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 This paper presents the designs of phase shifters for multi-beam Nolen 

matrix towards the fifth generation (5G) technology at 26 GHz. The low-

cost, lightweight and compact size 0° and 45° loaded stubs and chamfered 

90°, 135° and 180° Schiffman phase shifters are proposed at 26 GHz. 

An edge at a corner of the 50 Ω microstrip line Schiffman phase shifter is 

chamfered to reduce the excess capacitance and unwanted reflection. 

However, the Schiffman phase shifter topology is not relevant to be applied 

for the phase shifter less than 45° as it needs very small arc bending at 26 

GHz. The stubs are loaded to the phase shifter in order to obtain electrical 

lengths, which are less than 45°. The proposed phase shifters provide return 

loss better than 10 dB, insertion loss of -0.97 dB and phase difference 

imbalance of ± 4.04° between 25.75 GHz and 26.25 GHz. The Rogers 

RT/duroid 5880 substrate with dielectric constant of 2.2 and substrate 

thickness of 0.254 mm is implemented in the designs. 
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1. INTRODUCTION 

Phase shifter is used extensively nowadays as a passive component, which able to provide a specific 

phase difference between two output ports of main line and reference line that specifically plays a vital role 

in beamforming network such as Nolen [1-5], Blass [6-10] and Butler matrices [11-15]. Thus to enhance the 

capability in phase shifting, myriad types of phase shifters have been studied and proposed by researchers. 

One of the designs, as reported in [16], utilized mounting tunable components, which are varactor diodes. 

The adjustable phase differences between -157° and 193° at 1.5 GHz are achieved by varying bias voltages 

of the varactor diodes. This design has the simulated and measured return loss and insertion loss, which are 

better than 10 dB and 2.6 dB for distinct phase differences between 1 GHz and 2 GHz, respectively. The high 

insertion loss especially is mainly caused by the diodes’ parasitic capacitances. In addition, the presence of 

the varactor diodes increases the complexity of the circuit configuration. 

In order to design a simpler configuration of the phase shifter without any active component, a 

square-shaped phase shifter using multi-layer technology is proposed in [17]. The performance degradation 

of the return loss, insertion loss and phase difference at less than 5.1 GHz have occurred might be due to the 

issues of misalignment and presence of air gap between the substrate layers. In order to circumvent this issue, 

a single layer phase shifter consisting a T-shaped open stub loaded transmission line (main line) at the center 

of the half wavelength transmission line and a reference line using Schiffman uniform line topology in [18] 
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has been designed. The performance degradation of the proposed phase shifter at less than 2.5 GHz and 

beyond 5.5 GHz is occurred due to the junction discontinuities of the loaded T-shaped open stub. 

Another simpler configuration of the phase shifter using single layer technique based on a short-

circuited stub as well as a weak-coupled line is proposed in [19]. The reference line is bent due to a long 

electrical length. The simulated and measured return loss and insertion loss responses of the proposed phase 

shifter are better than 10 dB and less than 0.5 dB between 0.66 GHz and 2.56 GHz, respectively. 

The fabrication limitation for the minimum 0.1 mm realizable gap between the edge-coupled lines 

contributes discrepancies in the return loss and insertion loss responses at less than 0.66 GHz and beyond 

2.56 GHz.  Meanwhile, another single layer phase shifter design with a fixed 45° Schiffman meander line 

topology is proposed at 35 GHz in [20] by using the same bending technique as reported previously in [19]. 

The configuration design is very simple and easy to fabricate. The simulated return loss and insertion loss 

show better than 10 dB and approaching 0 dB at 35 GHz.  The simulated phase difference characteristic is 

45° at 35 GHz.  

In this paper, the designs of 0° (reference line), 45°, 90°, 135° and 180° (main line) phase shifters 

specifically for multi-beam Nolen matrix are presented using single layer technique at 26 GHz utilizing 

Rogers RT/duroid 5880 substrate with dielectric constant of 2.2 and substrate thickness of 0.254 mm. 

The elliptical stub and chamfered rectangular stub are introduced for 0° and 45° phase shifters, whereas 

Schiffman phase shifter using arc bending approach is used for the remaining 90°, 135°, and 180° phase 

shifters. 

