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 This paper focuses on classification of motor imagery in Brain Computer 

Interface (BCI) by using classifiers from machine learning technique. The 

BCI system consists of two main steps which are feature extraction and 

classification. The Fast Fourier Transform (FFT) features is extracted from 

the electroencephalography (EEG) signals to transform the signals into 

frequency domain. Due to the high dimensionality of data resulting from the 

feature extraction stage, the Linear Discriminant Analysis (LDA) is used to 

minimize the number of dimension by finding the feature subspace that 

optimizes class separability. Five classifiers: Support Vector Machine 

(SVM), K-Nearest Neighbors (KNN), Naïve Bayes, Decision Tree and 

Logistic Regression are used in the study. The performance was tested by 

using Dataset 1 from BCI Competition IV which consists of imaginary hand 

and foot movement EEG data. As a result, SVM, Logistic Regression and 

Naïve Bayes classifier achieved the highest accuracy with 89.09% in  

AUC measurement. 
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1. INTRODUCTION  

Brain-computer Interface (BCI) is direct communication pathway between the brain and computer 

or other external equipment that can translate brain activities into commands [1-3] as shown in Figure 1. BCI 

has potential to become more popular in many application of various fields, for example, medical, 

entertainment and military [4]. There are many techniques to get the signals from the brain, such as 

electroencephalogram (EEG), Magnetic resonance imaging (MRI) and computer tomography (CT). 
 
 

 
 

Figure 1. BCI system 
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EEG is one of the most commonly used in BCI to records electrical activity and brain waves by 

placing the electrode on the scalp. EEG capable in capturing brain information processing quickly with high 

temporal resolution, but it has low spatial resolution and high noise level which make it challenging to extract 

useful information from EEG signals for BCI application [5]. 

Motor imagery is a popular paradigm in EEG-based BCI system [6]. The classification of the 

imaginary movement such as hand and foot movements is included in this paradigm [7]. Machine learning 

technique is commonly used in this classification process as it has the ability to model high-dimensional 

datasets [8]. Machine learning is the technique which can be briefly defined as enabling computers make 

successful predictions using past experiences [9]. 

In machine learning, there are various algorithms for classification process such as Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes, Decision Tree, and Logistic Regression. SVM 

is one of the algorithm that usually used for motor imagery classification in a BCI system [3, 6], [10-13]. In 

[14], the classification of motor imagery is done by comparing the signal using the KNN classifier. Besides 

that, KNN also used in automated seizure detection [15] to classify EEG signals either seizure or non-seizure. 

Naïve Bayes approach is used in [16, 17] to classify motor imagery and lower limb movement respectively. 

In [18], Decision Tree is used to classify the brain signals from imaginary tasks to open and close the hand 

for holding a ball. Logistic regression is used in [19] to classify the left and right motor imagery signals. 

The successful deployment of a BCI system is depend on the effectiveness of signal processing to 

classify the desired signals. Therefore, the aim of this paper is to study the performance of various 

classification algorithms in machine learning technique which can be used to classify motor imaginary task. 

In this paper, we study five machine learning algorithm: SVM, KNN, Naïve Bayes, Decision Tree and 

Logistic Regression. The results helps in choosing better algorithm that makes a good classification 

performance in motor imagery classification. The rest of this paper is organized as follows: Section II gives 

the description of the dataset used. Section III contains the methodology of research. In section IV, the results 

is displayed with the discussion. Lastly, section V is conclusion. 

 

 

2. DATA DESCRIPTION 

The dataset used is Dataset 1 [20] from BCI Competition IV provided by B.Blankertz, C. Vidaurre 

and K.-R.Müller from Berlin (Germany). Motor imagery was performed by four healthy participants served 

as experimental subjects (a, b, f and g) [21]. Two mental tasks out of three tasks which are right hand 

movements, left hand movements or foot movements (side chosen by subject and can be both feet) is 

performed by the subjects in this experiment. The mental task performed by each subject is shown in Table 1.  

The experiment have two sessions which are calibration and evaluation session to record the training 

and test data respectively. Training data were provided with complete marker information which shown 

where the mental task is performed as it could be used for adapting the parameters of the methods or models 

while test data only consisted of the EEG signals, without any marker. Therefore, in this paper we use the 

data from calibration session only. 

