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 As of late, expanding interest of renewable energy and consumption of non-

renewable energy source have prompted developing advancement of 

renewable energy technology, for example, wind energy. Wind energy has 

turned out to be one of the reliable sources of renewable energy, which 

requests extra transmission capacity and better methods for sustaining system 

reliability. As of now, doubly fed induction generator wind turbine is the 

most well-known wind turbine. This paper focuses on DFIG wind farm 

design using MATLAB/SIMULINK and also investigates the issues of the 

system stability of the DFIG wind turbine micro grid power system. This 

analysis includes the changes of voltage, current, real power and reactive 

power based on various conditions of the power system. 

Keywords: 

Doubly fed induction generator 

Renewable energy 

Stability 

System reliability 

Wind turbine Copyright © 2019 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Naeem M. S. Hannoon, 

Faculty of Electrical Engineering, 

Universiti Teknologi MARA (UiTM), 

40450 Shah Alam, Selangor, Malaysia. 

Email: hannoon.naeem@gmail.com 

 

 

1. INTRODUCTION  

Microgrids are ending up progressively alluring to consumers and all things considered later on, an 

incredible number of them will be introduced at customer's locales since it has a huge potential in boosting 

the practical development. Microgrid frameworks, when suitably arranged, can separate and reconnect a 

distribution utility. Microgrids contrast from conventional electrical systems by strategies for giving an 

unrivaled closeness between power generation and power utilize, following in performance improvement and 

transmission decreasing. What's more, microgrids likewise coordinate with sustainable energy, for example, 

wind control, sunlight based, hydro, geothermal, and biomass. Renewable energy, particularly wind energy is 

enormously useful for ecological, climatic, financial conditions and in addition wellbeing. These days, 

increment in energy demand and decrease of fossil fuels have prompted the expansion of renewable energy 

[1, 2]. Wind is ascending as a potential and a fundamental source of sustainable energy on account of its huge 

scale accessibility in diverse zones and in context of the focal points in regards to economy of power 

generation with wind on a huge scale [3, 4]. The utilization of wind plants is increasing exponentially from 

the past. Wind power generation technology has gotten overall consideration and is relied upon to play out a 

huge part in the anticipated energy industry. Doubly-Fed Induction Generator (DFIG), at this time is the most 

popular wind generator due to its abundant advantages such as high efficiency, capability of providing 

reactive power support and relatively small rating of power converters [5]. The DFIG wind turbine, by 

definition, is a wound-rotor induction generator that functions either by governing the slip rings or by the 

power converter interconnected with grid [6]. A DFIG wind turbine is a complex setup including diverse 

physical spaces immovably coordinating with each other. The electrical structure, for example, is influenced 



                ISSN: 2302-9285 

Bulletin of Electr Eng and Inf, Vol. 8, No. 2, June 2019 :  367 – 374 

368 

by the converter's mechanical components and cooling system, together with the rotor blades, shaft and 

gearbox. This infers amid part selection and plan of control schemes the effect of areas on each other must be 

well-thoroughly measured in order to attain an overall system performance that the outline is dynamic, 

productive and cost effective [7]. 

Interconnection of microgrids is a useful method to accomplish higher usage of sustainable power 

source, diminish transmission losses, bring down infrastructure capital investment, and accomplish higher 

reliability of electricity supply. One of the sustainable sources, DFIG wind turbines have been utilized 

generally as of late. Aside from that, microgrid power system experiences astonishing quick changes 

regarding interest or generation arrays and trading actions that prevent the system operation and in addition 

security. At the point when wind turbines are created with huge power, a few issues emerge in associating it 

to control frameworks. This stability in the power system brings about the voltage and reactive power 

problem of the system. Voltage and reactive power control problems are substantial for nonstop case stability 

in power systems. 

Correspondingly, it is basic to upgrade the stability in a microgrid, partaking a DFIG wind turbine 

so as to improve the power system performance. The stability of a system identifies with its reaction to inputs 

or disturbances. A system which stays in a constant state unless influenced by an external action and which 

remains to a steady state when the external action is evacuated can be considered to be stable. There is a 

requirement for stability analysis to decide how shut the system is to instability and to decide the steady-state 

performance and transient response. Special techniques are fundamental so as to avert instability without 

invading grid requirements [4].  

This paper presents the stability check of doubly fed induction generator (DFIG) micro grid power 

system. In this study, a detail analysis was conducted on the dynamic behavior gained by a system. 

