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 This paper presents the optimal multiple distributed generations (MDGs) 

installation for improving the voltage profile and minimizing power losses of 

distribution system using the integrated monte-carlo evolutionary 

programming (EP). EP was used as the optimization technique while monte 

carlo simulation is used to find the random number of locations of MDGs. 

This involved the testing of the proposed technique on IEEE 69-bus 

distribution test system. It is found that the proposed approach successfully 

solved the MDGs installation problem by reducing the power losses and 

improving the minimum voltage of the distribution system. 
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1. INTRODUCTION 

Distribute generation (DG) is a generation of electricity that normally located at the distribution 

network. This DG acts as auxiliary power sources, which associated to the grid at different places and 

basically satisfy the load demand that is required [1-3]. Nowadays, DG is vital with a specific end goal to 

secure and supply the power to the customer, deregulation of power market, decrease environment control 

and increase the power reliability [4-8]. DG is the idea of decentralizing the power generation by putting 

small generating units at or close the load center. During most recent couple of decades there have been 

many changes in the power system industry because improvement in DG advances, economic policy and 

rebuilding. With fast infiltration of DG into distribution systems, it is basic to evaluate its effects to power 

system precisely so that these DG units be connected in a way that avoid degradation of power quality, 

flexibility in control of the utility system and increase reliability. Then again, DG can possibly enhance 

distribution system performance and it ought to be encouraged [9-14]. In this way, it has turned out to be 

critical to study changes that DG acquires with a change its area or size of DG. 

In the past ten years, many scientists and engineers have proposed methods to solve this DG 

installation problem. In [15], hybrid particle swarm optimization (HPSO) technique to  find the optimal 

location and sizing for DG in 69-bus radial distribution system was proposed. The radial power flow 

algorithm (FFRPF) was integrated with particle swarm optimization (PSO) to complete the nonlinear power 

flow equations. The complex voltages at each bus were describe by power flow equations, and non-linear 

equality constraints needed to be satisfied during the optimization process is the power flowing in each line 
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of the distribution network. The proposed method was tested with fixed power factor of 0.85 and the real 

output power is being varied. This method is also used fixed power factor to obtain the optimal location of 

single DG. The results showed the location of the DG placement consistently, which is at bus 61. The 

proposed technique results both DG size and optimal bus location to minimize power losses. It clear indicates 

the satisfaction of the technique to solve the optimization matters.  

An analytical approach to determine the sizing of distributed generation and optimal placement with 

different size load models on radiance feeder was proposed in [16]. The load models include increasingly, 

centrally and uniformly distributions. 13-bus radial feeder system were used by this technique. There are two 

of different problem are being proposed. The optimal placement and the size of DG is equal to the size of 

load is the first case. For second case, both of optimal sizing and location are obtained. This algorithm used 

in this paper is grid search algorithm. It is used to determine the voltage profile and minimize the power 

losses either it is in within acceptable range or not. The results indicate that the placement of DG and optimal 

size are not the same for each load profile of distribution. The optimal location does not change with the 

chosen model and the optimal size of DG is highly influenced by the load models.  

Evolutionary Programming Method with Cooling-Banking Constraints was proposed in [17] for 

solving unit commitment problem (UPC). The main objective of UPC is to determine the status (on/off) of 

generating units in power system at the minimum operating cost to meet the load demand. The inputs for 

solving UCP includes the total operating hours, the cost parameters of each thermal system, volume and 

discharge limits for hydro system, also hydro coefficient of hydro system. This paper compares the total 

production cost for the methods of Evolutionary Programming (EP), Dynamic Programming (DP), and 

Evolutionary Programming with Cooling-Banking Constraint. The near optimal solution approached by using 

Evolutionary Programming with Cooling-Banking Constraint.  

In [18], Evolutionary programming (EP) was proposed by considering the power limit to satisfy 

combined economic emission dispatch (CEED). CEED is used to minimize both of the emission level 

simultaneously and operating fuel cost to meet the operational constraints and load demand. The results show 

EP technique has minimized the emission values and fuel cost. The results converge near to global minimum 

with less search account with high efficiency. This technique is very reliable since the quality of solutions 

generated by EP offers excellent results, with high accuracy and less computational time.  

In [19], evolutionary programming (EP) was proposed by using multi-objective function to allocate 

the capacitor banks in distribution system. The method is developed to get the optimal sizing and placement 

of the capacitor banks in IEEE 33-bus system of distribution. The placement of single capacitor, two 

capacitors and three capacitors are considered. Based on the results, three capacitors installation show the 

minimum losses of power. Hence, its clarified efficiency of the technique for reduction of power losses in the 

bus system.  

