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 YouTube has grown to be the number one video streaming platform on 

Internet and home to millions of content creator around the globe. Predicting 

the potential amount of YouTube views has proven to be extremely 

important for helping content creator to understand what type of videos the 

audience prefers to watch. In this paper, we will be introducing two types of 

regression models for predicting the total number of views a YouTube video 

can get based on the statistic that are available to our disposal. The dataset 

we will be using are released by YouTube to the public. The accuracy of both 

models are then compared by evaluating the mean absolute error and relative 

absolute error taken from the result of our experiment. The results showed 

that Ordinary Least Square method is more capable as compared to the 

Online Gradient Descent Method in providing a more accurate output 

because the algorithm allows us to find a gradient that is close as possible to 

the dependent variables despite having an only above average prediction. 
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1. INTRODUCTION 

The advancement of technology results in the growing amount of online entertainment website. As 

it becomes apparent that entertainment is shifting toward new media, people loves to visit a website which 

bring them fun contents or useful knowledge during their leisure time, and YouTube is always be their best 

choice. In fact, since its launching in 2005, YouTube has become one of the world’s most powerful digital 

media platforms [1]. YouTube, as a video sharing website, provide a platform for their users to enjoy 

watching videos or also create their own videos to entertain audiences, for education use, advertisement and 

others. Due to the needs of the entertainer in Web 2.0 application, the popularity of web content has soon 

becoming the hot topic around the world, furthermore it also helps to generate income for a YouTuber.  

Research using YouTube data has been also receving growing attention such as comments 

annotation [2], opinion mining [3], sentiment analysis [4] or social media analytics [5] for YouTube videos. 

There are several articles and journals that have previously been published in relation to investigating the 

popularity of YouTube videos. In [6], different models were presented for determining YouTube view-count, 

which showed the viral trends and potential population growth. Based on these models, they proposed an 

automatic classification of the YouTube videos that classify a video into one of four categories, which were 

viral and fixed population; viral and growing population; non-viral fixed population; and non-viral growing 

population. View counts are extremely important in modeling and characterizing viewers of YouTube videos 

[7] as well as in analyzing the popularity patterns of user shared content [8, 9]. 
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The work by [10] concluded that while some YouTube videos become viral and instant hits, 

majority of the videos are only experiencing limited interest. Two methods were proposed to predict video 

popularity based on the content as input variable abd then the daily samples of the content popularity are 

measured up to a given reference date. Other than the content, variable list includes the daily samples of 

number of comments, number of ratings and number of users who “favourited” the video as these 

information are readily available in the video statistics panel. However, since the variables are found to be 

highly correlated with the number of views, the variables do not affect the prediction outcome from a  

linear regression. 

HIPie (Hawks Intensity Process Insights Explorer), a software tool developed by [11], had the 

ability to analyse and predict the future popularity of YouTube videos. HIPie was developed based on the 

Hawkes Intensity Process (HIP) [12], which is an interactive web-based that allows users to reason about the 

popularity and the virality of Youtube videos. Kong et al. stated that the software is able to predict the 

popularity of YouTube videos through the analysis of several factors. For any video, HIPie depicts several 

popularity series: observed, fitted and forecasted by HIP. HIPie enables users to comparatively analyse 

videos using the endo-exo map, by showing the view count and the number of shares they receive, alongside 

the exogenous sensitivity and the endogenous reaction. The software can also identify videos that have the 

potential of going viral, but are yet to. 

Nonetheless, the recent viral YouTube video seems to have varied. There is no specific rule-of-

thumb for a viral video, it basically describes a phenomenon in which a video clip become highly popular 

through rapid, user-sharing content via the Internet, which in this case a YouTube platform. This type of 

marketing distribution is led by users through what is known as a participatory popular culture online [13]. 

To date, the literature also showed different research on predicting Youtube views based on popular domain 

such as educational videos [14, 15], video games live streaming [16, 17], and politics [18] among few. 

In this paper, we explore the factor that influence YouTube video’s view counts and attempt to 

estimating it using regression method. The remainder of this paper proceeds as follows. Section 2 presents 

the research methodology, Section 3 presents the results, and finally Section 4 concludes with some plan for 

future work. 

 

 

2. RESEARCH METHOD 

In this experiment, our main objective is to predict the potential total view count of a YouTube 

video as accurate as possible based on several influential factor. To do so, we have decided to apply one of 

the predictive modeling techniques, which is the regression technique in our experiment. We will be using 

regression technique to model the mathematical correlation between our independent variables, which are the 

attributes in the dataset we have acquired, and the dependent variable, in this case it is the amount of 

viewership of a YouTube video. After figuring out the pattern and the relationship between the said variables, 

we are then able to predict the future value of the dependent variable. 

One of the key benefits that regression analysis offers is that it indicates the strength of impact of 

multiple independent variables on a dependent variable. This will allow us to compare the outcome when a 

variable has its value changed. For example, the result of this experiment will show how the channel 

subscriber count will affect the total view count of a YouTube video. 

 

2.1.  Dataset 

Dataset that have chosen for this project is the trending YouTube Video Statistics 

(https://www.kaggle.com/datasnaek/youtube-new) from daily statistics for trending YouTube videos in 

Kaggle [19]. Kaggle is a website that provides dataset for data scientists and machine learners. It allows us to 

download data sources in both CSV and JSON format. This dataset includes several months of data on daily 

trending YouTube videos from regions such as the USA, Great Britain, Germany, Canada, France, Russia, 

Mexico, South Korea, Japan and India. Data from each region is stored in a separate file. Data includes the 

video title, channel title, publish time, tags, views, likes and dislikes, description, and comment count. The 

excerpt of the dataset is shown in Table 1. 

