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ABSTRACT 

 
The analytical solutions of the linear two channels dissipation model are presented in 

various forms. First we analyze the particular solutions of this model. Then the model is 

transformed into the Telegrapher Equation and further into the Klein Gordon Equation for which 

various families of solutions are known. The Fourier Transform is applied on the Telegrapher 

Equation, yielding solutions in Fourier representation. Finally we apply the method of 

characteristics to find solutions of the initial value problem. 
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1. INTRODUCTION 
 

Many processes occurring in natural and 

physical sciences are studied from conservation 

laws. Conservation laws are just balance laws, 

equations expressing the fact that in any volume 

for any quantity the generation, loss, inflow and 

outflow must have net sum zero. Mathematically, 

conservation laws usually translate into 

differential equations. In this paper let us consider 

two quantities u(x,t) and v(x,t) that depend on a 

single spatial variable x and on time 0t . Let us 

think of u and v as densities or concentrations 

measured in amount per unit volume that flow at 

constant or piecewise constant speeds )(1 xc  and 

)(2 xc  respectively, and that have interaction 

with each other through a linear relaxation term. 

Or we may think of u and v as being the 

temperature of two fluids that flow on either side 

of a membrane through which heat is being 

exchanged. This type of situations leads to the 

following set of equations: 
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The constant   is the exchange coefficient.  

The model can be found e.g. in Beckum 

(2003) and the application of the model on heat 

and mass transfer phenomena in a medium can be 

found e.g. in Gupalo(1995). A numerical 

approach (finite difference method) for the above 

equations under boundary and initial conditions in 

the case 1)()( 21  xcxc  can be found e.g. 

in Sumardi (2005), including a rigorous proof of 

convergence. Sumardi (2007) also did numerical 

calculations by the Immersed Interface Method in 

that )(1 xc  and )(2 xc  are piecewise constants.  

Mascia (1996) obtained uniform estimate on the 

derivatives of solutions. However, it will be 

interesting if we could find its analytic solution.  

In the present paper, we present the 

analytical solution of the model in various forms in 

the case that the velocities may be of the same sign 

(co-current flows) or of different sign (counter-

current flows). One of them may even be zero. The 

model can as well be transformed into a second 

order partial differential equation then to the 

Telegrapher Equation, and further into the Klein 

Gordon Equation. Discussion of the  methods for 

this type of PDEs are available too. See e.g. 

Polyanin (2002), Evans (1998), and Pinsky (1998).   
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2. PARTICULAR SOLUTIONS  
 Consider the linear two channels 

dissipation model equation (1). Without loss of 

generality we assume from now on that 1c  is 

positive and that  
12 cc   

.
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2.1 Anzatz Method 

First we find the particular solutions of the 

linear two channels dissipation model by Anzatz 

method. Suppose the particular solution is a pair of 

the exponential functions of the form 
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Then we find A, B and m in order to satisfy 

Equation (2), we obtain system equation  
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To get a non trivial solution, we set  
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so we obtain the quadratic equation  
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that has two distinct real square roots. The 

discriminant of the quadratic equation is 
22

21

2 4)(  cckD . Hence we obtain  
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Substitute (7) into (4), we obtain the relationship 

between the constants A and B: 
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so we obtain particular solution: 
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2.2 Transform to second order equation 
We can also obtain the particular solutions 

of the two channels dissipation model by 

elimination method, so we get a second order 

hyperbolic partial differential equation.  

Let equations (2) be written as follow: 
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If the first equation multiplies by 
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and the second equation multiplies by   then we 

can eliminate v(x,t), so we obtain: 
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In order to solve equation (11) consider the 

changes variables in the case that 21 cc   
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Using the Chain rule for transforming the partial 

derivatives of the two variable functions, we have 

the Telegrapher equation: 
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To put this in more convenient form, let 
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resulting in the equation  
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The Telegrapher equation is transformed in the 

Klein Gordon equation by  

 ),(),(   weu               (16) 

so we obtain 
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Polyanin (2002) wrote many particular 

solutions of the Klein Gordon equation (17): 
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where 21 and,,, CCBA  are arbitrary 

constants, )(and)( 00  KI  are the modified 

Bessel functions. Then we work our way 

backwards with substituting the inverse 

transformation (10), (12), (14) and (16) we obtain 

the result below. 