Simulations are conducted by developing the corresponding model in MATLAB/SIMULINK. The setting for 

stability analysis in a DFIG wind turbine based microgrid with various cases such as during islanding, fault 

during islanding with and without capacitive bank. Apart from that, simulation results illustrate the efficiency 

of the proposed method and objectives and its effect upon the stability of the microgrid. There are main 

objectives for this study, namely to analyze the effect on stability during certain conditions in microgrid 

power system, to design a microgrid consisting of a DFIG wind farm and to propose a strategy and system 

that improves the performance reliability in microgrid power system. 

 

 

2. MODEL DESCRIPTION OF DFIG SYSTEM 

2.1. Doubly fed induction generator (DFIG) wind turbine 

DFIG can work in a higher wind speed range and yield or devour reactive power through the charge 

gave by the rotor-side converter, contrasting with conventional squirrel-cage induction generator wind 

turbine [8]. Basically, wind turbine driven on DFIG consists of Turbine and Drive Train, Wound Rotor 

Induction Generator, Wind Turbine Control, and AC-DC-AC Converter. By improving the turbine speed, 

DFIG permits separating most extreme vitality from the wind for low wind speeds, while restricting 

mechanical stresses on the turbine amid whirlwinds. The perfect turbine speed making most extreme 

mechanical vitality for a given breeze speed is relative to the breeze speed. In a commercial DFIG wind 

turbine, there are diverse kinds of energy storage components, for example, rotor mass of generator and  

dc-link capacitor of voltage source converter (VSC) for DFIG excitation [9]. 

 

2.2. AC-DC-AC converter 

Whereas the wound rotor is fed from the Power Electronics Converter via slip rings to permit DFIG 

to function at a variability of speeds in response to altering wind speed, the stator is directly connected to the 

AC mains, Indisputably, the essential idea is to mediate a frequency converter between the variable 

frequency induction generator and fixed frequency grid. The DC capacitor linking stator-and rotor-side 

converters permits the capacity of energy from induction generator for further generation [10]. DC-link 

voltage must be enhanced to a level higher than the amplitude of grid line-to-line voltage with a specific end 

goal to accomplish full control of grid current. 

 

2.3. Turbine and drive train 

The power is transmitted from the rotor to the generator through the system comprising rotor shaft, 

shaft-hub clamping lock, multiplication gearbox, flexible coupling and other devices in typical wind turbine 

drivetrain [11]. 
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2.4. Wound rotor induction generator 

Regularly, the three phase generator rotor windings are associated with external resistors through a 

power electronic converter. Variation in the compelling rotor resistance will bring about a variation of the 

generator slip, which at last influences the rotational speed. The essential purpose behind utilizing a  

doubly-fed induction generator is for the most part to deliver three-stage voltage whose stator frequency is 

steady, for example, whose stator frequency stays equivalent to the system frequency of the ac power 

network to which the generator is associated, in spite of contrasts in the generator rotor speed instigated by 

varieties of the mechanical power gave by the prime mover (wind turbine rotor) driving the generator [12].  

 

2.5. Wind turbine control 

Wind Turbine Control can start and close down turbine operation alongside facilitates the operation 

of numerous wind turbines in response of operating and environmental conditions. [13] expressed that a 

controller is composed utilizing a sliding method of the terminal to diminish the system shifting by 

connecting the versatile modeling theory to manage the unspecified parameters and control signal smoothing 

with a specific end goal to enhance behavior of system outputs in the unstructured presence of vulnerabilities. 

The connected powerful examination and strong controller plan for an acceptance generator unit with a 

breeze turbine have been talked about [14]. To streamline wind turbine task some control plans, require a 

strategy for evaluating the breeze speed [15]. 

 

 

3. RESEARCH METHOD 

In this study, the assessment of stability for wind energy driven doubly fed induction generator (DFIG) 

is conducted. The system focuses on how the voltage-current profile at load, real power at load and reactive 

power at load will be affected during: 

a. Low Load (1MW) 

1) During islanding without fault and without capacitive bank 

2) During islanding without fault and with capacitive bank 

3) During islanding with fault and without capacitive bank 

4) During islanding with fault and with capacitive bank 

b. High Load (100MW) 

1) During islanding without fault and without capacitive bank 

2) During islanding without fault and with capacitive bank 

3) During islanding with fault and without capacitive bank 

4) During islanding with fault and with capacitive bank 

In this system, the power of wind turbine is 9MW consist of six 1.5MW connected to 25kV 

distribution system exports power to a 154kV grid through a 26.5km, 25-kV feeder in this system. This wind 

turbine system is included in the induction motor with power electronic IGBT converters. 

