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 The aim of this paper is the introduction of intelligence in e-learning 

collaborative system. In such system, the tutor plays an important role to 

facilitate collaboration between users and boost less active among them to 

get more involved for good pedagogical action. However, the problem lies in 

the large number of platform users, and the tutor tasks become difficult if not 

impossible. Therefore, we used fuzzy logic technics in order to solve this 

problem by automating tutor tasks and creating an artificial agent. This agent 

is elaborate in basing on the learners activities, especially the assessment of 

their collaborative behaviors. After the implementation of intelligent 

collaborative system by using Moodle platform, we have tested it. The reader 

will discover our approach and relevant results.  

Keywords: 

Collaborative e-learning 

Fuzzy logic 

LMS 

Multi-agent system 
Copyright © 2018 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Issam Matazi, 

LASTID, faculté des sciences de Kenitra,  

université Ibn Tofail, Kenitra, Morroco  

Email: iss.matazi@gmail.com 

 

 

1. INTRODUCTION 

In e-learning collaborative system environment, the separation between learners in time and space 

requires a great effort to oversee the learning progress, the relevant level of communication, the collaboration 

among learners, and the support less active learners to avoid their isolation. That is why the role of the tutor 

in such system is learners support. 

The use of artificial intelligence technics in e-learning platforms has improved its tools and 

facilitated advising of users [1]. 

Several research have been focusing on the tutor role in e-learning collaborative system and 

suggesting some solutions allowing better collaboration between learners and avoiding their isolation. 

Soller proposed a model allowing detecting the interaction problems between group members [2]. Then 

MBALA proposed a multi-agents system (MAS) intended to be coupled with E-learning platforms to 

implement features that allow to estimate the group state as: present, absent, the percentage of active people, 

learner productivity, etc. [3]. Israel describes an Intelligent Collaborative Support System (ICSS) that 

supports a collaborative effort by analyzing and modifying the collaborative process dynamically while 

employing a web-based interface [4]. Djouad proposed tools to calculate the indicators of collaborative 

activities in a human learning environment [5]. Andi presented a approach to analyze the behavior of students 

in collaborative work.She proposed the degree centrality and eigenvector method for identifying the 

collaborative work of while in wiki e-learning. The log data of the Moodle e-learning system is observed that 

records the students' activities and actions while using wiki [6]. Christina proposed a model to predicting the 
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presence of learning motivation in e-learning, and aim to assist teachers in identify whether student needs 

motivation [7]. 

These researches are based on different approaches that analyze learner traces such as interaction 

and communication between learners which calculate indicators providing information about collaborative 

behavior of learners, and determining their behavioral profiles [8]-[10]. The tutor uses this relevant 

information (indicators, profiles...) to properly evaluate the collaborative behavior of each individual learner 

and react with the appropriate way to improve it. 
 

 

2. PROBLEM  

We note that does some questions remain unresolved such as: the tutor is it able to manage a large 

number of platform users and their collaborative actions in terms of availability? Is he able to send 

recommendations and remarks to each student? Is it able to intervene in good deadlines?  

Considering these constraints in terms of times, availabilities and possibilities, the tutor will be not 

able to address this challenge. 

The tedious work can be delegating to machine learning, and allowing the tutor, time and efforts in 

order to stimulate thinking. 

Considering these constraints in terms of feasibility, tutor availability, and then computerization and 

automation of tutor tasks become crucial. 

In this direction, we have designed and implemented a multi-agents system, and integrated it to 

Moodle platform in order solve the problem above mentioned. 

Our choice of using of MAS in online collaborative learning is justified by an interesting approach 

of intelligent collaborative systems design. It is characterizing by the distribution of the overall control 

system and the presence of autonomous agents operating in a shared and dynamic environment. 

The fuzzy logic in terms of model and technics are used both modeling our multi-agents system and 

inferring the learning functions [9].  

