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1. INTRODUCTION
1.1. Color Image Features

Color image features play an important role in image manipulation, as they can be used as a finger
print for fast image retrieval or image recognition [1], [2]. The process of image retrieval depends on the
features that can be automatically extracted from the images themselves [3]. Feature extraction process
generates features to be used in the selection and classification tasks for image retrieval process. It transforms
rich content of images into various content features. This process involves the selection of features that assist
in discrimination of an image. Feature selection reduces the number of features provided to the classification
task. Feature extraction is considered to be most critical task among other image processing tasks. This is
because the selection of the particular features for discrimination directly influences the efficacy of the image
recognition and identification. Feature extraction process ends with a set of features, commonly referred to as
the feature vector, which constitutes the unique representation of the image [3]. The feature victor is usually
small in size as compared to the original image size, which means that training time of artificial neural
network (ANN) will be reduced when image features is used to identify the image [4-7]. The ANN image
identification is illustrated in Figure 1.

Reducing the data needed to identify the image leads to the optimal ANN construction [7]. The main
requirements needed for an optimal ANN construction includes:
Minimum memory space to store ANN.
Minimum ANN input data set size.
Minimum ANN architecture.
100 % recognition or identifying ratio.
Minimum ANN training time.
Minimum image retrieving time.
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Colors image are usually represented by a histogram, which is a three columns victor [1], [2]. The
histogram can be used as a signature to identify color image. Each histogram victor is a features array that is
very small in size comparing with color image size (256*3). Figure 2 shows a colored image with its
corresponding histogram victor.
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Figure 1. The ANN to identify the image pixel by pixel Figure 2. Histogram victors for color image

Digital color image is a 3D matrix as shown in Figure 3. Each column represents a color channel,
for instance, the first column represents the red color, and the second represents the green color, while the
third one represents the blue color [8-11].
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Figure 3. 3D color matrix

Each color component can be processed by a 2D matrix as shown in Figure 4 [12], [13]. Color
images usually have big sizes and the identification of image pixel by pixel needs big efforts and might be
considered time consuming process. This suggests the need for a more efficient method to identify color
image depending on the extraction of features with a small size [8-10].

BEEI, Vol. 7, No. 3, September 2018 : 367 — 376



BEEI

ISSN: 2302-9285

369

2500

2000

1500

1000

500

0

1.2. Color Imaage Feature Extraction Using CSLBP Method

calculated using the values of the neighbors of a pixel in the image as shown in Figure 6.
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Figure 4. 2D matrix for each color
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Color image can be represented by color histograms. Again, each histogram is a one column array
that contains 256 elements. The histogram can be used as image identifier, and accordingly, image
identification and retrieval might be enhanced leading to a quick system response time [14], [15] as could be
deduced from Figure 5.
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Figure 5. Color image histograms
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Calculation LBP operators depend on the neighbor's pixels values [9]. In the LBP method, an array
of 256 elements (index) will be generated representing the image features. The LBP 256 operator can be
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Figure 6. LBP calculation using Neighbor pixels

However, LBP method does not reduce the histogram victor size (256 elements), and therefore it
might not be suitable to extract color image features [8-11]. The CSLBP method creates a repetition value
(from O to 15) for each pixel in the image; these repetitions can be used as a feature array to identify the
image [17]. CSLBP method is used to generate features array for each pixel in the region [23], [24]. In
CSLBP, center-symmetric pairs of pixels are compared to produce more compact binary patterns as shown in
Figure 7. It decreases the number of features, thus increases the system efficiency.
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Figure 7. CSLBP calculation

An example is shown in Figure 7, in which 8 neighbors (n0 - n7), CS-LBP produced 16 different
binary patterns. A Small threshold value was then used to obtain the robustness on flat image regions as

shown in Figure 8(a).

Here, a matlab code was used and implemented to generate image features using CSLBP method.
The results indicated that each feature array for each individual image is unique; accordingly, an array can be
used as a key to identify its associated image. Figure 8(b), shows samples of the image features obtained as a
result of implementing the matlab code (one column array for each color image).
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Figure 8. A: CSLBP histogram victor; B: Image feature samples obtained by CSLBP

1.3. Image Locat Contrast Victor
Image local contrast (LC) was proposed in 1992 by Hunt [25]. LC is an average difference between
neighboring pixels, which can be used to generate local contrast array of 9 elements. Calculation of the LC

involves the following steps:

a. Calculation of the scaled and corrected values of linear luminance Equation I:

1= ()

Where: k is the pixel value (0 to 255), y correction is 2.

