso.pars = NULL no correction is made. Anisotropy correction con-
sists of a transformation of the data and prediction coordinates performed by
the geoR function coords.aniso.

RF logical, with defaults to TRUE, indicating whether the algorithm should try to
use the function GaussRF from the package RandomFields in case method is
missing and the number of points is greater than 500.

messages logical, indicating whether or not status messages are printed on the screen
(or output device) while the function is running.

B-3



Univ
ers

ity
 of

 C
ap

e T
ow

n

Details

This functions uses a combination of geoR functions to carry out parametric bootstrap estima-
tion of the kriging variance. It uses the functions krige.conv() for kriging, likfit() for cova-
riance parameter estimation and grf() for simulating random fields. For further information on
these functions see their documentation in the geoR manual.

Value

coords an m× 2 matrix or data-frame with the 2-D coordinates of the
m prediction locations. By default it takes the component loca-
tions of the argument.

predictions a n× 1 vector with predicted values.

pred.errors a m× 2 matrix containing the plug-in and bootstrapped kriging
variance estimates.

std.errors a m× 1 vector containing the bootstrapped MSPE standard errors.

bounds a m× 2 matrix containing the lower bound and upperbound
of the 95% confidence interval of the MPSE.

est.pars a p×m matrix containing the estimates of the variance para-
meters θ of the p parameters and m simulations.

Author(s)

Mzabalazo Z. Ngwenya <NgwenyaM@arc.agric.za>
Christien Thiart <Christien.Thiart@uct.ac.za>
Linda M. Haines <Linda.Haines@uct.ac.za>

References

The geoR manual (Riberio and Diggle, 2006). Further information can be found at:
http://www.est.ufpr.br/geoR.

Diggle, P.J. and Riberio, P.J. (2007). Model-based Geostatistics. Springer. New York.

See also

grf, likfit, krige.control, output.control in the geoR manual and krige.uncond.

Examples

library(geoR)
grid <- expand.grid(1:5,1:5) # Forming a grid
set.seed (1403) # Random seed for simulating Gaussian random field
sim.grid <- grf(grid = grid, cov.model = ‘‘exponential’’, cov.pars = c(1,5))
fit <- likfit(sim.grid, cov.model = ‘‘exponential’’, ini.cov.pars = c(1,5), nugget,

= 0, fix.nugget = FALSE) # MLE of simulated field parameter’s
pred.loc <-expand.grid(1.5:4.5,1.5:4.5)
set.seed(13)
krige.uncond(geodata= sim.grid, obj.model = fit, locations = pred.loc, type.krige

= ‘ok’’, nsim = 1000)
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krige.cond Conditional bootstrap estimation of the kriging variance

Description

This function performs parametric bootstrap estimation of the kriging variance. The bootstrap
algorithm employed involves conditional simulation.

Usage

krige.cond(geodata, coords, data, locations, cov.pars, cov.model = ‘‘matern’’,
obj.model, mean, nugget = 0, kappa = .5, lambda = 1, type.krige =
‘‘ok’’, trend.d = ‘‘cte’’, trend.l = ‘‘cte’’, aniso.pars = NULL,
micro.scale = 0, dist.epsilon = 1e-10, output = output.control

(messages = FALSE), nsim = 1000, sim.method = ‘‘cholesky’’, RF =
TRUE, messages = FALSE)

Arguments

geodata a list containing elements coords and data as described next. Typically an object
of class geodata a geoR data set. If not provided the arguments coords and data
must be provided.

coords an n× 2 matrix or data-frame with the 2-D coordinates of the n data locations. By
default it takes the component coords of the argument, geodata if provided.

data a vector with the n data values. By default it takes the component data of the arg-
ument geodata, if provided.

locations a m× 2 matrix or data-frame with the 2-D coordinates of the m prediction locations,
or a list for which the first two components are used. Input is internally checked by
the function check.locations.

cov.model a string specifying the model for the correlation function. For further details see
documentation for cov.spatial in the geoR manual. Defaults to the Matérn
model.

cov.pars a 2 elements vector with the values of the covariance parameters σ2
0 (partial sill)

and φ (range parameter).

type.krige type of kriging to be performed. Options are ‘‘SK’’ and ‘‘OK’’corresponding
to simple and ordinary kriging. Kriging with external trend and universal krig-
ing can be defined by setting type.krige=‘‘OK’’ and specifying the trend
model using the arguments trend.d and trend.l.