Monte carlo techniques very helpful in recreating networks with many coupled degrees of freedom, 

for example fluids, disordered materials, interacting particle systems, cellular Potts model and McKean-

Vlasov processes in physics-related issues. Other cases incorporate calculation of risk in business and in 

mathematic they modeling phenomena with critical uncertainty in inputs. In application to space and oil 

exploration issue. Monte carlo–based expectations of failure, cost overruns and schedule overruns are 

absolutely superior to alternative soft methods or human instinct. Other cases incorporate modeling 

phenomena with critical uncertainty in inputs such as the calculation of risk in business and, in math, 

assessment of multidimensional definite integrals with muddled boundary conditions [20-24] 

Monte Carlo experiments or strategies depend on repeated random sampling to acquire numerical 

outcomes and a wide class of computational algorithm. They are frequently utilized as a part of physical and 

numerical issues and are most valuable when it is troublesome or difficult to utilize different methodologies. 

Monte Carlo strategies are essentially utilized as a part of three particular issue classes: optimization, 

numerical integration and getting a draws from probability distribution [25]. 

This paper focuses on determining the optimal location and size of MDGs using Integrated Monte 

Carlo-Evolutionary Programming (IMC-EP). This research looks on how the optimal location and sizes of 

the MDGs can affect the power losses and voltage stability of the distribution system. 

 

 

2. METHODOLOGY 

Integrated Monte Carlo-Evolutionary Programming (IMC-EP) is the optimizer for this MDGs 

installation problem. There are two cases with different objective function in this study. The first case 

objective function is to minimize power losses and the second case objective function is to improve minimum 

voltage. Figure 1 shows the flowchart of algorithm for power losses (Plosses) as objective function, while 

Figure 2 shows the the flowchart algorithm of Minimum voltage (Vmin) as objective function. The details of 

these algorithms are described in Section 2.1 to Section 2.10. 
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Figure 1. Flow chart of Plosses as objective function Figure 2. Flow chart of Vmin as objective function 

 

 

2.1. Pre-optimization 

Condition before optimization process is taken. It represents the initial condition of the 69-Bus 

system. In this paper, the initial condition of minimum voltage (Vm) versus load increment and power losses 

(Plosses) versus load increment are taken for the pre-optimization stage. This is important to find the starting 

point for the optimal solutions search in the post-optimization. The load increment is subjected from 100% 

until 200% with random bus number. 

 

2.2. Post-optimization 

In this stage, Integrated Monte Carlo-Evolutionary Programming for solving DG installation 

problem is implemented. The DG installation problem is solved based on two objective functions: 

minimizing power losses and Improving voltage profile. It is decided to have three locations of MDGs in the 

69-Bus system based on its size. And for the all three locations, it will be installed with real and reactive 

power sources. The processes of solving it are explained in detail in the following section. 

 

2.2.1. Initialization 

This part is conducted to generate random location of bus data, represented by L1, L2 and L3 using 

Monte Carlo Simulation to find the best random number of MDGs locations. Subsequently, six variables of 

real power (P) and reactive power (Q) are generated randomly. These variables P1, P2, P3 and Q1, Q2, Q3 are 
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assigned as real and reactive power generation of MDGs. The random generated number of real power (P) is 

between 1MW to 2MW and random generated number of reactive power (Q) is between 0Mvar to 1.5Mvar. 

 

2.2.2. Fitness 1 calculation 

From the initialization variables generated, they are used to calculate the fitness of the optimization. 

As mentioned earlier, there are two objective functions which are minimizing power losses (Plosses) and 

improving minimum voltage (Vmin).  

 

2.2.3. Mutation 

During this process, offspring/children are produced using Gaussian mutation method. The Gaussian 

mutation equation used to produce the offspring is as shown in (1). All the accepted parents from fitness 1 

calculation are mutated to produce the new set of population. 
 