In the first two runs, all subjects was asked to perform a certain mental task based on arrows 

pointing left, right, or down that are presented as visual cues on a computer screen. The cues were displayed 

for a period of 4s which interleaved with 2s of blank screen and 2s with a fixation cross shown in the center 

of the screen. Each subject have a total of 200 trials, as in each run 50 trials of each of the chosen two classes 

have been presented as shown in Table 2. A break of 15s was given for relaxation after every 15 trials and 

there were longer breaks of 5–15min between the runs. 

 

 

Table 1. Mental task performed for each subject 
Subjects Movements 

a Left hand, Right foot 

b Right hand, Left hand 
f Left hand, Right foot 

g Right hand, Left hand 
 

Table 2. Total of trials for each of the chosen class 
Subjects Movements 1st run 2nd run 

a,f 

 

Left hand 50 50 

Right hand 50 50 
b,g  Left hand 50 50 

Right hand 50 50 
 

 

 

3. RESEARCH METHOD 

3.1.  Feature extraction based on FFT-LDA 

The aim of feature extraction process is to extract the desired signals from the raw EEG signals and 

eliminates the unwanted signals such as background noise. The EEG signals is divided based on frequency 

bands which are gamma, beta, alpha, theta, and delta band. The frequency of motor imagery is usually lies in 
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alpha or beta band. Thus, the EEG signal processing should be process in term of frequency. The raw EEG 

signals which is in time domain, need to convert to frequency domain for better extraction. 

The Fast Fourier Transform (FFT) is applied in order to transforms the signal from the time domain 

to frequency domain. In FFT, the raw EEG signals is compared to sine waves consisting certain frequencies 

and the matching score is calculated. The result of matching score is depend on the similarity between the 

signals to the sine wave.  

Linear Discriminant Analysis (LDA) is then applied to FFT features to increase the computational 

efficiency by reduce the number of dimension in a dataset. Therefore, the degree of over-fitting can be 

reduced and the class separability is optimized by finding the feature subspaces [22]. The features extracted 

from FFT-LDA are then feed into several classifiers for classification process. Figure 2 shows the block 

diagram of the feature extraction process for better understanding. 
 
 

 
 

Figure 2. Block diagram of feature extraction process 

 

 

3.2. Classification 

Classification process is the technique to identify the class of the samples in the dataset. In this 

paper, the classifier is used to identify the type of movements such as left hand, right hand and right foot as 

shown in Figure 3. Five classifiers are used in this paper as follows: 
 
 

 
 

Figure 3. Block diagram of classification process 

 

 

3.2.1. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a classifier based on Statistical Learning Theory [23] which its 

algorithm is used to find decision boundary between the class samples, which correctly separates the samples 

into the classes. SVM can effectively prevent the defects of traditional classification methods, such as over 

learning, dimension disaster and local minima [3]. This classifier aims to maximize the distance between 

decision boundary and support vectors which is called as margin [22]. The samples is separates according to 

their class by SVM algorithm as this algorithm find the decision boundary between classes and maximize  

the margin. 

 

3.2.2. K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a non-parametric learning algorithm [24] which capable to 

characterize EEG data as it is a suitable for noisy and large data and its result is depend on the value of k and 
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distance metric used [23]. The new data point is classified by using the KNN algorithm with locates the k 

samples that are nearest to it based on the distance metric used and its class label is calculated depends on the 

class label of its k nearest neighbors.  

The concept of KNN algorithm is illustrated in Figure 5. by using one of its distance metric. The 

symbol „X‟ at point (0.6, 0.45) in the figure is shows the new data to be classified and the radius with the dot 

line is the result of applying KNN algorithm with k=9 using Euclidean distance. In this case, there are two 

possible classes: circle class and triangle class. The KNN will classify the new data to the triangle class as the 

triangle class has the highest number of samples within the radius [7]. 
 

 

 
 

Figure 5. The KNN classification (euclidean distance with k=9) [7] 

 

 

3.2.3. Naïve Bayes 

Bayes‟ theorem is used for this classifier [25] which calculates a set of probabilities by counting the 

frequency and combinations of values in a given dataset [26]. This algorithm is defined as; 
 

 ( | )  
 ( | ) ( )

 ( )
        (1) 

 

where P (C│X) denotes posterior probability which is the probability of class C given the data X, P(C) 

denotes class prior probability which means the probability of class C for the data X being true, P (X) denotes 

predictor prior probability which is the probability of the data regardless its class and P (X|C) denotes 

likelihood which is the probability of the data X given that the class C was true.  