mean numerical value of the mean (vector) parameter.

trend.d specifies the trend (covariate) values at the data locations. See documentation
of trend.spatial in the geoR manual for further details. Defaults to ‘‘cte’’.

trend.l specifies the trend (covariate) values at prediction locations. It must be the
same as for trend.d.
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obj.model a list with the model parameters. Typically an output of likfit or variofit.

micro.scale micro-scale variance. If different from zero, the nugget variance is divided into
2 terms: micro-scale variance and measurement error. This affects the precision
of the predictions. Often in practice, these two variance components are indist-
inguishable.

output a list specifying output options. It can take a call tooutput.control or a list
with elements as for the arguments in output.control.

nugget value of the nugget parameter. Regarded as a fixed value if fix.nugget = TRUE
otherwise as the initial value for the minimization algorithm. Defaults to zero.

kappa value of extra parameter κ. Regarded as a fixed value if fix.kappa = TRUE
otherwise as the initial value for the minimization algorithm in covariance
parameter estimation. Defaults to 0.5. This parameter is valid only if the covari-
ance function is one of either: ‘‘matern’’, ‘‘powered.exponential’’,
‘‘cauchy’’ or gneiting.matern.

lambda value of the Box-Cox transformation parameter λ. Regarded as fixed if
fix.lambda = TRUE otherwise as the initial value for the minimization algori-
thm in covariance parameter estimation. Defaults to 1. Two particular cases
are λ = 1 indicating no transformation and λ = 0 indicating log transformation.

aniso.pars two elements vector with the parameters for the geometric anisotropy correct-
ion. If aniso.pars = NULL no correction is made. Anisotropy correction con-
sists of a transformation of the data and prediction coordinates performed by
the geoR function coords.aniso.

nsim number of iterations. Defaults to 1000.

dist.epsilon a numeric value. Locations which are separated by a distance less than this
value are considered co-located.

psiA value (in radians) for the anisotropy angle parameter ψA. Regarded as a fixed
value if fix.psiA=TRUE otherwise as the initial value for the minimization al-
gorithm in covariance parameter estimation. Defaults to 0. See documentation
on coords.aniso in the geoR manual for further details.

signal logical indicating whether the signal or variable is to be predicted. Defaults to
NULL. See output.control() help file for details.

messages logical, indicating whether or not status messages are printed on the screen
(or output device) while the function is running.

Details

This functions uses a combination of geoR functions to carry out parametric bootstrap estimation
of the kriging variance. It uses the functions krige.conv() and the auxiliary function
output.control() to generate conditional bootstrap samples. Because this function does not esti-
mate parameters for each of the simulations as the data at the observation locations always remain
the same, one can perform bootstrap estimation with a very large number of iteration very
quickly unlike in the krige.uncond function.
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Value

coords an n× 2 matrix or data-frame with the 2-D coordinates of the n data locations.
By default it takes the component coords of the argument.

predictions a m× 1 vector with predicted values.

pred.errors a m× 2 matrix containing the plug-in and bootstrapped kriging variance estimates.

std.errors a n× 1 vector containing the bootstrapped MSPE standard errors.

bounds a n× 2 matrix containing the lower bound and upperbound of the 95 %
confidence interval of the MPSE.

sim.mean a nsim× 1 vector of the means of the nsim simulations.

sim.vars a nsim× 1 vector of the variances of the nsim simulations.

Author(s)

Mzabalazo Z. Ngwenya <NgwenyaM@arc.agric.za>
Christien Thiart <Christien.Thiart@uct.ac.za>
Linda M. Haines <Linda.Haines@uct.ac.za>

References

The geoR manual (Riberio and Diggle, 2006). Further information can be found at:
http://www.est.ufpr.br/geoR.

Diggle, P.J. and Riberio, P.J. (2007). Model-based Geostatistics. Springer. New York.

See also

likfit, krige.control, output.control in the geoR manual and krige.uncond.