 

 

4. RESULTS AND ANALYSIS  

To harness the wind power efficiently the most reliable system in the present era is grid connected 

doubly fed induction generator (DFIG). Therefore, it is very crucial to know how the voltage-current profile, 

real power and reactive power of the overall power system in order to maintain the system stability. Apart 

from that, the comparison is done when capacitive bank is added to compensate the power quality of the 

system. Thus, through the collected result, the work is classified into various conditions of simulation. In 

each condition, the result of the simulations are compared in order to observe the differences.  

Table 1 tabulates the results comparison of voltage-current profile during islanding for low load and 

high load. Four conditions have been considered in this study, namely (a) without fault and without 

capacitive bank, (b) without fault and with capacitive bank, (c) with fault and without capacitive bank and d) 

with fault and with capacitive bank. These results are presented in time domain for both the low load and 

high load. The load condition considers 1 MW, while the high load considers 100 MW. For each load 

condition, 2 responses are displayed to represent the voltage and current responses. The first waveform is the 

voltage response, while the second one is the current response. 

From the table, the high load connected wind turbine experiences superior performance in both the 

voltage and current waveforms. This phenomenon happens to all the four conditions as can be observed in 

the table. In high load connected to wind turbine, the performance of the system is more stable with less 

fluctuations. For low load connected to the wind turbine, it is observed that all the 2 conditions without the 

capacitive bank exhibit oscillatory response in the beginning, followed by a long-time settlement. On the 

other hand, with the capacitive bank connected to the system; compensation process has been accommodated. 
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This scheme has made the low load conditions settled down earlier as compared the condition without 

capacitive bank. 

 

 

Table 1. Comparison of voltage-current profile during islanding for low load and high load 
Condition Low Load (1MW) High Load (100MW) 

Without Fault and 

Without Capacitive 

Bank 

  
Without Fault and With 

Capacitive Bank 

  
With Fault and Without 

Capacitive Bank 

  
With Fault and With 

Capacitive Bank 

 

  

 

 

3.1. Comparison data for low loading (1 MW) condition 

Table 2 tabulates the comparison result collected during islanding without fault and without 

capacitive bank. Six load conditions have been subjected to the system. The load is composite which 

combines the variations in active power and reactive power. The active power load is set constant worth 1 

MW throughout the whole study, while the reactive power load varies from 10 VAR to 1MVAR as can be 

referred to the table. 

 

 

Table 2. Comparison result collected during islanding without fault and without capacitive bank 
Load Voltage (V) Current (I) Real Power (W) Reactive Power (VAR) 

P=1MW 

Q=10VAR 
17.03k 27.24 10.62M -104.7 

P=1MW 

Q=100VAR 
17.03k 27.25 10.62M -1048 

P=1MW 
Q=1kVAR 

17.09k 27.35 10.68M -10.53k 

P=1MW 

Q=10kVAR 
18.42k 29.46 11.16M 110k 

P=1MW 

Q=100kVAR 
18.98k 30.56 14.68M -1.436M 

P=1MW 
Q=1MVAR 

31.98k 74.87 18.77M -17.78M 
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It is observed that, the increases from 17.03 kV to its maximum value worth 31.98 kV at the highest 

reactive power load. The same phenomenon occurs for current and real power. Nevertheless, the voltage and 

current increment do not happen at low VAR value, i.e. 10 VAR and 100 VAR. Negative values of VAR as 

the output imply that reactive powers are absorbed by the system. 

Table 3 tabulates the comparison result collected during islanding without fault and with capacitive 

bank. These are the results collected without fault, but capacitive bank was connected to the system. In 

general, the same load variations were subjected to the system. With the capacitive bank connected to the 

system, higher current and voltage values have been achieved as compared to the results in Table 2. This 

implies that the presence of capacitive bank in the system has helped increased the voltage and current I the 

system. The same phenomenon is experienced by the real power and reactive power in the system. 