 

3.2.4. Decision tree 

Decision Tree classifier breaks down a dataset by splitting the dataset into two or more. This 

classifier works like a tree with root node, decision nodes and terminal nodes. The root node represents the 

entire dataset that will be split into two or more branch/sub-tree. The decision node is a node that will split 

into another sub-nodes and the terminal node which is also called as leaf node is represents a decision or 

classification that will not split further. 

 

3.2.5. Logistic regression 

Logistic Regression predicts the class of the data/sample by fitting data to the logistic function 

(inverse of logit function). The logit function takes input values in the range 0 and 1 and transforms them to 

values over the entire real number range, which we can use to express a linear relationship between feature 

values and the log-odds [22]: 

 

     ( (   | ))                   ∑       
   

      (2) 

 

where P(y=1│x) is the conditional probability that are particular sample is belongs to class 1 given its feature 

x. The inverse of logit function is called as logistic function, defined as; 

 

 ( )   
 

       
         (3) 
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Where z is the net input, the linear combination of weights and sample features can be calculated as; 
 

                                (4) 

 

 

4. RESULTS AND ANALYSIS 

The classification of imaginary movements for each subject in this paper involves two classes: right 

hand vs left hand or left hand vs right foot. In this section, the classification result of imaginary movements 

by applying various classifiers in machine learning is tabulated and illustrated in tables and graphs 

respectively. The 10-fold cross validation technique is used to verify the results. The performance of 

classifiers is measure using accuracy and AUC (area under the curve). AUC used the concept of sensitivity 

and specificity which linked to true/false positives indices. Therefore it gives meaningful data compared  

to accuracy [27]. 

The result of the classifiers of all subjects is given in Table 3. It was observed that for classification 

between left hand and right foot using accuracy measurement, SVM give the highest result with 77.73% for 

the subject a and 71.18% for subject f. In AUC measurement, SVM, Logistic Regression and Naïve Bayes 

give the highest result with 86.16% for the subject a and 80.02% for subject f. For classification between 

right hand and left hand using accuracy measurement, Logistic Regression and Naïve Bayes give the highest 

accuracy, subject b with 66.34% and subject g with 79.23% respectively. In AUC measurement, SVM, 

Logistic Regression, Naïve Bayes give the highest accuracy with 72.20% for subject b and 89.09% for 

subject g. Figure 8 and Figure 9 shows the graph of comparison between accuracy and AUC measurement for 

left hand vs right foot and right hand vs left hand respectively. 
 

 

Table 3. Result for subject a, f, b and g 

Classifier 

Left hand & Right foot Left hand & Right hand 

a f b g 

Accuracy 
(%) 

AUC 
(%) 

Accuracy 
(%) 

AUC 
(%) 

Accuracy 
(%) 

AUC 
(%) 

Accuracy 
(%) 

AUC 
(%) 

SVM 77.73 86.16 71.18 80.02 66.01 72.20 78.89 89.09 

k-NN 76.73 85.24 69.50 78.08 60.98 67.71 76.23 87.35 

Logistic Regression 77.40 86.16 71.01 80.02 66.34 72.20 78.73 89.09 
Decision Tree 77.40 84.60 67.82 75.94 64.01 69.08 76.21 87.48 

Naïve Bayes 77.40 86.16 71.01 80.02 65.68 72.20 79.23 89.09 

 
 

 
 

Figure 8. Accuracy and AUC measurement for motor imaginary left hand and right foot 
 

 

 
 

Figure 9. Accuracy and AUC measurement for motor imaginary right hand and left hand 
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5. CONCLUSION  

This paper focuses on the classification of the EEG signal for imaginary movements to analyze the 

performance of classifiers from the machine learning technique. Feature extraction of the signals is done by 

using FFT-LDA technique. There is five classifier are used to classify the data which are SVM, k-NN, 

Logistic Regression, Decision Tree and Naïve Bayes. The AUC measurement gives a better result compared 

to accuracy measurement. Best results were obtained using SVM, Logistic Regression and Naïve Bayes 

classifier with 89.09% by using AUC measurement. In future work, we will investigate how to improve this 

algorithm in getting a better result than existing results for EEG classification. 
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