Examples

library(geoR)
grid <- expand.grid(1:5,1:5) # Forming a grid
set.seed (1403) # Random seed for simulating Gaussian random field
sim.grid <- grf(grid = grid, cov.model = ‘‘exponential’’, cov.pars = c(1,5))
fit <- likfit(sim.grid, cov.model = ‘‘exponential’’, ini.cov.pars = c(1,5), nugget,

= 0, fix.nugget = FALSE) # MLE of simulated field parameter’s
pred.loc <-expand.grid(1.5:4.5,1.5:4.5)
set.seed(13)
krige.cond(geodata = sim.grid, obj.model = fit, locations = pred.loc, type.krige

= ‘‘ok’’, nsim = 1000)
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Appendix C

R syntax and output

The first section of this appendix shows the R syntax used in carrying carrying out
the analysis and kriging variance estimation of the Meuse and South African data
sets of Chapter 4.

C.1 Meuse Data

###########################################################
# #
# INITIALIZING ANALYSIS #
# #
###########################################################

# Loading packages
> library(gstat)
> library(geoR)

# Loading data
> data(meuse)
> attach(meuse)

# data frame for prediction locations
> data(meuse.grid)

# Creating geodata object
> Zn <-as.geodata(obj = meuse, data.col = 6, coords.col = 1:2, covar.col = 8)

###########################################################
# #
# EXPLORATORY DATA ANALYSIS #
# #
###########################################################

# Bubble plot of Zinc concentrations
> coordinates(meuse) = ~x+y
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> bubble(meuse,"zinc", maxsize = 2, main="", scales=list(draw = TRUE), col = "red",
+ xlab = "Eastings(m)", ylab = "Northings(m)")

# EDA of Zn data
> plot(Zn, lowess = TRUE, density = FALSE))

# Log transform
> log.Zn <-as.geodata(obj = meuse, data.col = 6, coords.col = 1:2, covar.col = 8)
> log.Zn$data <-log(log.Zn$data)

-----------

# Q-Q plot of Zinc data
> parmfrow = c(1,2)
> qqnorm(Zn$data)
> qqline(Zn$data)

#Q-Q plot of log-transformed data
> qqnorm(log(Zn$data))
> qqline(log(Zn$data))

---------

# EDA of log transformed data with distance to the river as a covariate
> plot(log.Zn, trend = ~dist, lowess = TRUE, density = FALSE)

###########################################################
# #
# PARAMETER ESTIMATION #
# #
###########################################################

# matrix of initial values for the variance and range
> ini.cov <- expand.grid(seq(0,40, by = 1), seq(0,2500, by = 100))

-------------------------------------------------

# MODELLING FITTING UNDER CONSTANT MEAN ASSUMPTION

> meuse.con.exp <- likfit(geodata = log.Zn, cov.model = "exponential", ini.cov.pars =
+ ini.cov, nugget = seq(0,5,by=0.25), fix.nugget = FALSE)
> meuse.con.exp
likfit: estimated model parameters:

beta tausq sigmasq phi
" 6.5577" " 0.0335" " 1.4987" "1700.0000"
Practical Range with cor=0.05 for asymptotic range: 5092.745

likfit: maximised log-likelihood = -99.16

> meuse.con.mat1 <- likfit(geodata = log.Zn, cov.model = "matern", ini.cov.pars =
+ ini.cov, nugget = seq(0,5,by=0.25), fix.nugget = FALSE,
+ kappa = 1.5, fix.kappa = TRUE)
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> meuse.con.mat1
likfit: estimated model parameters:

beta tausq sigmasq phi
" 6.491" " 0.095" " 1.414" "440.127"
Practical Range with cor=0.05 for asymptotic range: 2087.901

likfit: maximised log-likelihood = -97.38

> meuse.con.mat2 <- likfit(geodata = log.Zn, cov.model = "matern", ini.cov.pars =
+ ini.cov, nugget = seq(0,5,by=0.25), fix.nugget = FALSE,
+ kappa = 2.5, fix.kappa = TRUE)
> meuse.con.mat2
likfit: estimated model parameters:

beta tausq sigmasq phi
" 6.378" " 0.104" " 1.147" "259.544"
Practical Range with cor=0.05 for asymptotic range: 1536.148

likfit: maximised log-likelihood = -97.82

> meuse.con.gauss <- likfit(geodata = log.Zn, cov.model = "gaussian", ini.cov.pars
+ = c(1.147,259.544), nugget = seq(0,5,by=0.25), fix.nugget =
+ FALSE)
> meuse.con.gauss
likfit: estimated model parameters:

beta tausq sigmasq phi
" 6.2391" " 0.1146" " 0.8743" "572.2880"
Practical Range with cor=0.05 for asymptotic range: 990.5266