 

 

Table 3. Comparison result collected during islanding without fault and with capacitive bank 
Load Voltage (V) Current (I) Real Power (W) Reactive Power (VAR) 

P=1MW 

Q=10VAR 
149.2k 238.6 53.39M -501.3 

P=1MW 
Q=100VAR 

33.14k 53.02 56.76M -5336 

P=1MW 

Q=1kVAR 
25.74k 41.2 55.07M -51.76k 

P=1MW 

Q=10kVAR 
67.41k 51.33 69.06M -652.3k 

P=1MW 
Q=100kVAR 

84.76k 136.4 124.1M -12.07M 

P=1MW 

Q=1MVAR 
104.1k 240.7 136.4M -135.9M 

 

 

 The comparison result collected during islanding with fault and without capacitive bank is tabulated 

in Table 4. Similar load variations as those in Table 2 and Table 3 are considered in this table. The voltage 

and current values are not consistent.  

 

 

Table 4. Comparison result collected during islanding with fault and without capacitive bank 
Load Voltage (V) Current (I) Real Power (W) Reactive Power (VAR) 

P=1MW 

Q=10VAR 
69.5k 111.2 16.28M -148.8 

P=1MW 

Q=100VAR 
69.56k 111.3 16.27M -1488 

P=1MW 
Q=1kVAR 

70.18k 112.3 16.24M -14.85k 

P=1MW 

Q=10kVAR 
72.42k 115.9 12.59M -120.6k 

P=1MW 

Q=100kVAR 
22.82k 36.75 16.87M -1.543M 

P=1MW 
Q=1MVAR 

32.18k 75.39 73.59M -69.42M 

 

 

 The same phenomenon also happens for both the real and reactive power values. The highest 

voltage and current values are experienced at P=1MW and Q=10kVAR.The system also absorbs reactive 

power at all the load variations as can be observed from the same table.  

Table 5 shows the results for voltage, current, real power and reactive power when the load is 1 MW 

and Q from 10 VAR to 100 MVAR. This load variation is the same as those in all the previous cases, i.e. 

Table 1 to Table 4. For voltage and current, the results are decreasing until 1 kVAR and increase back until 1 

MVAR. Real power results do not have pattern. In general, the profiles of all the properties such as the 

voltage, current, real power and reactive power are not consistent. 

 

 

 

 

 

 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng and Inf, Vol. 8, No. 2, June 2019 :  367 – 374 

372 

Table 5. Comparison result collected during islanding with fault and with capacitive bank 

Load Voltage (V) Current (I) Real Power (W) Reactive Power (VAR) 

P=1MW 
Q=10VAR 

34.63k 55.4 53.39M -501.3 

P=1MW 

Q=100VAR 
108.9k 174.2 56.76M -5336 

P=1MW 

Q=1kVAR 
34.35k 54.97 55.07M 51.76k 

P=1MW 
Q=10kVAR 

84.29k 134.9 67.32M 646.8k 

P=1MW 

Q=100kVAR 
42.93k 82.65 124.1M -12.07M 

P=1MW 

Q=1MVAR 
129.3k 302 148.3M -149.2M 

  

 

3.2. Comparison data for high loading (100 MW) condition 

 The results for high loading conditions worth 100 MW are tabulated in Tables 6, 7, 8 and 9. Table 6 

tabulates the comparison result collected during islanding without fault and without capacitive bank. This 

table shows the results for voltage, current, real power and reactive power when the load is 1 MW and Q 

from 10 VAR to 100 MVAR. The voltage and current values are almost consistent for all the loading 

conditions. The same phenomenon also happens to the real power of the system. However, the reactive 

power values are not consistent for all the load values.  

 

 

Table 6. Comparison result collected during islanding without fault and without capacitive bank 
Load Voltage (V) Current (I) Real Power (W) Reactive Power (VAR) 

P=100MW 
Q=10VAR 

1834 293.5 807.6k -0.0787 

P+100MW 

Q=100VAR 
1834 293.5 807.6k -0.787 

P=100MW 

Q=1kVAR 
1834 293.5 807.6k -7.87 

P=100MW 
Q=10kVAR 

1834 293.5 807.7k -78.7 

P=100MW 
Q=100kVAR 

1835 293.5 807.7k -787.1 

P=100MW 

Q=1MVAR 
1835 293.7 808.6k -7881 

 

 

 The results for comparison during islanding without fault and with capacitive bank are tabulated in 

Table 7. Similar load variations are subjected to the system. From the table, the values for voltage, current 

and real power are consistent for all the load values. Apparently, the presence of capacitive bank has made 

the voltage, current and real power to be consistent due to the element of compensation process. However, 

the values for reactive power are not consistent due to different load values. 