𝑥𝑖+𝑚,𝑗 = 𝑥𝑖,𝑗 + 𝑁(0, 𝛽(𝑥𝑗𝑚𝑎𝑥 − 𝑥𝑗𝑚𝑖𝑛) (
𝑓𝑖

𝑓𝑚𝑎𝑥
))  (1) 

 

where: 

𝑥𝑖+𝑚,𝑗  is mutated parent individual 

(offspring) 
𝑥𝑖𝑗   is parent individual 

𝛽  is mutation scale, 0 < 𝛽 < 1 𝑥𝑗𝑚𝑎𝑥  is maximum random number for every variable 

𝑥𝑗𝑚𝑖𝑛  is minimum random number for 

every variable 
𝑓𝑖  is fitness for ith random number 

𝑓𝑚𝑎𝑥  is maximum fitness   

 

2.2.4. Fitness 2 calculation 

Again, the fitness is calculated using the offspring population of the mutation process. The fitness 

calculated is based on the objective function of the optimization. 

 

2.2.5. Combination 

Parents and offspring populations are combined at this stage. Matrix data become double in size, 

from 20 data to 40 data. This combined population will undergo selection process for the purpose of selecting 

best individuals. 

 

2.2.6. Selection 

For the power losses as objective function, the combined individuals are arranged in ascending 

order. For the minimum voltage objective function, the combined individuals are arranged in  

descending order. 

 

2.2.7. Define new generation 

For power losses, 20 individuals that results in producing lowest power losses are selected for the 

new generation. For power losses, 20 individuals that results in producing highest minimum voltage are 

selected for the new generation. 

 

2.2.8. Convergence test 

This process will determine either the maximum and minimum fitness fulfil the desired requirement 

or not. If fitness does not meet the requirement, the process will be repeated again to the mutation process. 

The algorithm is considered converged if the difference between the first fitness value with the twentieth 

fitness value is 0.00001. 

 

Max. Fitness–Min. Fitness<0.00001      (2) 

 

 

3. RESULTS AND DISCUSSION 

The optimization results of this MDGs installation problem are divided into two parts based on their 

objective function. 

 

3.1.  Case 1: Power losses as objective function 

Table 1 shows the optimal locations and sizes of MDGs for the power losses as the objective 

function. The locations of MDGs implemented are different with the load increment based on the results. It is 
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important to determine the load demand before installing the MDGs, since the reliability of MDGs differs in 

the location. This technique can be used in research as the electrical power consumption is expected to 

increase drastically for the next decade. The optimization converged after 8 iterations.  

 

 

Table 1. Post-optimization (Plosses as objective function) 
Pre-optimization Post-optimization 

Load 

increment 

(%) 

Plosses 
(Kw) 

Vmin 
(p.u) 

Plosses 
(Kw) 

Vmin 
(p.u) 

Location Size 

L1 L2 L3 
DG1 
P1 

(MW) 

DG1 
Q1 

(Mvar) 

DG2 
P2 

(MW) 

DG2 
Q2 

(Mvar) 

DG3 
P3 

(MW) 

DG3 
Q3 

(Mvar) 

Base Case 

(100) 
0.4088 0.8442 0.0761 0.9599 60 50 56 1.7046 1.3271 1.7399 0.7857 1.0173 0.6932 

125 0.4629 0.8363 0.0787 0.9599 60 50 56 1.7047 1.3272 1.7400 0.7857 1.0174 0.6933 

150 0.5272 0.8281 0.0818 0.9599 60 50 56 1.7048 1.3273 1.7401 0.7858 1.0175 0.6934 

175 0.6026 0.8193 0.0853 0.9599 60 50 56 1.7048 1.3274 1.7401 0.7859 1.0175 0.6934 
200 0.6901 0.8100 0.0893 0.9599 60 50 56 1.7052 1.3277 1.7403 0.7861 1.0180 0.6939 

 

 

Figure 3 shows the load increment versus power losses before and after optimization. It shows that 

the power losses are increasing drastically with the increasing of load increment. After optimization, power 

losses are minimized across of all the load increment. It appears that the optimization greatly improved the 

system’s performance. The importance of sufficient reactive power is to provide and maintain the acceptable 

voltages throughout the system. Reactive power injected by MDGs support the voltage that must be 

controlled for the system reliability. Insufficient reactive power will cause the minimum voltage to drop. The 

real power must also be optimized since the flow of reactive power will consume real power thus causing of 

higher power losses. Hence, it is important to optimize the real power injected to minimize the power losses. 

Both generated powers contribute towards reliability of system performance with the optimized sizing and 

location of MDGs. 

 

3.2.  Case 2: Vmin as objective function 

Table 2 shows the optimal locations and sizes of MDGs for Vmin as objective function. It appears 

that the proposed technique greatly improved the power losses and minimum voltage after optimization. 