> meuse.con.sph <- likfit(geodata = log.Zn, cov.model = "spherical", ini.cov.pars =
+ ini.cov, nugget = seq(0,5,by=0.25), fix.nugget = FALSE)
> meuse.con.sph
likfit: estimated model parameters:

beta tausq sigmasq phi
" 6.1653" " 0.0332" " 0.6961" "1200.5092"
Practical Range with cor=0.05 for asymptotic range: 1200.509

likfit: maximised log-likelihood = -97.88

------------------------------------------------------------------------------------

# MODEL FITTING WITH DISTANCE TO RIVER AS COVARIATE

> meuse.dist.exp <- likfit(geodata = log.Zn, cov.model = "exponential", ini.cov.pars =
+ ini.cov, nugget = seq(0,5, by = 0.25), fix.nugget = FALSE,
+ trend=~dist)
> meuse.dist.exp
likfit: estimated model parameters:

beta0 beta1 tausq sigmasq phi
" 6.5958" " -2.8186" " 0.0309" " 0.2298" "220.8617"
Practical Range with cor=0.05 for asymptotic range: 661.6425
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likfit: maximised log-likelihood = -86.01

> meuse.dist.mat1 <- likfit(geodata = log.Zn, cov.model = "matern", ini.cov.pars =
+ ini.cov, nugget = seq(0,5, by = 0.25), fix.nugget = FALSE,
+ kappa = 1.5, fix.kappa = TRUE, trend = ~dist)
> meuse.dist.mat1
likfit: estimated model parameters:

beta0 beta1 tausq sigmasq phi
" 6.5912" " -2.8201" " 0.0742" " 0.1882" "122.9547"
Practical Range with cor=0.05 for asymptotic range: 583.2802

likfit: maximised log-likelihood = -84.78

> meuse.dist.mat2 <- likfit(geodata = log.Zn, cov.model = "matern", ini.cov.pars =
+ ini.cov, nugget = seq(0,5, by = 0.25), fix.nugget = FALSE,
+ kappa = 2.5, fix.kappa = TRUE, trend = ~dist)
> meuse.dist.mat2
likfit: estimated model parameters:

beta0 beta1 tausq sigmasq phi
" 6.5853" "-2.8138" " 0.0808" " 0.1793" "90.4478"
Practical Range with cor=0.05 for asymptotic range: 535.3288

likfit: maximised log-likelihood = -84.48

> meuse.dist.gauss <- likfit(geodata = log.Zn, cov.model = "gaussian", ini.cov.pars =
+ c(0.1882,122.9547), nugget = seq(0,5, by = 0.5), fix.nugget =
+ FALSE, trend = ~dist)
> meuse.dist.gauss
likfit: estimated model parameters:

beta0 beta1 tausq sigmasq phi
" 6.5662" " -2.7861" " 0.0873" " 0.1653" "247.1482"
Practical Range with cor=0.05 for asymptotic range: 427.7687

likfit: maximised log-likelihood = -84.28

> meuse.dist.sph <- likfit(geodata = log.Zn, cov.model = "spherical", ini.cov.pars =
+ ini.cov, nugget = seq(0,5, by = 0.25), fix.nugget = FALSE,
+ trend = ~dist)
> meuse.dist.sph
likfit: estimated model parameters:

beta0 beta1 tausq sigmasq phi
" 6.6413" " -2.9108" " 0.0660" " 0.2367" "738.3997"
Practical Range with cor=0.05 for asymptotic range: 738.3997

likfit: maximised log-likelihood = -84.71
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###########################################################
# #
# PLOTS OF EMPIRICAL AND FITTED SEMIVARIOGRAMS #
# #
###########################################################

# Plots of empirical versus the fitted semivariogram models
> plot(c(0,2500), c(0,1.5), type = "p", col = "white", xlab = "distance", ylab =
+ "semivariance")
> semi.con <- variog(log.Zn, option = "bin", pairs.min = 10)
> points(semi.con$u, semi.con$v)
> lines(meuse.con.exp,lty = 5)
> lines(meuse.con.mat1, lty = 3)
> lines(meuse.con.mat2, lty = 7)
> lines(meuse.con.gauss, lty = 5, lwd = 2)
> lines(meuse.con.sph, lty = 7, lwd = 2)