This paper is organized as follow: first, we present the model for collaborative e-learning and the 

architecture of multi agent system designed to automate support learners. Second, we describe the model of 

fuzzy logic and machine learning use in e-learning context. Third, we expose the implementation steps of 

system. Fourth, we present the experiment results and discussions. We end this paper by exposing 

conclusions and future works. 
 

 

3. MULTI-AGENT SYSTEM FOR AUTOMATING THE SUPPORT OF LEARNERS IN 

COLLABORATIVE E-LEARNING (SMAASA) 

3.1.   Support Model for Collaborative e-learning 

In face-to-face collaborative learning the tutor can observe the behavior of each learner; he can 

detect their level of involvement and intervene to guide or motivate them. In collaborative e-learning, this 

task becomes more complicated given the separation between tutor and learner. The support model that we 

propose to solve this problem is to allow the evaluation of the involvement level of each learner in a 

collaborative activity and sending instructions adapted to each of them. 

Our idea is to exploit the interaction data between learners during the learning process to improve 

the level of collaboration. These data will be analyzed and stored as indicators in the learner profile. Based on 

these indicators, the system evaluates the state of collaboration of the learners, and then sends automatic 

recommendations to improve it. The process of supporting consists of two stages(see Figure 1). 

 

 

 
 

Figure 1. Support model for collaborative e-learning 
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The recognition stage: the system identifies the learner’s collaborative activity such as participation in 

forums, the filing of a proposal in a working group etc. Based on these activities a set of indicators are 

calculated and stored in the learner profile. 

The reaction stage: during this stage the system determines the appropriate instructions and 

recommendations based on learner’s collaboration level. 

Based on this collaborative learning support model, we propose a multi-agent system which mission 

is the automation of tutor tasks. The automation of the system will be achieved based on the fuzzy logic 

technique. 

 

3.2. Fuzzy Logic  

Fuzzy logic is an extension of Boolean logic, it was proposed by Zadeh to model natural language 

and to account for the vague knowledge that we humans manipulate every day [11].He introduced the 

concept of fuzzy set to address the problems in many complex systems that need to process information that 

is imperfect nature, its basic concept is to graduate membership of a set, allowing to take into account the 

imprecision in knowledge and formalizing the process of human reasoning. 

A fuzzy inference system is composed of three blocks:  

The first block is the fuzzification block. It transforms numerical values into membership degrees to 

the different fuzzy sets of the partition. The second block is the inference engine, with the rule base.  

 

IF (condition_1 [and / or] condition_2 [and / or] ... [and / or] Condition) THEN (actions in output variables). 

 

The third one implements the defuzzification stage if necessary. It yields a crisp value from the rule 

aggregation result 

 

3.3 MAS and e-learning  

An agent is an autonomous entity, capable of communicating with other agents, as well as of 

perceiving and of representing his environment. Every agent makes specific actions according to the 

perception of his environment. A set of agents in interaction forms a multi-agents system.  

Two categories of agents can be distinguished: the reactive agents and the cognitive agents[12].  

The agents in a multi-agent system have several important characteristics [13]: 

Autonomy: the agents are at least partially independent, self-aware, and autonomous.  

Local views: no agent has a full global view of the system, that is to say the system is too complex for an 

agent to make practical use of such knowledge.  

Decentralization: there is no designated controlling agent.  

The use of the intelligent multi-agents system in e-learning field allows to solve some pedagogic 

problems by taking advantage of some characteristics. Examples: adaptation of the courses of learning( 

[14];[15]); the design of collaborative learning platform ([16];[17]); the individualization of the learning [18]; 

the support of the learners and the tutor.  

By studying these works, we noticed that any process of adaptation is based on a model of the 

learner, a representation of its characteristics which the system takes into account  

This modelling allows to give a description as complete as possible of all the aspects related to the behaviour 

of this user. In this work, we suggest bringing assistance to the community of learning on the basis of social 

behavioural side more than cognitive one. So, we use indicators which inform about the behavioural profiles 

(social) of the learners.  