Calculation of the perceptual luminance L using Equation 2:

L =100 * I = 100 * (zkE)y

@

@)

Calculating Ig; for each of the following resolution levels (Resolutions=[1 2 4 8 16 25 50 100 200] using

Equation 3.

L. = Eirtialtlli-Liga 4L Liowl+Li-Liswl
ci 2

Figure. 10 explains the process of abstaining LC using 4 neighbors [22].

@)
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Figure 10. Using 4-neighbores to calculate LC

2.  IMPLEMENTATION
To calculate the LC and to use LC array as an image features, the following steps were performed
(91, [10]:
a. Get the original color image.
b. The color image matrix was reshaped from 3D to 2D.
c. Steps used to calculate the LC array were applied.
d. The obtained LC array was saved as a key for image identification.

2.1. Experimental Results
The following matlab function was written and implemented using various color images with
different types and sizes:
function [ LC]=localcontrast( im)
% Input:
% im - 2D image
%% Output:
% LC - Local contrast victor
resolutions=[1 2 4 8 16 25 50 100 200];
LC=zeros(size(resolutions));
W=size(im,2);
H=size(im,1);
rim=im;
for i=1:length(resolutions)
%attempt at resizing as in the paper
if i>1
rim=imresize(im, 1/(2°\(i-1)), 'bilinear");
end
W=size(rlm,2);
H=size(rlm,1);
rL=zeros(size(rlm));
% compute linear luminance |
I=(double(rim(:,:))/255) * 2.2;
% compute perceptual luminance L
rL(:,:)=100 * sqrt(l);
% compute local contrast for each pixel
1c=0.0;
for x=1:H
fory=1:W
if (x==1) && (x==H)
if (y==1) && (y==W)
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Ic=lc + 0;

elseif (y==1)

Ic=Ic + abs(rL(x, y) - rL(x,y+1));

elseif (y==W)
lc=lc + abs(rL(x, y) - rL(x,y-1));
else
lc=lc + (abs(rL(x, y) - rL(x,y-1)) + ...
abs(rL(x, y) - rL(x,y+1)) )/2;
end
elseif (x==1)
if (y==1) && (y==W)
Ic=Ic + abs(rL(x, y) - rL(x+1,y));
elseif (y==1)
lc=lc + (abs(rL(x, y) - rL(x,y+1)) + ...
abs(rL(x, y) - rL(x+1,y)) )/2;
elseif (y==W)
lc=lc + (abs(rL(x, y) - rL(x,y-1)) + ...
abs(rL(x, y) - rL(x+1y)) )/2;
else
Ic=lc + (abs(rL(x, y) - rL(X,y-1)) + ...
abs(rL(x, y) - rL(x,y+1)) + ...
abs(rL(x, y) - rL(x+1,y)) )/3;
end
elseif (x==H)
if (y==1) && (y==W)

le=lc + abs(rL(x, y) - rL(x-1,y));

elseif (y==1)

lc=lc + (abs(rL(x, y) - rL(x,y+1)) + ...

abs(rL(x, y) - rL(x-1,y)) )/2;
elseif (y==W)

Ic=lc + (abs(rL(x, y) - rL(X,y-1)) + ...

abs(rL(x, y) - rL(x-1,y)) )/2;
else

Ic=lc + (abs(rL(x, y) - rL(X,y-1)) + ...
abs(rL(x, y) - rL(x,y+1)) + ...
abs(rL(x, y) - rL(x-1,y)) )/3;

end
else% x>1&&x<H
if (y==1) && (y==W)
lc=Ic + (abs(rL(x, y) - rL(x+1y)) + ...
abs(rL(x, y) - rL(x-1,y)) )/2;
elseif (y==1)

Ic=lc + (abs(rL(x, y) - rL(x,y+1)) + ...
abs(rL(x, y) - rL(x+1y)) + ...
abs(rL(x, y) - rL(x-1,y)) )/3;

elseif (y==W)