# Semivariogram of the residuals
> plot(c(0,1500),c(0,0.315), type = "p", col = "white", xlab = "distance", ylab =
+ "semivariance")
> semi.dist <- variog(log.Zn, trend = ~dist, option = "bin", pairs.min = 10)
> points(semi.dist$u, semi.dist$v)
> lines(meuse.dist.exp, lty = 5)
> lines(meuse.dist.mat1, lty = 3)
> lines(meuse.dist.mat2, lty = 7)
> lines(meuse.dist.gauss, lty = 5,lwd = 2)
> lines(meuse.dist.sph, lty = 7, lwd = 2)

###########################################################
# #
# PROFILE LIKELIHOODS OF PARAMETERS OF SELECTED MODEL #
# #
###########################################################

> Proflik.gauss <- proflik(meuse.dist.gauss, geodata = log.Zn, nugget.values =
+ seq(1e-10,0.2, l =9), sill.values = seq(0.01,0.4, l = 11),
+ range.values = seq(100,550, l = 23))
> par(mfrow = c(1,3))
> plot(Proflik.gauss)

###########################################################
# #
# KRIGING #
# #
###########################################################

> data(meuse.grid)

# Kriging
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> meuse.pred.gau <- krige.conv(geodata = log.Zn, locations = meuse.grid[,1:2],
+ krige=krige.control(type.krige="ok", cov.model="gaussian",
+ cov.pars = c(0.1653,247.1482), nugget = 0.0873, trend.d =
+ ~meuse$dist, trend.l = ~meuse.grid$dist))

> library(lattice)

# Creating map of kriging results
> kriging.est <- cbind("Gaussian" = meuse.pred.gau$predict, "Exponential" =
+ meuse.pred.exp$predict)
> krige.est <- as.data.frame(kriging.est)
> krige.est <- SpatialPixelsDataFrame(points = meuse.grid[,1:2], data = krige.est)
> spplot(krige.est, col.regions = terrain.colors(n=100))

###########################################################
# #
# COMPUTING ANALYTICAL KRIGING VARIANCE ESTIMATORS #
# #
###########################################################

> Meuse.analytic.gau <- krige.approx(geodata = log.Zn, trend.d = ~meuse$dist,
+ locations=meuse.grid[,1:2], trend.l= ~meuse.grid$dist, cov.model="gaussian",
+ cov.pars=c(0.1653,247.1482), nugget=0.0873, type.krige="ok")

> summary(Meuse.analytic.gau$variance)
plug.in Kacker.Harville Prasad.Rao

Min. :0.1026 Min. :0.1065 Min. :0.1090
1st Qu.:0.1203 1st Qu.:0.1254 1st Qu.:0.1291
Median :0.1323 Median :0.1364 Median :0.1414
Mean :0.1465 Mean :0.1499 Mean :0.1534
3rd Qu.:0.1618 3rd Qu.:0.1635 3rd Qu.:0.1653
Max. :0.2712 Max. :0.2719 Max. :0.2727

###########################################################
# #
# BOOTSTRAP ESTIMATION OF KRIGING VARIANCE #
# #
###########################################################

> memory.size(4095)

# Computing unconditional bootstrap estimator
> set.seed(45)
> Meuse.UcondBoot.gau <- krige.uncond(geodata=log.Zn, locations = meuse.grid[,1:2],
+ type.krige = "ok", cov.model = "gaussian", cov.pars =
+ c(0.1653,247.1482), nugget = 0.0873, mean = c(6.5662,
+ -2.7861), trend.d = ~meuse$dist, trend.l =
+ ~meuse.grid$dist, nsim = 5000, fix.nugget = FALSE, limits =
+ pars.limits(phi = c(175,400)))

> summary(Meuse.UcondBoot.gau$pred.error[,2])
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Min. 1st Qu. Median Mean 3rd Qu. Max.
0.09866 0.12220 0.13420 0.14760 0.16250 0.26130

# Computing conditional bootstrap estimator
> set.seed(45)
> Meuse.CondBoot.gau <- krige.cond(geodata = log.Zn, locations = meuse.grid[,1:2],
+ trend.l = ~meuse.grid$dist, type.krige = "ok", nsim = 5000,
+ cov.model = "gaussian", cov.pars = c(0.1653,247.1482),
+ nugget=0.0873, mean = c(6.5662,-2.7861), trend.d =
+ ~meuse$dist)