From the equation (18), we have 
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From the equation (19), we have the particular 

solution: 
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Similarly we can find the other particular solutions 

of the linear two channels dissipation model by 

using the equations (20)– (23). 

 

 

3. THE INITIAL VALUE PROBLEM

  
For the section we will investigate the 

initial value problem of the linear two channels 

dissipation model. Let  
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3.1 Case 21 cc   

For the special case we take 

ccc  21 , so we have  
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Adding two equations (29) we have advection 

equation, which have solution: 
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where F  is an arbitrary function. Substitute (30) in 

the first equation (29) we obtain 
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then solve the equation (31), hence we have 

general solution of the equation (29): 
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Applying the initial condition (28), we have the 

solution of the initial value problem (27)-(28) in 

the case that ccc  21 : 
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From the solution (33) can be interpreted that the 

solutions ),( txu  and ),( txv  are the average of 

the initial signal )(0 xu and )(0 xv  with 

dissipative the difference of the initial signal that 

shifted to the right by the amount ct . For a long 

time, ),( txu  tends ),( txv . 

 

3.2 Case 21 cc   

In the case that 21 cc   using elimination 

method and transformation to variable of the 

equation (15), we get the new initial value problem 

in the Telegrapher equation: 
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To solve the initial value problem (34)-(35), we 

look for ),( u in terms of its Fourier Transform 
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and formally apply the operations implied by (36.a) 
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Therefore we solve the ordinary differential 

equation  
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with initial conditions 
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We seek a solution (39) of the form  

CBBeU    ,,),( .              (41) 

.
44 2

2

2121




 






















cccc
 

Plugging into (39), we deduce  
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  where )(1 B  and 

)(2 B are selected so that  
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We thereby obtain the exact solution of the initial 

value problem of the linear two channels 

dissipation model in the Fourier representation: 
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Then we work our way backwards with 

substituting the inverse transformation (15) we 

obtain the result: 
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and 
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It is very necessary to prove the existence and 

uniqueness solution of the initial value problem of 

two channel dissipation model. 

 

 

3.3 Characteristics Method 

 

As a third method we treat the initial 

value problem by characteristic method. The 

fundamental idea with hyperbolic equations is the 

notion of the characteristics, curves in space time 

along which these signal are propagated. In the 

curves along the partial differential equations can 

be reduced to simple form for example, system of 

ordinary differential equations. The characteristic 

are the curves along which information is 

transmitted in the system.  
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Furthermore we obtain 
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The equation (46) is integrated from ts   to 

0s , we obtain 
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and because of  
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so we have the solution: 
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Similarly we can do for the equation (47), hence 

we have 
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Another way we can treat two channels 

dissipation model: first by transformations and then 

by characteristic method. Transform ),( txu and 

),( txv by 
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so we have new initial value problem: 
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The equations (53) are solved by characteristic 

method, we obtain: 
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The equation (52)-(53) and (58)-(59) are called 

integral equation form of the initial value of the 

two channel dissipation model. It is very necessary 

to prove the existence solution of the initial value 

problem of two channel dissipation model by Fixed 

Point Theorem. 

 

4. CONCLUSION 

 
The particular solutions of this model can 

be obtained by using the elimination method and 

canonical transformation. The model becomes 

Telegrapher or Klein Gordon equation in the 

second order partial differential equation. In the 

Klein Gordon equation we get particular 

solutions, so we also obtain particular solutions of 

the linear two channels dissipation model. In the 

form Telegrapher equation we solve by Fourier 

transform and obtain the solution of the linear two 

channels dissipation model in the Fourier 

representation formula. Finally we find the 

analytical solution by characteristic method in the 

integral form of initial value problem of the linear 

two channels dissipation model. For further work 

we will try to analyze the model by Semigrup 

Operator and look for an analytic solution with 

piecewise constants velocities.  
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