Based on the results, the locations of MDGs are different with the load increment. The power losses lie 

between the ranges of 0.1 MW to 0.9kW, which is slightly higher than the power losses in case 1. All of the 

minimum voltage approach 0.95p.u. Minimum voltage values indicate voltage stability which leads towards 

stability system even the load is increasing. The optimization of the sizing and location converged after  

5 iterations. 

Figure 4 shows the load increment versus minimum voltage before and after optimizations. It shows 

the pattern of decreasing in minimum voltage as the load increases before optimization. After being 

optimized, minimum voltage is improved significantly and constant across all of the load increment. After 

installing MDGs, the reactive power injected will support the minimum voltage in the system. Decreasing of 

reactive power causes the voltage to drop. By optimizing the reactive power, the voltage required to deliver 

the real power to the end consumer will be improved significantly. 

 

 

Table 2. Post-optimization (Vmin as objective function) 
Pre-optimization Post-optimization 

Load 
increment 

(%) 

Plosses 

(Kw) 

Vmin 

(p.u) 

Plosses 

(Kw) 

Vmin 

(p.u) 

Location Size 

L1 L2 L3 

DG1 

P1 
(MW) 

DG1 

Q1 
(Mvar) 

DG2 

P2 
(MW) 

DG2 

Q2 
(Mvar) 

DG3 

P3 
(MW) 

DG3 

Q3 
(Mvar) 

Base Case 

(100) 
0.4088 0.8442 0.1767 0.9479 47 48 65 1.3835 0.0519 1.5194 0.0802 1.8310 0.1767 

125 0.4629 0.8363 0.1863 0.9475 47 48 65 1.3835 0.0519 1.5194 0.0802 1.8310 0.1863 

150 0.5272 0.8281 0.1971 0.9471 47 48 65 1.3835 0.0519 1.5194 0.0802 1.8310 0.1971 

175 0.6026 0.8193 0.2092 0.9467 47 48 65 1.3835 0.0519 1.5194 0.0802 1.8310 0.2092 
200 0.6901 0.8100 0.9565 0.9451 22 36 57 1.8337 1.2025 1.7262 0.9474 1.3290 0.9565 
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Figure 3. Load increment against power losses Figure 4. Load increment against minimum voltage 

 

 

3.3. Comparison of objective functions 

Table 3 shows the comparison of power losses between the two objective functions. Based on the 

result, Plosses objective function performs better for the load increment until 200% as it showing lower losses 

compared to Vmin objective function. Hence, it is concluded that Plosses as objective function is more favorable 

to be used to determine minimum power losses in the IMC-EP optimization technique. 

Table 4 shows the comparison of minimum voltage for the objective functions of P losses and Vmin. 

Based on the result, Plosses as objective function performs better for the load increment until 200% as it’s 

values approaching to 1pu. While Vmin objective function for load increment does not meet the expected 

value, where the expected Vmin in this optimization must be greater than 0.95p.u. 
 

 

Table 3. Comparison between objective functions to 

determine power losses 

 Table 4. Comparison between objective functions 

to determine minimum voltage 

Load increment 

(%) 

Plosses/KW 

(Plosses as obj. function) 

Plosses/KW 

(Vmin as obj. function) 

 
Load increment 

(%) 

Vmin/p.u 
(Plosses as obj. 

function) 

Vmin/p.u 
(Vmin as obj. 

function) 

100 0.0761 0.1767  100 0.9599 0.9479 
125 0.0787 0.1863  125 0.9599 0.9475 

150 0.0818 0.1971  150 0.9599 0.9471 

175 0.0853 0.2092  175 0.9599 0.9467 
200 0.0893 0.9565  200 0.9599 0.9451 

 

 

4. CONCLUSION 

The performances before and after the implementation of MDGs on 69-Bus system have been 

presented in this paper. Integrated Monte Carlo-Evolutionary Programming (IMC-EP) optimization 

technique has shown its capability to find the optimal location and sizes of MDGs with the objective to 

improve the voltage profile and reduce the real power losses in the distribution system. All of the objectives 

in this study have been significantly achieved. 

However, there is still room for improvement. For instance, instead of using Gaussian mutation to 

produce offspring, other optimization technique such as particle swarm optimization (PSO) and kinetic gas 

molecule optimization (KGMO) can be integrated into EP to replace the Gaussian mutation to get fitter 

individuals of offspring. Furthermore, other types of DG also can be installed in the system to see more 

comprehensive MDGs installation solution. 
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