In the next section we present the architecture of our intelligent multi-agent system for supporting 

learners in a Collaborative e-learning Platforms (SMAASA). 

 

3.4 Architecture system 

Based on the support model of learner, the architecture system consists of three layers (Figure 2): 

The learner layer: is the interface interaction between the learner and the system. 
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Figure 2. Architecture system 

 

 

The agent layer: contains a number of cognitive and reactive agents: 

 Activity agent: a reactive agent, from the collaborative activities of the learner, such as participation in 

forums, message exchange, the depositing of documents, it calculates indicators that will be stored in 

the profile learner 
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 Analysis agent: a fuzzy agent whish the role is to evaluate automatically the collaborative learner level 

using fuzzy logic technique based on indicators stored on the learner profile. It feed and updates the 

learner model and update fuzzy rules. 

 Tutor agent: a fuzzy agent, responsible for the automation of decision that allow to improve the 

collaborative behavior of learners following the evaluation result made by analysis agent. It sends the 

appropriate recommendations to each learner and also performs the update of decisions base. 

 Learner agent: produces a suitable interface for each student where he can receive messages, 

recommandations, warning etc based on the decisions base. 

The repository Layer: This layer contains five components: 

 The learner profile: includes the learner's static data such as name, code; and dynamic: indicators of its 

social behavior. 

 The learner model: contains information about the learner collaborative behaviour: the collaborative 

degree, presence degree etc. 

 The model group: contains information about groups collaborative behavior.  

 The decisions Base: Contains the appropriate decisions to the various scenarios of behaviour and will be 

sent to learners depending on their collaboration level. 

 Learning data: includes data about the inputs and outputs of the fuzzy system. The tutor agent is based 

on the training data to generate the rule base. 

 

 

4. FUZZY LOGIC INFERENCE MODEL TO EVALUATE THE LEARNER’S INVOLVEMENT 

IN A COLLABORATIVE ONLINE LEARNING 
We aim to have a fuzzy system which leads to estimate the degree of collaboration of every learner, 

or working groups in online collaborative learning. The system is based on indicators stemming from the 

analysis of the learner activities. The collaborative indicators represent the input of our fuzzy system. 

Let A ={A1, A1 … … . . Ai, … … Ak} the set of learner’s collaborative actions .For each type of 

actions Ai(i = 1,2, … . . k), a measured numeric value xi(i = 1,2, … . . k) is calculated for a student, example 

the action Ai : sending messages with the value xi : number of messages sent by each student each measured 

numeric value xi(i = 1,2, … . . k)) takes its values in a universe of discourse Ui(i = 1,2, … . . k) 

Let X = {x1 , … . . xi………xk} the input of our fuzzy system with xi ∈ Ui , Ui ⊂ IR+  

Let Cj(j = 1,2, … . . , L) the output of the system which represent different learning characteristics, 

such as level of collaboration, degree of implication. The process consists of three stages: fuzzification, 

inference, and defuzzification [19]. 

 

4.1.  Fuzzification 
This stage represents teacher’s subjective linguistic A={A1, A1 … … . . Ai, … … Ak}.Each variable 

Ai(i = 1,2, … . . k) can take a different number of linguistic values fi. The number fi of the linguistic values of 

each linguistic variable Ai(i = 1,2, … . . k) and their names Vi1,,Vi2, … . … . Vifi, are defined by the developer 

with the help from teachers, and depend on the variable Ai(i = 1,2, … . . k).  

 

Let T(Ai) = {Vi1,,Vi2, … . … . Vifi,} the term set of Ai(i = 1,2, … . . k).  