 

 

2. PHASE SHIFTER DESIGN 

Two loaded stubs and six Schiffman phase shifters are designed at 26 GHz as depicted in Figure 1, 

which then can be integrated with couplers in developing the proposed Nolen matrix. The Schiffman phase 

shifter topology is not applicable to be applied for the phase shifters less than 45° as it needs very small arc 

bending at a super high frequency, which difficult to be fabricated due to the fabrication limitation of the 

minimum 0.1 mm for the microstrip width. Hence, the design approach using stub loaded is introduced for 0° 

(reference line) and 45° phase shifters of the switched-beam Nolen matrix. The stubs are loaded to the 50 Ω 

transmission line in order to obtain electrical lengths, which are less than 45°. Dimensions of x-radii (rx and 

rx2) and y-radii (ry and ry2) of the elliptical stubs as depicted in Figure 1 (a) and Figure 1 (b) are optimized to 

enhance flatness of the phase characteristic for the 0° (reference line) and 45° phase shifters, respectively. 

The length and width of the chamfered rectangular stubs for the 45° phase shifters are optimized to improve 

the impedance matching of the Nolen matrix. 

Nevertheless, the stubs loaded approach is not suitable to be applied for the remaining phase shifters 

with electrical lengths greater than 45° as it needs large space for extending the radius of elliptical stubs, rx2. 

Hence, the Schiffman phase shifter using arc bending approach is proposed for the remaining phase shifters 

(90°, 135° and 180°). The widths of the Schiffman phase shifters, Wt remain same as the widths of feeding 

transmission lines but the lengths of the Schiffman phase shifters, Lsx are changing relative to the required 

phase values. These corresponding extended lengths of Schiffman phase shifters are bent into arcs. The phase 

difference of the phase shifters that due to the different length between main and reference transmission line 

that can be determined by using (1) [20-21]: 

 

Phase difference, ΔФ=
          

  
 (1) 

 

where Lm, Lr and     are the main length, reference length, and guide wavelength, accordingly. The main 

length, Lm and reference length, Lr are optimized to obtain the desired phase difference between the main line 

and the reference line. 

As seen in Figure 1 (c), the edge at a corner of the 50 Ω microstrip line Schiffman phase shifter is 

chamfered with detailed illustration as shown in Figure 2 for the purpose of achieving the best performance 

result and less power loss of the device. The chamfering edge also known as mitred bend technique is 

employed in the design of Schiffman phase shifter. A mismatch loss will occur as the right-angled bend of 

the conventional microstrip line increases a small amount of capacitance. Usually, the transmission line is 

bent at 45° in order to reduce the associated mismatch [22]. In addition, the chamfering edge at the corner of 

the microstrip line reduces the excess capacitance and unwanted reflection as well as readjust the microstrip 

line back to the 50 Ω. This chamfering edge will provide good compensation for the super high 

frequency. Referring to Figure 2, the chamfering edge at each corner of the 50 Ω microstrip line Schiffman 

phase shifter can be deployed with optimum values of chamfering dimensions when the condition 

of 0.5 ≤ Wt/h ≤ 2.75 and εr < 25 is selected as given by (2) to (5) [23-24]: 
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D=Wt √  (2) 

x=Wt √  (0.52 + 0.65  
     

  

   (3) 

  

A=√  (x - 
 

 
  (4) 

  

M=(52 + 65        
  

   × 100% (5) 

 

where D, Wt, x, h, A and M are the diagonal length for the outer corner of the unchamfered bend, the width of 

the 50 Ω transmission line, diagonal length for the inner corner of the unchamfered bend, substrate thickness, 

compensated length for optimal bend and optimum miter percentage, respectively. 

 

 

   
   

(a) (b) (c) 

   

Figure 1. Layout of the phase shifters, (a) 0° stub loaded phase shifter (reference line), 

(b) 45° stub loaded phase shifter (main line), (c) Schiffman phase shifter (main line) 
 

 

 
 

Figure 2. Dimension for a chamfering edge at a corner of 50 Ω microstrip line [23] 
 

 

However, the optimum values of the chamfering dimension can be acceptable if the optimum miter 

percentage, M is approximately 50% when the condition of Wt/h ≥ 2.75 and εr ≤ 25. The optimum miter 

percentage, M can be calculated using (5) [25]. The optimized dimensions of the proposed phase shifters are 

listed in Table 1. The performance of the designed phase shifters will be discussed in the next section. 
 