 

 

Table 1. Trending statistics of YouTube videos 

Likes Dislikes 
Comment 

Count 

Comment 

Disabled 
Rating Disabled 

Video Error / 

Removed 
Views 

1,094,557 8,876 65,275 False False False 16,146,848 

252,432 10,936 9,291 False False False 16,154,588 
211,395 16,998 225,681 False False False 16,165,607 

170,269 5,343 12,663 False False False 16,178,195 

405,952 10,025 28,779 False False False 16,187,620 
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Figure 1 and Figure 2 shows data visualization based on the Ordinary Least Square Method and 

Online Gradient Descent, respectively. As seen in Figure 1 and Figure 2, the visualizations illustrate the 

number of instances (rows) in the datasets as well as the number of variables (columns). Basically it 

visualized the data in terms of their statistical properties such as mean, median, min, max, standard deviation, 

unique values, missing values as well as type of features of variables. 

 

 

 
 

Figure 1. Data visualization using ordinary least square method 

 

 

 
 

Figure 2. Data visualization using online gradient descent 

 

 

2.2.  Algorithms 

The evaluation metrics used in the experiments are Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE) and Coefficient of Determination. Mean Absolute Error (MAE) calculates the 

average difference between the estimated value and the predicted value. MAE is shown in (1). 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑗=1  (1) 

 

Root Mean Square Error (RMSE) is the squared root of the average difference between the 

estimated value and the predicted value. RMSE is shown in (2). 

 

𝑀𝐴𝐸 = √
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑗=1  (2) 

 

Coefficient of Determination is the number that determines whether a statistical model fits a data set. 

Coefficient of Determination is shown in (3). 

 

𝑅2 = 1 −  
𝑆𝑆𝐸𝑟𝑒𝑔_𝑙𝑖𝑛𝑒

𝑆𝑆𝐸𝑚𝑒𝑎𝑛_𝑦
 (3) 
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2.3.  Algorithms 

For this project, we will be using two algorithms which are the Ordinary Least Squares regression 

(OLS) [20] and the Online Gradient Descent Algorithms [21]. Ordinary Least Square regression, also 

commonly known as just linear regression, is used to minimize the sum of square of differences between the 

dependent and predicted value. It is used to predict the output’s values for new samples. The online gradient 

descent, also known as Stochastic Gradient Descent [22] is used to get a stochastic approximation of a 

gradient descent optimization. Stochastic means that it selects randomly instead of in order in a training set. 

For our project, there will be four variables. The independent variables will be the like count, dislike 

count and the comment count of YouTube videos while the dependent variable will be the view count. Using 

the OLS algorithm allows us to reduce positive and negative residual cancelling each other and finding a 

gradient that is close as possible to the dependent variables. The OLS algorithm allows us to illustrate our 

predictions on average and create a conclusion that follows from the regression line passing through the 

sample means.  

Using the Stochastic Gradient Descent algorithm, while it tends to be noisier due to the usage of 

only one selection from a training set, it still gives us the minimum and it has a much shorter training time. 

However, due to it’s stochastic nature, the path towards the global minimum is not as direct as a regular 

Gradient Descent algorithm would be, the gradient may instead possess a more ‘zig-zagged’ pattern along the 

gradient. The Stochastic Gradient Descent algorithm is designed for use in large sample sizes which is ideal 

for our project as our project concerns the view count of YouTube videos as the dependent variable. As the 

view count will normally be a large value, the algorithm will prove efficient in generating an output in a short 

amount of time. 

 

 

3. RESULTS AND DISCUSSION 

The purpose of the experiments is to compare the performance of Ordinary Least Squared Method 

and Online Gradient Descent Method in predicting the views of a YouTube Video. After running the 

experiment, the evaluation results are shown in Table 2. 

 

 

Table 2. Summary of results 

Metrics 
Ordinary Least 

Squared Method 
Online Gradient 
Descent Method 

MAE 10212065.610017 14219674.511022 

RMSE 14567739.474194 26761202.017444 
R2 0.681229 -0.033356 

 

 

The results showed that the MAE and RMSE using Ordinary Least Square Method are 

10,212,065.610 and 14,567,739.474 respectively. The MAE and RMSE when using Online Gradient Descent 

Method are 14,219,674.511 and 26,761,202.017 respectively. Just looking at the numbers indicates that the 

MAE and RMSE of both methods are absurdly high. However, by comparing both experiments, Ordinary 

Least Square Method has lower MAE and RMSE. In other words, Ordinary Least Square Method has a 

higher accuracy when it comes to predicting YouTube video views as compared to Online Gradient Descent 

Method because the difference between the estimated and the real values of Ordinary Least Square Method  

is lesser. 

Next, the R-Squared obtained when using Ordinary Least Square Method is 0.681, which means 

68.1% of the total variation is explained by the regression line using the independent variable. Meanwhile, 

the R-Squared from using Online Gradient Descent Method is -0.033. A negative R-Squared is rare and in 

this case, it shows that this method is not viable for this experiment and it does not fit the data at all. 

 

 

4. CONCLUSION 

Estimating YouTube’s view using Regression Method is possible using Ordinary Least Square 

Method compared to Online Gradient Descent Method but the prediction is only above average. This may be 

caused by the attribute selected or we may use data integration method in preprocessing phase to increase the 

accuracy of the prediction outcome. As stated in the algorithm section, despite being able to generate the 

output in a short amount of time, the generated output tends to be noisier, providing a less accurate result. 

This shows that the Ordinary Least Square method is more capable of providing a more accurate output due 

to the algorithm allowing us to find a gradient that is close as possible to the dependent variables despite 
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having an only above average prediction. In the future, we hope to inevestigate the impact of using multiple 

regression models such as in [23] and [24] or other regression-based models [25]. 
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