 

For example, let us consider the linguistic variable Ai = « time of task's execution » The 

corresponding term set could be:  

 

 T(time of task′sexecution) = {Vi1,,Vi2,Vi3}  = {short , normal , long} 

 

At the fuzzification stage, the numeric input X = {x1 , … . . xi………xk} , wherex1 ∈ U1, x2 ∈
U2, … … . . xk ∈ Uk, and Ui is the universe of discourse of the ith input element ,U1, U2, … . Uk ⊂ IR+is 

fuzzified and transformed into membership degrees to the linguistic values Vi1,,Vi2, … . … . Vifi, which describe 

a student’s behavior A ={A1, A1 … … . . Ai, … … Ak}. 

 

4.2. Inference 

This stage represents teachers’ reasoning in categorizing students qualitatively according to their 

abilities and personal characters. In particular, an approximation of fuzzy IF–THEN rules is performed, 

which represent teachers’ reasoning in the qualitative assessment of students’ characteristics. In our model, a 

qualitative description of a student’s characteristics C1, … . , Cj, … . Cl is performed by treating student 
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characteristics as linguistic variables. Each linguistic variable Cj(j = 1,2, … . . , L) can take a different number 

of linguistic values mj.  

The set  T(Cj) = {Cj1, Cj2, … … … … . Cjmj
}is the term set of Cj (j = 1, 2, . . . , L). 

For example: if we treat the linguistic variable Cj=‘‘student interest’’ using three linguistic values 

(mj = 3) , then the term set could be: 

T(Cj)= T (student interest) = {Cj1, Cj2, Cj3, } = { neither interested , interested , very interested}. 

In this way, a mode of qualitative reasoning, in which the preconditions and the consequents of the IF–THEN 

rules involve fuzzy variables is used to provide an imprecise description of teachers’ reasoning: 

IFx1isV1I1
ANDx2isV2I2

AND … … … . xkisVkIk
THEN 𝐶1isC1J1

ANDC2isC2J2
AND … … … . CL is CLJL

 

With  I1 = 1,2, … . . , f1;  I2 = 1,2, … … f2;  Ik = 1,2, … … . fk;  J1 = 1,2, … … . . m1;  𝐽2 = 1,2, … … . m2;  JL =
1,2 … . mL 

Let cj = [cj1, cj2, … … . cjmj](j = 1,2, … … , L)  membership degree of output variable Cj(j =

1,2, … . . , L) . 

The inference stage, provides a fuzzy assessment cj = [cj1, cj2, … … . cjmj](j = 1,2, … … , L) of a 

student’s characteristics, C1, … . , Cj, … . Cl by assessing membership degrees cj1, cj2 … . . cjmj
 to the linguistic 

valuesCj1, Cj2 … . . Cjmj
 of the linguistic variable Cj(j = 1,2 … . . ; L) that describe the characteristic Cj(j =

1,2 … . . ; L) 

 

4.3. Defuzzification 
This stage represents teachers’ final decision in classifying a student in one of the predefined 

linguistic values Cj1, Cj2 … . . Cjmj
 of the characteristicCj(j = 1,2 … . . ; L). This process is performed by 

weighting the fuzzy assessmentcj(j = 1,2 … . . ; L).The fuzzy assessments cj = [cj1, cj2, … … . cjmj](j =

1,2 … . . ; L) are defuzzified to non-fuzzy values, that is to say, to decisions on one of the linguistic values 

Cj1, Cj2 … . . Cjmj
(j = 1,2 … . . ; L) of the learning characteristicCj(j = 1,2 … . . ; L). 

 

 

5. IMPLEMENTATION 

Our goal is to develop a system capable of grafting to the platforms of collaborative e-learning. For 

this purpose and in order that the system can have the ability of interoperability with several collaborative e-

learning platforms, the interaction between agents of systems and these platforms is done only through the 

analysis of the plateform’s database. The system monitors a set of target tables to detect learner new activities 

(Figure 3). 