 

Table 1. Optimized dimensions of the proposed phase shifters 

Phase Shifters 
Dimension (mm)  

                            

Stub loaded 0° phase shifter (reference line) 0.85 0.56       

Stub loaded 45° phase shifter   1.23 0.56 3.20 0.50   

Schiffman 90° phase shifter       1.75 2.79 
Schiffman 135° phase shifter       2.25 2.79 

Schiffman 180° phase shifter (Left)       3.04 2.79 

Schiffman 180° phase shifter (Right)       0.97 2.79 
Schiffman 0° phase shifter (reference line) 0.85 0.56       

Additional Schiffman 0° phase delay   1.23 0.56 3.20 0.50   
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3. RESULTS AND ANALYSIS 

The performance of the proposed 45°, 90°, 135°, and 180° phase shifters are assessed across the 

designated frequency interval between 25.75 GHz and 26.25 GHz and plotted in Figure 3 to Figure 6, 

respectively. The phase differences of the phase shifters ranging from 45° to 180° are compared to reference 

lines of 0°. As seen in Figure 3, reflection coefficients, Sii (i=1, 2, 3, 4) of the proposed 45° stub loaded phase 

shifter are lower than -10 dB across the operated frequency interval between 25.75 GHz and 26.25 GHz, 

which indicate almost 90 % input power is delivered to the antenna and reflected power is less than 10 %. 

Meanwhile, the transmission coefficients, S21 and S43 are approximately -0.48 dB between 25.75 GHz and 

26.25 GHz. The phase difference between the main line and the reference line is 45° ±1.63° between 25.75 

GHz and 26.25 GHz. At the center frequency of 26 GHz, both reflection coefficients, S11 and S22 of the 

proposed 45° stub loaded phase shifter are -10.37 dB, whereas both reflection coefficients, S33 and S44 are -

36.73 dB. The transmission coefficients, S21 and S43 are -0.47 dB and -0.07 dB at 26 GHz, respectively. 

Whilst, the phase difference between the main line and the reference line is 44.49°±1.63° at 26 GHz. 

Therefore, the simulation results of the proposed 45° stub loaded phase shifter show well performance at the 

designated frequency of 26 GHz in comparison to the specifications as summarized in Table 2. 

 

 

 
 

Figure 3. Results of S-parameters and phase difference for 45° stub loaded phase shifter 

 

 

Referring to Figure 4, across the designated frequency range between 25.75 GHz and 26.25 GHz, 

the reflection coefficients, S11, S22, S33 and S44 of the proposed 90° Schiffman phase shifter in Figure 2 (c) are 

less than -10 dB. Meanwhile, the transmission coefficients, S21 and S43 are approximately -0.47 dB between 

25.75 GHz and 26.25 GHz. The phase difference between the main line and the reference line is 90° ±1.05° 

across 25.75 GHz to 26.25 GHz. As seen at 26 GHz, both reflection coefficients, S11 and S22 of the 90° 

Schiffman phase shifter are -10.45 dB, whereas the reflection coefficients, S33 and S44, -21.17 dB. The 

transmission coefficients, S21 and S43 are -0.46 and -0.36 dB at 26 GHz, respectively.  Whilst, the phase 

difference performance between the main line and the reference line is 90° at 26 GHz. Regarding the 

obtained results, the proposed 90° Schiffman phase shifter satisfies good agreement at 26 GHz. 

The S-parameter and phase difference performances of the proposed 135° Schiffman phase shifter 

are plotted in Figure 5. The excellent results of reflection coefficients at each port, which are S11, S22, S33 and 

S44 for the proposed 135° Schiffman phase shifter can be observed in Figure 5 to be lower than -10 dB 

between 25.75 GHz and 26.25 GHz. Whilst, the transmission coefficients, S21 and S43 are roughly -0.53 dB 

across the designated frequency range. The phase difference between the main line and the reference line is 

135° ± 1.59° between 25.75 GHz and 26.25 GHz. As seen at 26 GHz, the respective reflection coefficients, 

S11, S22, S33 and S44 of the 135° Schiffman phase shifter are -10.45 dB, -10.45 dB, -26.03 dB and -26.05 dB.  