Ic=lc + (abs(rL(x, y) - rL(x,y-1)) + ...
abs(rL(x, y) - rL(x+1y)) + ...
abs(rL(x, y) - rL(x-1,y)) )/3;

else

Ic=lc + (abs(rL(x, y) - rL(X,y-1)) + ...
abs(rL(x, y) - rL(x,y+1)) + ...
abs(rL(x, y) - rL(x-1,y)) + ...
abs(rL(x, y) - rL(x+1,y)) )/4;

end
end
end
end
% compute average local contrast ¢
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c(i)=lc/(W*H);
w(i)=(-0.406385*(i/9)+0.334573)*(i/9)+ 0.0877526;
% compute local contrast factor
LC(i)=c(i)*w(i);
end
end

Different images were processed, and for each image in the dataset the LC array was obtained. The
implementation results are shown in Table 1. From Table 1, it can be noticed that each LC array is unique,
and thus it can be used as a key to identify the image.

Table 1. LC Array for Different Color Images
Image Local contrast
0.7029
0.7521
1.0355
0.9834
1.4120
0.8420
0.6520
1.2015
1.2783
1.7832

SBoo~vourwNn R

Again and as abovementioned, LC array is unique and very sensitive to any changes in the original
image, for example in the case the original image is changed, another and different LC array will be
generated, which proves the uniqueness of LC array for each image, or for same image with slight changes
and updates. Table. 2 shows different LC arrays for the same image with different versions (slight changes
have been applied to the original image).

Table 2. Images Changes Lead to Changes in LC array
Image Features
Origin 0.1346 02283 0.3534 05632 0.8658  1.0041 0.8788 14651 O
Changing pixel 0.1349 02284 03533 0.5630 0.8654  1.0041 0.8788 14651 0
Changing 2 pixels  0.1351  0.2285 0.3533 05631 0.8654  1.0041 0.8788 14651 0

The calculation time needed to generate the LC array was obtained by implementing the previous
matlab function. Results are shown in Table 3.

Table 3. LC Calculation Time
Image Size (Pixels) Calculation time (Seconds)

1 270948 0.631241
2 151875 0.125924
3 49152 0.101759
4 1125600 0.841033
5 540000 0.678468
6 3396069 1.451037
7 2359296 1.176620
8 928800 0.784822
9 432000 0.690299
10 151353 0.128947

3. RESULTS COMPARISON

A matlab code was written to create color images features using CSLBP method. Table 4 shows the
extraction time for both methods. The comparison shows that the extraction time using CSLBP is lower
compared to the time when LC extraction method was used.
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Table 4. Features Extraction Time

Image CSLBP extraction time (seconds) LC calculation time (seconds)
1 0.0883 0.631241
2 0.0481 0.125924
3 0.0194 0.101759
4 0.3390 0.841033
5 0.1549 0.678468
6 0.9680 1.451037
7 0.6615 1.176620
8 0.2636 0.784822
9 0.1231 0.690299
10 0.0477 0.128947
Average 0.2714 0.6610

A dataset of 10 images features for each method was built, the ANN for each method was created

and trained to achieve 100% recognition ratio and then tested to identify the image. Table. 5 summarizes
comparison results. The results in Table. 5 clearly indicate the efficiency of the proposed local contrast LC
method which exceeds the efficiency of CSLBP method.

4,

Table 5. Results Comparisons

Factor LC method CSLBP method
Extraction time (average) 0.6610 0.2714
ANN training time (seconds) 0.997369 9.311232
Retrieving time (seconds) 0.104247 0.120581
ANN architecture 3 layers with 9, 3, 1 neuron 3 layers with 16, 4, 1 neuron
ANN activation functions Tansig, tansig, linear Tansig, tansig, linear
Number of features 9 16
Memory size to save ANN 288 KB 304 KB
Input data base size(10 images) 720 byte 1280 byte

CONCLUSION
In the current study, a local contrast method of color image features extraction was proposed. For

each image, the obtained feature victor is unique, thus it can be used as a key to identify or retrieve the
image. The proposed method was implemented and tested. The results showed that LC method can increase
the system efficiency and performance compared with CSLBP method.
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