 

 

 
 

Figure 3. Interaction of the multi-agent system with the collaborative e-learning platforms 

 

   

Thus, to implement our system, we choosed Java as a programming language because it met the 

system’s requirements in terms of avaiblable implementations of the fuzzy logic technique, support for multi-

agent systems, access to databases and other well-known qualities of this language. 

The agents of the system have been implemented through the JADE framework (Java Agent 

Development Framework) based on FIPA specifications [20]. The behavior which ensured the desired 

operations for the system’s agents is the finite-state machine behavior. 
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The inference systems have been implemented using jFuzzyLogic library [21], which offers mulitple features 

in relation with the fuzzy logic technique. A simulation of inference systems has already been made using 

FisPro [22], which is a software that allows to create fuzzy inference systems (FIS) from observed numerical 

data (learning data). In our case, this data represent the evaluations made by the human tutor (expertise). 

Thus, the goal is create  fuzzy system that give tutor-like evaluations [23]. 

Therefore, three fuzzy inference systems were created based on fuzzy inference model datailled in 

paragraph 4. For its reasoning, the Analysis Agent uses two fuzzy inference systems (Figure 4 and 5 ) to infer 

the degree of collaboration, and the degree of presence, based on the activities that were detected by the 

Activity agent. The Tutor Agent uses the tirth fuzzy inference system (figure 6 ) to determine the degree of 

involvement of a learner based on the results found previously by the Analysis Agent, and then sends an 

appropriate instruction. 

 

 

 
 

Figure 4. Inference system of colloration degree (FIS1) 

 

 

 
 

Figure 5. Inference System of Presence Degree (FIS2) 

 

 

 
 

Figure 6. Inference system of involvement degree 

 

 

We present as example the steps of creating inference systeme of collaboration degree (FIS1). 

For FIS1 we have 2 input and 1 output (k=1, L=1). 

We determined  linguistic values for each variable: 

‘Number of messages’ is described with five linguistic values ( f1=3)  and by the term set : 

 

T(Number of messages) = {V11, V12, V13} = {weak, average , high} 

 

‘Number of forums’ is described with three linguistic values (f2=3)   and by the term set: 

 

T(Number of forums) = {V21, V22, V23} = {weak, avearge , high} 

 

 ‘Collaboration degree’ is described with four linguistic values and by the term set (m1=3): 
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T(C1) = {C11, C12, C13} = {insufficient  , average , sufficient} 

  
  

Figure 7. Membership function of ‘number of 

messages’ 

Figure 8. Membership function of   ‘ number of 

forums’  

  

  

 
  

Figure 9. Membership Function of ‘Collaboration Degree’ x1 

 

 

 
 

Figure10. Fuzzy rules of FIS1 

 

 

6. EXPERIMENT 

The aim of this experiment is to test the system SMAASA in real learning situation to test and 

evaluate the contribution of the developed system concerning the improve of learner’s involvement level 

during online collaborative activity. 

 

6.1. Description of the Experiment 

The experiment was conducted within the National School of Applied Sciences Kenitra with 

students of the fourth year specialty “Computer Engineering” and ”industrial Engineering”.The specialized 

course "Web technology" was an opportunity to involve students through a common project, related to the 

theme, to perform remotely via the e-learning Platform of the University Ibn Tofail (Moodle) [24]. 

The course "Web Technology" is taught over a period of 14 weeks. The method adopted in this 

course is a hybrid mode; students take 4 hours of class course and TP by week plus hours of online work to 

realize the duties requested by the tutor at the end of each week.At the beginning of the 11th week the tutor 

gave to the students a project to implement the knowledge acquired in the course. The aim of the project 

is to realize a web application to help candidates to prepare the driving license exam. 

The teacher has set up in course space, a forum which the type is invisible group (the student can see 

only the messages of its affiliates) and an open forum accessible to all, where students can post bugs they can 

not solve. 

The teacher asks students to only use of the forum as a communication tool and to avoid as much as 

possible using of social networks to discuss the project. 