The simulated S21 is -0.46 dB, whereas the simulated S43 is -0.51 dB at 26 GHz. Whilst, the phase difference 

performance between the main line and the reference line is 135° at 26 GHz. Therefore, the results of the 

proposed 135° Schiffman phase shifter indicate well phase shifting, transmission and return loss performance 

as required at 26 GHz. 
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Figure 4. Results of S-parameters and phase difference for 90° Schiffman phase shifter 
 

 

 
 

Figure 5. Results of S-Parameters and phase difference for 135° Schiffman phase shifter 
 

 

Meanwhile, as observed in Figure 6, the reflection coefficients, S11, S22, S33 and S44 at the 

respective ports of the proposed 180° Schiffman phase shifter are lower than -10 dB. Whilst, the transmission 

coefficients, S21 and S43 are almost -0.97 dB between 25.75 GHz and 26.25 GHz. The phase difference 

between the main line and the reference line is 180° ± 4.04° between 25.75 GHz and 26.25 GHz. At the 

center frequency of 26 GHz, both reflection coefficients, S11 and S22 of the 180° Schiffman phase shifter are   

-10.45 dB, whereas both reflection coefficients, S33 and S44 are -21.18 dB. The transmission coefficients, 

S21 and S43 are -0.13 dB and -0.97 dB at 26 GHz, respectively. Whilst, the phase difference between the 

main line and the reference line is 180.22° at 26 GHz. As seen, the proposed 180° Schiffman phase shifter 

offers a good performance at 26 GHz as specified. 
 
 

 
 

Figure 6. Results of S-parameters and phase difference for 180° Schiffman phase shifter 
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The performance results of the phase shifters are summarized in Table 2. As seen, the reflection 

coefficients, Sii (i=1, 2, 3, 4) of each phase shifter is less than -10 dB. Whilst, the amplitude imbalances of the 

S21 and S43 are less than -0.97 dB. The phase imbalances for the phase differences with respect to the 

reference lines of the phase shifters are less than 4.04°. Conclusively, all assessed results of the proposed 

phase shifters are satisfactorily met the design requirements. 

 

 

Table 2. Summary of the proposed phase shifters’ performances between across 25.75 GHz to 26.25 GHz 
Component Parameter Specification Performance 

45° phase 

shifter 

Sii (i=1, 2, 3, 4) ≤ -10 dB ≤ -10 dB 

S21 and S43 0 dB ~ -1 dB   -0.48 dB 

Phase difference with respect to reference line 45° ± 5° 45° ± 1.63° 

90° phase 

shifter 

Sii (i=1, 2, 3, 4) ≤ -10 dB ≤ -10 dB 

S21 and S43 0 dB ~ -1 dB  -0.47 dB 

Phase difference with respect to reference line 90° ± 5° 90° ± 1.05° 

135° phase 

shifter 

Sii (i=1, 2, 3, 4) ≤ -10 dB ≤ -10 dB 

S21 0 dB ~ -1 dB  -0.53 dB 

Phase difference with respect to reference line 135° ± 5° 135° ± 1.59° 

180° phase 

shifter 

Sii (i=1, 2, 3, 4) ≤ -10 dB ≤ -10 dB 

S21 and S43 0 dB ~ -1 dB  -0.97 dB 

Phase difference with respect to reference line  180° ± 5° 180° ± 4.04° 

 

 

4. CONCLUSION 

The 0°, 45°, 90°, 135° and 180° phase shifters that capable to operate between 25.75 GHz and 26.25 

GHz for Nolen matrix application have been presented. The employment of single layer technique eases the 

fabrication process at the super high operating frequency. All results of the proposed phase shifters are 

satisfactorily met the design requirements, wherein the input return loss and insertion loss for each phase 

shifters are better than 10 dB, as well as less than -0.97 dB, respectively and the phase deviation for the 

proposed phase shifters is ± 4.04° across the designated frequency range between 25.75 GHz and 26.25 GHz. 

Therefore, the proposed two loaded stubs and three Schiffman phase shifters are suitable to be integrated 

with couplers in forming the Nolen matrix at 26 GHz and. In addition, they can be good candidates to be 

applied to other millimetre wave 5G band beamforming applications due to their simple design configuration, 

lightweight, low insertion loss, and low phase error. 
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