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 Moore's prediction has been used to set targets for research and development 

in semiconductor industry for years now. A burgeoning number of 

processing cores on a chip demand competent and scalable communication 

architecture such as network-on-chip (NoC). NoC technology applies 

networking theory and methods to on-chip communication and brings 

noteworthy improvements over conventional bus and crossbar 

interconnections. Calculated performances such as latency, throughput, and 

bandwidth are characterized at design time to assured the performance of 

NoC. However, if communication pattern or parameters set like buffer size 

need to be altered, there might result in large area and power consumption or 

increased latency. Routers with large input buffers improve the efficiency of 

NoC communication while routers with small buffers reduce power 

consumption but result in high latency. This paper intention is to validate that 

size of buffer exert influence to NoC performance in several different 

network topologies. It is concluded that the way in which routers are 

interrelated or arranged affect NoC’s performance (latency) where different 

buffer sizes were adapted. That is why buffering requirements for different 

routers may vary based on their location in the network and the tasks 

assigned to them. 
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1. INTRODUCTION  

The driving force behind Integrated Circuit (IC) technology has been Moore’s law for almost five 

decades. Moore predicted that the number of transistors per square inch on integrated circuit will be doubled 

every year since the integrated circuit first invention in 1970s. Based on Moore’s prediction, the future 

integrated systems will contain billions of transistors with hundreds of IP core to undergo complex 

multimedia delivery and networks services. In 1990s, System-on-Chip (SoC) has been introduced where 

many components such as microprocessor, custom IP and analog integrated in a single chip. As SoC 

complexity elevates, it is difficult to encapsulate the system’s functionality with fully deterministic operation. 

It is expected that interconnection technology has become a limiting factor in future SoC designs. A 

possible approach for coping with this problem is to use an on-chip interconnection network instead of  

ad-hoc global wiring. In order to extend the relevancy of Moore’s law, network-on-chip (NoC) architectures 

has been proposed replacing shared bus in SoC. NoC technology is often called “a front-end solution to a 

back-end problem” [1]. These days, many NoC prototypes have been designed and analyzed by the 

educational community. Most of them are focusing on different aspects of the communication infrastructure 

such as the quality-of-service achievement, synchronization method of the routers, decreasing power 
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consumption, and application mapping process [2]. In this paper, the focus is on the relationship between 

different buffer sizes in virtual channel router that affect NoC performance in several NoC topology. 

 

 

2. WHAT IS NOC? 

NoC technology is already being endorsed in the majority of large SoCs for intelligible integration 

in the system at the IP-assembly functional verification level. NoC architecture is comprised of three main 

building blocks. As seen in Figure 1, the first and utmost essential block is the links that physically connect 

the nodes and eventually handle the communication. The other block is the router. Router is responsible for 

communication protocol in NoC architecture (the decentralized logic behind the communication protocol). 

Another building block is the network adapter (NA) or network interface (NI). The logic connection between 

the IP cores and the network are prepared by NI, considering each IP is allowed to have an exclusive 

interface protocol with respect to the network.  

NoC can be perceived as an evolvement of the segmented busses where the router acts as a “much 

smarter buffer” [3]. Router in NoC incipiently receives packets from the shared links and then forward the 

packets according to the address acquainted in each packet to the core attached to it or to another shared link. 

The protocol alone has its place of a set of policies construed during the design to deal with common 

situations during the transmission of a packet, such as two or more packets arriving at the same time or 

disputing the same channel, avoiding deadlock and livelock situations, reducing the communication latency, 

and increasing the throughput. 

Router plays a significant role in NoC. Figure 2 shows a typical NoC router architecture. NoC router 

commonly consists of a controller, routing units, crossbar switch and ports of input and output. The controller 

includes a switch allocator and virtual channel allocator. Virtual channel allocator usually used when there 

are virtual channels in input port. Each virtual channel in input port has their own buffer and output ports 

connected directly to the outgoing links [4]. The terms router and switch are frequently used as one and the 

same, but the term switch can also address the internal switch matrix that actually connects the router inputs 

to its outputs. Besides, NoC router also contains a logic block that implements the flow control policies 

(routing, arbiter, etc.) which defines the overall strategy for moving data through the NoC. 
 
 

  
  

Figure 1. NoC main building block Figure 2. Basic router in NoC 

 

 

3. VIRTUAL CHANNEL AND BUFFERING IN NOC 

3.1. Virtual channel router 

Virtual channel (VC) is a means to transport data packets over a network as if there are dedicated 

physical transport between the source and destination. The main goal for virtual channel is to reduce 

congestion when two or more flows compete for the same path in the network [5]. A virtual channel splits a 

single channel into multiple channels to provide two different roads for routing packets process [6]. 

The block diagram of a typical virtual channel router is shown in Figure 3. This router can be 

described based on two functionalities: the datapath and control plane [7]. The datapath is made of the input 

and output units, and a switch that connect the input unit to the output unit. The main function of these 

modules is to perform the allocation of packets. For each packet, router will assign output port while  

virtual-channel allocator will locate output virtual channel. The control plane, on the other hand, performs 

route computation, virtual-channel allocation and switch allocation. A control plane is very important in 

coordinating the packet’s movement through datapath resources. 

The input and output units of the router consist of input control state with buffers. For each input 

unit, five state fields have been used to trace each virtual channel status. There are global state (G), route (R), 
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output VC (O), pointers (P) and credit count (C). Similarly, output virtual channel state fields are represented 

by three vectors: global state (G), input VC (I) and credit count (C). Route computation is the first step to 

deliver a packet through the router. Each flit of the packet will be forwarded over a virtual channel once a 

route is fixed and a virtual channel is allocated. The flits are forwarded to the relevant output unit using 

switch allocator by allocating a time slot on the switch and output channel. Later on, those flits will be 

forwarded to the next router stated in the packet’s predestined path. Route computation and virtual-channel 

allocation are performed once per packet [7]. Contrary, switch allocation is performed by per-flit basis. For 

this reason, R, O and I field states are updated once per packet while P and C are updated at flit’s frequency. 