The 51 students involved in the experiment were divided into 14 groups of 3 to 4 members, The 

experiment was conducted over a period of 3 weeks (from December 25, 2015 to January 17, 2016). 

At the end of each week the system is running in order to analyze the interactions between learners 

and subsequently evaluate the collaboration degree or collaborative behavior of each learner. Based on this 

evaluation, the system sends emails which are the subject of instructions and recommendations for each 

learner. 

We have distinguished four types of messages: 
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Message type A: These are messages of admiration as the learner is working satisfactorily the learner is 

encouraged to continue with the same pace. 

Message type B: these are messages intended for average learners, sent instructions in this case encourage 

learners and invite them to make more effort in collaborative behavior. 

Message type C: These are messages for weak learners. The system recommends the learner to give more 

interest for collaborative activity and invited him to connect to the platform regularly. 

Messages type D: messages of criticism and warnings for these learners almost missing on the platform. 

 

6.2. Results 

The system calculates the indicators: number of messages, number of discussions, number of 

connection do and therefore evaluates the degree of collaboration and degree of presence and the 

involvement level of each learner and each group by assigning marks between 0 and 20 

We present descriptive statistics for the results obtained in the three periods of the experience for 

groups and for individuals learners 

 

 

Table 1. Descriptive Statistics for the Groups and Idividuals Results 

Periods 
T1  T2  T3  
grp indiv grp indiv grp indiv 

Av. Nbr message 2,29 0,64 7,07 1,68 4,14 1,1 

Av. Nbr discussion 1,93 0,54 5,79 1,32 3,79 1,02 
Av. Collaboration degree 8,79 2,3 18,86 4,48 21,21 5,46 

Av. Implication level 2,74 1,84 6,39 3,79 5,79 3,61 

Av. Presence degree 4,1 3,03 7,52 5,23 8,68 6,55 

Av =average; Nb r=number; grp =groups; indiv =individuals 

 

 

Based on this evaluation the system sends messages of recommendations which the type is A or B 

or C or D for learners and groups at the end of each period T 

 

 

Table 2. Types of Recommendations for Individuals and Groupes 
Periods A  B  C  D  

 grp indiv grp indiv grp indiv grp indiv 
T1 2 4 2 2 1 7 9 37 

T2 5 7 4 11 2 10 3 22 

T3 4 4 2 8 8 17  21 
Total 11 15 8 21 11 34 12 80 

 

 

By applying chi Square test on the results of the Table 2 we have shown that there is a dependency 

between variables periods T and type of recommendation as chi square value is superior than the Chi Square 

critical in both of individuals and groups results. 

 

 

Table 3. Chi Square Test of Groups Results 

Chi Square 16,5909091 

Chi Square Critical 12,5915872 
 

Table 4. Chi Square Test on Individual Results 

Chi Square 17,8720588 

Chi Square Critical 12,5915872 
 

 

 
 

We show also that is a strong negative linear correlation between types of recommendations and 

periods (correlation coefficient r = -0,32 for groups results and r =-0,17 for individuals results). Then more 

we advance in time (T1  T2 T3), the recommendations is similar to the recoding of the minimum value 

(DCBA).  The following graphs illustrate these results: 
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Figure 11. Evolution of Recommendations and 

Level of Groups 

Figure 12. Evolution of Recommendations and 

Involvement Level of Individual Learners 

 
 

6.3.  Discussion 

Our aim in this experiment is to verify that the SMAASA system by sending recommendations to 

each learner and each group has improved their collaborative behavior. The graphs above show the evolution 

of the involvement level and the types of recommendations compared to the three periods T1, T2 and T3 We 

see that there is an increase in the involvement level, especially in the period T2(from 1,84 to 3,79  for 

learners and from 2,74 to 6,39  for groups )  with showing that learners responded positively to messages sent 

by the system at the end of period T1. This also explains the increase in the number of recommendations of 

type A and B. 