> summary(Meuse.CondBoot.gau$pred.error[,2])
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.09887 0.12050 0.13240 0.14650 0.16120 0.27900

###########################################################
# #
# MAPPING RESULTS OF THE VARIOUS ESTIMATORS #
# #
###########################################################

> estimates.gau <- cbind("KH" = Meuse.analytic.gau$variance[,2], "CBS" =
+ Meuse.CondBoot.gau$pred.errors[,2], "EMSPE" =
+ Meuse.analytic.gau$variance[,1], "PR" =
+ Meuse.analytic.gau$variance[,3], "UBS" =
+ Meuse.UcondBoot.gau$pred.errors[,2])
> estimates.gau <- as.data.frame(estimates.gau)
> estimates.gau <- SpatialPixelsDataFrame(points = meuse.grid[,1:2], data =
+ estimates.gau)
> spplot(estimates.gau,col.regions = bpy.colors())

C.2 Micronutrient Data

###########################################################
# #
# INITIALIZING ANALYSIS #
# #
###########################################################

# Loading packages
> library(geoR)

# Reading data into R : This path will differ depending where the data is
> AEON.file <- read.table("C:\\Documents and Settings\\Administrator\\Desktop\\AEON\\
+ dataset1.txt",header = TRUE)

# Creating geoR object
> Fe <- as.geodata(obj = AEON.file, coords.col = 2:3, data.col = 5, covar.col = 4)
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###########################################################
# #
# EXPLORATORY DATA ANALYSIS #
# #
###########################################################

# Mapping data

> points(Fe, xlab = "east(km)", ylab = "north(km)", cex.min = 0.5,cex.max = 1.25,
+ col = grey(seq(1, 0.1, l = 100)), pt.divide = "data.proportional")
> library(sp)
> Fe.levels <-data.frame(Fe$data)
> Fe.D <- SpatialPointsDataFrame(coords = Fe$coords, data = Fe.levels)
> bubble(Fe.D, xlab = "east(km)", ylab = "north(km)", maxsize = 2, main = "",
+ scales = list(draw = TRUE), do.sqrt = TRUE)

# graphical EDA of Zn concentrations
> plot(Fe,lowess = TRUE, density = FALSE)

# Q-Q plot : data
> qqnorm(Fe$data)
> qqline(Fe$data)

# Log transformation of data
> log.Fe <- as.geodata(obj = AEON.file, coords.col = 2:3, data.col = 5, covar.col =4)
> log.Fe$data <- log(Fe$data)

# graphical EDA of log(Zn)
> plot(log.Fe, lowess = TRUE, density = FALSE)

Q-Q plot log transformed data
> qqnorm(log(Fe$data))
> qqline(log(Fe$data))

###########################################################
# #
# PARAMETER ESTIMATION #
# #
###########################################################

# Creating matrix of initial estimates for the partial sill and range parameters
> ini.cov <- expand.grid(seq(0,20, by = 2), seq(1,600, by = 20))

# MAXIMUM LIKELIHOOD ESTIMATION

> logFe.exp.ml <- likfit(geodata = log.Fe, cov.model = "exponential", ini.cov.pars =
+ ini.cov, fix.nugget = FALSE, nugget = seq(0,10, by = 2))
> logFe.exp.ml
likfit: estimated model parameters:

beta tausq sigmasq phi
"2.5080" "0.4340" "0.2031" "0.5086"
Practical Range with cor=0.05 for asymptotic range: 1.523501
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likfit: maximised log-likelihood = -246.4

> logFe.mat1.ml <- likfit(geodata = log.Fe, cov.model = "matern", ini.cov.pars =
+ c(0.1,0.2), fix.nugget = FALSE, nugget = seq(0,10, by = 2),
+ kappa = 1.5, fix.kappa = TRUE)
> logFe.mat1.ml
likfit: estimated model parameters:

beta tausq sigmasq phi
"2.5186" "0.4766" "0.1582" "0.2813"
Practical Range with cor=0.05 for asymptotic range: 1.334495

likfit: maximised log-likelihood = -246.4

> logFe.mat2.ml <-likfit(geodata = log.Fe, cov.model = "matern", ini.cov.pars =
+ c(0.1,0.2), fix.nugget = FALSE, nugget = seq(0,10, by = 2),
+ kappa = 2.5, fix.kappa = TRUE)
> logFe.mat2.ml
likfit: estimated model parameters:

beta tausq sigmasq phi
"2.5223" "0.4834" "0.1504" "0.2105"
Practical Range with cor=0.05 for asymptotic range: 1.246178

likfit: maximised log-likelihood = -246.4

> logFe.sph.ml <- likfit(geodata = log.Fe, cov.model = "spherical", ini.cov.pars =
+ ini.cov, fix.nugget = FALSE, nugget = seq(0,10,by=2))
> logFe.sph.ml
likfit: estimated model parameters:

beta tausq sigmasq phi
"2.5379" "0.4397" "0.1871" "0.9339"
Practical Range with cor=0.05 for asymptotic range: 0.9338806

likfit: maximised log-likelihood = -246.8

> logFe.gauss.ml <- likfit(geodata = log.Fe, cov.model = "gaussian", ini.cov.pars =
+ c(0.1871, 0.9339), fix.nugget = FALSE, nugget = seq(0,10, by = 2))
> logFe.gauss.ml
likfit: estimated model parameters:

beta tausq sigmasq phi
"2.5298" "0.4909" "0.1406" "0.6034"
Practical Range with cor=0.05 for asymptotic range: 1.044395

likfit: maximised log-likelihood = -246.5

-------------------------------------------------------------------------------

C-9



Univ
ers

ity
 of

 C
ap

e T
ow

n

# RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION

> logFe.exp.reml <- likfit(geodata = log.Fe, cov.model = "exponential", ini.cov.pars
+ = ini.cov, fix.nugget = FALSE, nugget = seq(0,10, by=2),
+ lik.method = "REML")
> logFe.exp.reml
likfit: estimated model parameters:

beta tausq sigmasq phi
"2.4907" "0.4474" "0.2080" "0.6494"
Practical Range with cor=0.05 for asymptotic range: 1.945298

likfit: maximised log-likelihood = -244.9

> logFe.mat1.reml <- likfit(geodata = log.Fe, cov.model = "matern", ini.cov.pars =
+ ini.cov, fix.nugget = FALSE, nugget = seq(0,10, by = 2),
+ kappa = 1.5, fix.kappa = TRUE, lik.method = "REML")
> logFe.mat1.reml
likfit: estimated model parameters:

beta tausq sigmasq phi
"2.5111" "0.4817" "0.1650" "0.3138"
Practical Range with cor=0.05 for asymptotic range: 1.488632

likfit: maximised log-likelihood = -245.0

> logFe.mat2.reml <- likfit(geodata = log.Fe, cov.model = "matern", ini.cov.pars =
+ c(0.1,0.2), fix.nugget = FALSE, nugget = seq(0,10,by = 2),
+ kappa = 2.5, fix.kappa = TRUE, lik.method = "REML")
> logFe.mat2.reml
likfit: estimated model parameters:

beta tausq sigmasq phi
"2.5169" "0.4872" "0.1572" "0.2287"
Practical Range with cor=0.05 for asymptotic range: 1.353601

likfit: maximised log-likelihood = -245.1

> logFe.sph.reml <- likfit(geodata = log.Fe, cov.model = "spherical", ini.cov.pars =
+ ini.cov, fix.nugget = FALSE, nugget = seq(0,10, by = 2),
+ lik.method = "REML")
> logFe.sph.reml
likfit: estimated model parameters:

beta tausq sigmasq phi
"2.5277" "0.4665" "0.1740" "1.2882"
Practical Range with cor=0.05 for asymptotic range: 1.288232

likfit: maximised log-likelihood = -245.3

> logFe.gau.reml <- likfit(geodata = log.Fe, cov.model = "gaussian", ini.cov.pars =
+ c(0.2080, 0.6494), fix.nugget = FALSE, nugget = seq(0,10,by=2),
+ lik.method = "REML")
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> logFe.gau.reml
likfit: estimated model parameters:

beta tausq sigmasq phi
"2.5268" "0.4937" "0.1464" "0.6374"
Practical Range with cor=0.05 for asymptotic range: 1.103162

likfit: maximised log-likelihood = -245.2

###########################################################
# #
# PLOTTING FITTED SEMIVARIOGRAMS #
# #
###########################################################

# Models fitted with ML estimation
> plot(emp.vario.logFe <- variog(log.Fe, option = "bin", pairs.min = 10))
> lines(logFe.exp.ml, lty = 5)
> lines(logFe.mat1.ml, lty = 3)
> lines(logFe.mat2.ml, lty = 7)
> lines(logFe.sph.ml, lty = 3, lwd = 2)
> lines(logFe.gauss.ml , lty = 7,lwd = 2)