 

3.2. Example of VC operation  

Virtual channels depend upon the inclusion of buffers, separately for each VC at the receiver’s side. 

At the same time, it is essential calling for enhancements to the flow control signaling to harbor the multiple 

and independent flows travelling in each VC. 

Figure 4 presents an example of a three VC processing data transfer. Flits from only one VC can be 

sent for one clock cycle even though several VCs are active at the sender; only one valid (i) signal is avouch 

per cycle. In order to pick the flit that will pass through the link, some form or arbitration will be conducted 

to choose one VC from those that contain valid flits. At the meantime, the receiver may be ready to obtain the 

flits which possibly belong to any VC. There is no limitation on how frequent ready (j) signals can be 

asserted per cycle. Both the buffering resources and the flow-control handshake wires have been manifolded 

with the number of VCs in VC flow control. 
 
 

 

 

  

Figure 3. Virtual channel router general 

 structure [8] 

Figure 4. Example of three VC operations 

 

 

 

3.3. Buffers in NoC router 

In communication infrastructure, the router’s buffer space minimization and simplified buffer 

control mechanisms are two important features of the NoC design, as they directly affect the overall  

area-power overheads and network latency [8]. Traditional virtual channel-based routers use buffers for 

deadlock freedom and performance optimization. While total storage is optimized for performance, actual 

buffer occupancies can be very low. 

Buffer size and allocation policy play an important role in the performance and efficiency of a NoC 

router [9-11]. Furthermore, studies have shown that buffers can consume as much as up to 79% of NoC 

router power [8]. Thus, efficient management is required to ensure high performance and low power. Traffic 

in NoCs is not uniformly distributed [12]. Some nodes play a bigger role in generating and consuming traffic, 

while others have a smaller part. That is why buffering requirements for different routers may vary based on 

their location in the network and the tasks assigned to them. Besides, such requirements are subject to change 

during different phases of a single application. 

 

 

4. EXPERIMENTAL RESULTS 

In this experiment, VC routers with different size of buffers were evaluated to understand the effect 

of the buffer size in different type of NoC topologies. For the evaluation in this paper, Booksim 2.0 simulator 
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is being used. The performances are calculated in terms of latency. Latency is the time required for a packet 

to pass through the network from source node to destination node [7]. The calculations for latency have 

mainly focused on the zero-load latency of the network. Latency which is due to contention with other 

packets over shared resources often times being ignored. Once contention latency is included through 

modeling or simulation, latency becomes a function of offered traffic [13, 15]. 
 

                                                                   (1) 
 

The fixed variable in this experiment is the number of VC used by the router, which is four VC. VC 

behaves similar to having multiple wormhole channels present in parallel. However, adding extra VC to each 

link does not add bandwidth to the physical channel [14]. It just enables better sharing of the physical 

channel by different flows. For the buffer sizes, several sizes of buffer used are 4, 8, 16 and 32. Topologies 

arranged in this experiment are topologies that are widely used in the study of NoC which include torus 

topology, mesh topology, flattened-butterfly topology and fat-tree topology. These topologies are built-in 

topologies generated by Booksim 2.0 simulator. Table 1 shows differences from different topologies in term 

of latency. 

As shown in Figure 5 and Figure 7, the latency in topology mesh and fat-tree slightly increases as 

the buffer size escalate. Meanwhile, latency in torus and flattened-butterfly topology from Figure 6 and 

Figure 8 appeared to be considerably declining. The result specified that different buffer size and varied 

topology may affect the performance of NoC even by a bit. Using 4-VC router, mesh topology proves to have 

the highest latency compared to the other topologies. Followed by torus, flattened-butterfly and  

fat-tree consecutively. 

 

 

  
  

Figure 5. Mesh topology Figure 6. Torus topology 

  

  

 
 

  

Figure 7. Fat-tree topology Figure 8. Flattened-butterfly topology 

 

 

Table 1. Differences from different topologies in term of latency 
Buffer Size Torus Mesh Flattened-butterfly Fat-tree 

4 57.9037 66.2339 28.3487 16.9872 

8,16,32 57.8981 66.245 28.3479 16.9874 

Differences 0.0056 -0.0111 0.0008 -0.0002 
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5. CONCLUSION  

As shown in Table 1, buffer size for NoC’s router differ only starting from buffer size of eight and 

above (8, 16, and 32) where for some topologies, latency decrease while increase in another topology. Based 

on this experiment, torus and flattened-butterfly topologies have an increase of latency with value of 0.0056 

and 0.0008 (cycles) consecutively while latency in mesh and fat-tree topologies decrease 0.0111 and 0.0002 

(cycles) successively. We can conclude that the way in which routers are interrelated or arranged affect 

NoC’s performance (latency) where different buffer sizes were adapted. That is why buffering requirements 

for different routers may vary based on their location in the network and the tasks assigned to them. 

Networks-on-chip (NoC) are emerging as a viable interconnects architecture for multiprocessor SoC 

platforms. Even though a lot of NoCs improvement has been proposed, only few have been implemented on 

silicon. This shows that there are many more challenge to be dealt with from physical level up to the network 

layer and its system architecture. For future work, it’s possible to run this experiment with other topologies 

such as folded-torus, octagon or any other hybrid topologies. 
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