Type D recommendations characterized the T1 period as learners were not well involved in the 

activity on the platform. In the second period the A and B recommendations have progressed so there is an 

improvement. In the third period  T3 there is a small drop in the level of involvement. This decrease is due to 

the circumstances of this period that passed the exams then the students connect but with less 

communication. 

In order to collect the impressions of the tutors on the use of our system SMAASA, we carried out 3 

direct interviews (at the end of each period) with the teacher responsible for the module who has been 

teaching for several years ) related to this module and the online tutoring. 

Since the first interview, the tutor showed great interest in the results returned by the system. The 

tutor explained that he regularly (in previous years) did a manual analysis to identify the learners in difficulty 

as well as the groups that do not collaborate regularly in order to intervene with the learners concerned. The 

tutor confirmed to us that the automation of this task will certainly make the tracking of the learners less 

heavy than before. 

The tutor appreciated the strong impact of the messages sent to the students at the end of the T1 

period. He explained that he received several emails from the students who tried to justify their absence, for 

example, from group activities. Unlike us, the tutor was not surprised by the decline in the degree of 

collaboration during the T3 period, which is due to the occupation of the students by passing the theoretical 

exams. 

 To further analyze the data retrieved by the system, we sought to correlate the level of involvement 

of the groups with respect to the scores attributed by the teacher to the projects developed. However, the 

teacher explained that having a dynamic group whose members work together regularly is not necessarily 

reflected in the quality of the final project. This has a direct relationship to the level of each student in this 

module. Because within the same speciality, we find students with an excellent level in web development 

(due to self-training) as we can have average students who are satisfied with the knowledge acquired during 

the course and the tutorials in face-to-face. Thus, the final score assigned to a group and strongly linked to 

the preliminary level of the learners forming this group and the degree of collaboration within the group. 

 

6.4. System Performance 
 SMAASA is a system for tutor’s assistance in supporting, assessment and monitoring of learners. 

SMAASA like other systems cited in the introduction are based on the analyze of learner’s traces generated 

during their online collaborative activities to provide indicator witch help tutors to evaluate learner’s 

behavior (cognitive, social, …) and intervene and remedy in a more relevant way. The performance of our 

SMAASA system compared to theses works is that it allows to automate the tasks of the tutor  thus 

remedying the constraints related to the large amounts of data that provide these systems and which exceed 

the treatment capabilities of the human tutor. 
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The inference process of the evaluation of the learner’s involvement level by the fuzzy logic 

executed by SMAASA allowed us to have results much similar to those of the tutor (see figures 3 and 4). 

Based on this evaluation, SMAASA provide the appropriate recommendations to each learner and each 

group. 

 

 

  
  

Figure 13. Comparison between Level of 

Involvement of Learners Observed and Inferred 

Figure 14.Comparaison between Level of 

Involvement of Goups Observed and Inferred 

 

 

Note that the system is scalable and capable of assimilating other more complex indicators as 

regards the evaluation of the level of involvement of learners in an online collaborative activity.  

 

 

7. CONCLUSION 

The main objective this article was the realization of a multi agent system for automation of 

learner’s support in a collaborative e-learning platform. Given the imprecise nature of manipulated 

information (learner’s activities data), the automation of the process of evaluation of learner’s collaborative 

behavior led us to provide the system’s agents with fuzzy characteristics, as the fuzzy logic is a suitable 

solution to handle inaccuracies and uncertainties. 

The conducted experiment to test the system showed that learners have reacted positively to the 

recommendations sent which explains the evolution of the level of involvement of the learners. 

 We denote that the system is scalable and able to assimilate other more interesting indicators 

regarding evaluation of learners involvement level in an online collaborative activity. For the moment we 

used only three indicators. 

As perspective we aim to improve the prototype of our intelligent system by introducing algorithms 

for the generation and optimization of fuzzy rules to make it adaptive with new situations.  
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