# Models fitted with via REML estimation
> plot(emp.vario.logFe <- variog(log.Fe, option = "bin", pairs.min = 10))
> lines(logFe.exp.reml, lty = 5)
> lines(logFe.mat1.reml, lty = 3)
> lines(logFe.mat2.reml, lty = 7)
> lines(logFe.sph.reml, lty=3, lwd = 2)
> lines(logFe.gau.reml, lty = 7, lwd = 2)

###########################################################
# #
# PROFILE LIKELIHOODS OF PARAMETERS OF SELECTED MODEL #
# #
###########################################################

# Computing profile likelihoods
> prof.ML <- proflik(logFe.exp.ml, geodata = log.Fe, nugget.values = seq(0.1,0.7,
+ l = 15), sill.values = seq(0.01,0.7, l=5), range.values = seq(0.1,3.25,
+ l = 20))

# Plotting profile likelihoods
> par(mfrow=c(1,3))
> plot(prof.ML)

###########################################################
# #
# KRIGING #
# #
###########################################################
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# Forming prediction grid
> long <- c(seq(26.30708,30.79456, by=.1))
> lat <- c(seq(-29.03209,-24.38015,by=.1))
> wits.grid <- expand.grid(long,lat)

# Kriging
> Pred.surf <- krige.conv(geodata = log.Fe, locations = wits.grid, krige =
+ krige.control(obj.model = logFe.exp.ml))

# Map of kriging surface
> contour(Pred.surf, filled = TRUE, color = terrain.colors, values =
+ Pred.surf$predict)

###########################################################
# #
# CALCULATION OF ANALYTICAL OF ESTIMATES #
# #
###########################################################

> Analytic.Fe.ml <- krige.approx(geodata = log.Fe, obj.model = logFe.exp.ml,
+ locations = wits.grid, type.krige = "ok")

> summary(Analytic.Fe.ml$variance)
plug.in Kacker.Harville Prasad.Rao

Min. :0.5109 Min. :0.5180 Min. :0.5252
1st Qu.:0.5440 1st Qu.:0.5508 1st Qu.:0.5575
Median :0.5534 Median :0.5595 Median :0.5658
Mean :0.5574 Mean :0.5635 Mean :0.5695
3rd Qu.:0.5664 3rd Qu.:0.5717 3rd Qu.:0.5772
Max. :0.6440 Max. :0.6476 Max. :0.6511

###########################################################
# #
# BOOTSTRAP ESTIMATION OF KRIGING VARIANCE #
# #
###########################################################

> memory.size(4095)

# Computing unconditional bootstrap estimator
> set.seed(83)
> Boot.uncond.Fe.ml <- krige.uncond(geodata = Fe, locations = wits.grid, type.krige =
+ "ok", nsim = 5000, obj.model = logFe.exp.ml, fix.nugget = FALSE,
+ limits = pars.limits(phi = c(0.2,2.90)))

> summary(Boot.uncond.Fe.ml$pred.errors[,2])
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5092 0.5499 0.5612 0.5643 0.5751 0.6561
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# Computing conditional bootstrap estimator
> set.seed(83)
> Boot.cond.Fe.ml<- krige.cond(geodata = log.Fe, locations = wits.grid, type.krige =
+ "ok", obj.model = logFe.exp.ml, nsim = 5000)

> summary(Boot.cond.Fe.ml$pred.errors[,2])
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4958 0.5415 0.5541 0.5575 0.5703 0.6671

###########################################################
# #
# MAPPING RESULTS OF THE VARIOUS ESTIMATORS #
# #
###########################################################

> library(lattice)
> library(gstat)
> aeon <-cbind("KH" = Analytic.Fe.ml $variance[,2], "CBS" = Boot.cond.Fe.ml$
+ pred.errors[,2], "EMSPE" = Analytic.Fe.ml $variance[,1], "PR" =
+ Analytic.Fe.ml$variance[,3], "UBS" = Analytic.Fe.ml$variance[,3])
> aeon <-as.data.frame(aeon)
> aeon <- SpatialPixelsDataFrame(points = wits.grid, data = aeon)
> spplot(aeon, col.regions = bpy.colors())
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