 

 

Table 7. Comparison result collected during islanding without fault and with capacitive bank 
Load Voltage (V) Current (I) Real Power (W) Reactive Power (VAR) 

P=100MW 

Q=10VAR 
1836 293.7 808.6k -0.07882 

P=100MW 

Q=100VAR 
1836 293.7 808.6k -0.7882 

P=100MW 
Q=1kVAR 

1836 293.7 808.6k -7.882 

P=100MW 

Q=10kVAR 
1836 293.7 808.6k -78.82 

P=100MW 

Q=100kVAR 
1836 293.7 808.7k -788.2 

P=100MW 

Q=1MVAR 
1836 293.8 809.4k -7891 

 

 

The results for islanding case with fault and without the presence of capacitive bank are tabulated in 

Table 8. Similar load values were subjected to the system. Apparently, with fault occurrence in the system 
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the voltage, current and real power of the system are consistent. Only the reactive power is not consistent. It 

implies that the fault occurrence has made the voltage, current and real power to be consistent.  

 

 

Table 8. Comparison result collected during islanding with fault and without capacitive bank 
Load Voltage (V) Current (I) Real Power (W) Reactive Power (VAR) 

P=100MW 
Q=10VAR 

1932 309.1 895.5k -0.08931 

P+100MW 

Q=100VAR 
1932 309.1 895.5k -0.8931 

P=100MW 

Q=1kVAR 
1932 309.1 895.5k -8.931 

P=100MW 
Q=10kVAR 

1932 309.1 895.5k -89.32 

P=100MW 

Q=100kVAR 
1932 309.1 895.8k -894 

P=100MW 

Q=1MVAR 
1935 309.7 898.6k -9005 

 

 

 Table 8 shows the results for voltage, current, real power and reactive power when the load is 1 MW 

and Q from 10 VAR to 100 MVAR. For voltage, current and real power, the results are increasing. It is 

different for reactive power. Results for reactive power vary for all the loads. The reactive power fluctuates 

when different reactive load value is gradually subjected to the system. Table 9 tabulates the comparison 

result collected during islanding with fault and with the presence of capacitive bank. Similar load values were 

subjected to the system. From the table, the values for voltage, current and real power are consistent for all 

load values subjected to the system. However, the reactive power of the system fluctuates with respect to the 

load variation. With the presence of capacitive bank in the system during fault for high loading condition, it 

does not give much impact to all the electrical properties. Comparison can be made between Table 8 and 

Table 9.  

 

 

Table 9. Comparison result collected during islanding with fault and with capacitive bank 
Load Voltage (V) Current (I) Real Power (W) Reactive Power (VAR) 

P=100MW 

Q=10VAR 
1934 309.4 897.3k -0.08945 

P=100MW 
Q=100VAR 

1934 309.4 897.3k -0.8945 

P=100MW 

Q=1kVAR 
1934 309.4 897.3k -8.945 

P=100MW 

Q=10kVAR 
1934 309.4 897.3k -89.46 

P=100MW 
Q=100kVAR 

1934 309.4 897.5k -895.5 

P=100MW 
Q=1MVAR 

1936 309.9 900k -9017 

 

 

Table 2 until Table 9 showed the comparisons between the presence and absence of fault and 

capacitive bank respectively. For high loading condition, the voltage-current profile, real power and reactive 

power are stable. The profiles do not show any major fluctuations and it can be seen that the system 

performance is reliable and better than the performance during low loading condition. 

 

 

5. CONCLUSION  

This paper has presented stability check of doubly fed induction generator (DFIG) micro grid power 

system. In this study, the modeling and stability assessment of doubly fed induction generator wind turbine 

micro grid power system has been proposed. A comparison of voltage-current profile, real power and 

reactive power of the load between low load and high load conditions has been studied. Voltage and current 

profile of the system are more stable with less fluctuation by adding capacitive bank compared to without 

capacitive bank. The analysis exhibits stable voltage and current profile when the capacitive bank is added to 

the grid. In overall conditions of the proposed model gave valuable understanding into the stability 

performance of the wind turbine equipped with a DFIG and the interaction between the wind farm and the 

main system. 
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