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SUMMARY
Treatment for Post-Traumatic Stress
Disorder (PTSD) is not always effec-
tive, and as the increasing demand for
better management of PTSD and combat-
related PTSD (CR-PTSD) infiltrates the
UK media, so does a pressing need to
understand individual variance in disease
aetiology. Recent research in psychology,
neuroscience and genetics has separately
investigated how and why PTSD affects
individuals differently. Here, we report
on research on trauma, spatial processing
and genetics to demonstrate that the hip-
pocampus, part of the medial temporal
lobe, is key to understanding how genes
and environment interact to determine
susceptibility to, and successful recovery
from, PTSD. We argue that the integration
of these research disciplines will bring new
possibilities for prevention and treatment
of PTSD within the Ministry of Defence
(MOD), emergency services, National
Health Service (NHS) and beyond.

TRAUMA AND TREATMENT SUCCESS
Individual variations within (CR-)PTSD
are a challenge for PTSD research and
for treatment approaches. For example,
overall lifetime prevalence of exposure to
traumatic events varies between 40 and
90% (Hemmings et al., 2013a) with exten-
sive differences between individuals, mili-
tary and civilian populations, and between
social and occupational domains (Zaidi
and Foy, 1994; Alonso et al., 2004; Evans
et al., 2006; Iversen et al., 2007; Druss
et al., 2009), whereas lifetime prevalence
of PTSD is estimated at only 9% (Breslau
et al., 2013). Further complications of
under (Gee, 2013) over (Palmer, 2012) and
self-reporting (Richardson et al., 2010)

PTSD render its UK prevalence rate at 3%
(McManus, 2009) to serve as only an esti-
mation of the impact this condition has on
individuals, communities and the wider
economy.

Although the causes of variation in
(CR-)PTSD prevalence and treatment suc-
cess remain widely unknown (Acheson
et al., 2012), age at which individuals are
exposed to trauma is known to influ-
ence PTSD aetiology (Carrion et al., 2001):
both in terms of early life stress (Brewin
et al., 2000; Vasterling and Brewin, 2005;
McGowan and Szyf, 2010) and the devel-
opment of skills required to both verbal-
ize and spatially contextualize trauma (van
der Kolk, 2003; Betts et al., 2012); and with
regard to dementia (Duax et al., 2013).

With the spectrum of treatment
(Lindauer et al., 2005) and its success
(Gaskell and British Pyshcological Society,
2005) being broad and the UK military
charity Combat Stress delivering PTSD
treatment on the principal1 that over one
third of veterans will not recover well,
there is an increasing and genuine demand
for efficient assessment, referrals and treat-
ment in a very diverse PTSD population.
We propose that understanding individ-
ual variance in hippocampal integrity
will provide a stable and objective means
of quantifying PTSD susceptibility and
treatment success.

PTSD, THE HIPPOCAMPUS, AND
SPATIAL PROCESSING
PTSD has been associated with
hippocampal integrity and volume

1 Based on the model used by the Australian Veterans
Rehabilitation programme (Combat Stress Annual
Report 2011–12).

(Gilbertson et al., 2002; Apfel et al., 2011),
with chronic PTSD in veterans being
associated with a 6% reduction in hip-
pocampal volume compared to recovered
veterans (Gilbertson et al., 2002; Apfel
et al., 2011). Moreover, it is understood
that:

(1) Hippocampal integrity is affected by
stress (Sapolsky, 2000; Vasterling and
Brewin, 2005; Wang et al., 2010);

(2) Stress from trauma exposure poses a
real threat to hippocampal functional-
ity (Brewin et al., 2010; Acheson et al.,
2012; Pitman et al., 2012); and

(3) PTSD symptoms (such as manage-
ment of intrusions, inadequate inte-
gration of sensory memories in recall,
lack of “self-referential perspective”
and fear contextualization) are related
to hippocampal activity (Jeansok and
Fanselow, 1992; Philips and Le Doux,
1992; Ehlers and Clark, 2000; Astur
et al., 2006; Bisby et al., 2010; Brewin
et al., 2010; Acheson et al., 2012;
Pitman et al., 2012).

While there is growing evidence for the
importance of hippocampal integrity for
PTSD resilience and recovery, the question
how to best assess it remains. Hippocampal
function can be measured in many ways,
including pattern separation (Clelland
et al., 2009) and context-dependent
fear conditioning (Gerlai, 2001; Ji and
Maren, 2008). We suggest hippocampal-
dependent spatial processing (King et al.,
2002; Bird and Burgess, 2008; Bisby et al.,
2010) is particularly useful for trauma
research. Spatial processing abilities are
known to be negatively affected by trauma
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(Gilbertson et al., 2007; Bisby et al.,
2010; Tempesta et al., 2012, Smith et al.,
manuscript in preparation), are highly rel-
evant for those occupations which demand
navigation competence and simultane-
ously elevate risk of trauma exposure (such
as the Armed Forces and emergency ser-
vices), and can be objectively quantified
(Bird and Burgess, 2008).

The hippocampus has been impli-
cated in allocentric processing, a spe-
cific type of spatial processing which
involves viewpoint-independent manipu-
lations of spatial relations between loca-
tions (Burgess et al., 2002; Burgess, 2006).
Allocentric processing allows for the use
of “observer” or “field” perspectives in
trauma processing, and this dates back
to Freudian psychoanalysis of anxiety-
provoking memories (McIsaac and Eich,
2004; Eich et al., 2011, 2012). Explicit
references to allocentric (or indeed ego-
centric) processing are unlikely to be
found in trauma literature simply because
this terminology is more familiar to the
domain of spatial cognition. An exam-
ple of therapeutic field using similar con-
structs is offered by Ehlers and Clark
(2000) who employ the term “the self-
referential,” in their theoretical model of
PTSD. Neuropsychologists interested in
spatial processing might refer to such self-
referential processing as “egocentric” (or
non-allocentric). Nonetheless using per-
spective (and indeed spatial perspective)
in contextualizing evocative and sensory
trauma is referred to in trauma litera-
ture (Steel et al., 2005; Neuner et al.,
2008), and a specific example of this is
offered with Bisby and colleagues’ recent
non-clinical samples (Bisby et al., 2010).
Forthcoming findings from research into
the effect of PTSD on configural memory
may substantiate this relationship between
allocentric processing and trauma pro-
cessing further (Smith et al., manuscript
in preparation). Brewin goes so far as
to suggest that future clinical interven-
tions for PTSD should involve further
attempts to change information process-
ing biases in Vasterling and Brewin (2005),
and this paper adopts spatial cognition ter-
minology (i.e., “allocentric processing”) to
shed more light on role of the hippocam-
pus in processing traumatic and spatial
information.

HIPPOCAMPAL INTEGRITY
We have argued that trauma and PTSD
affect hippocampal integrity (Acheson
et al., 2012) and that this integrity is impor-
tant for success in some treatments (Neuner
etal.,2008;Bisbyetal.,2010;Adenaueretal.,
2011). This poses a dilemma: how can the
hippocampusbeappropriatelyemployedto
process the trauma, if trauma is disrupting
its own function?

The answer may lie in the fact that
the hippocampus is able to generate neu-
rons throughout life (Eriksson et al.,
1998; Andersen et al., 2007). It can
increase in volume through spatial train-
ing (Maguire et al., 2000) and also increase
in density through meta-cognition (Holzel
et al., 2010). Moreover, spatial training
procedures which force participants to
adopt allocentric, viewpoint-independent
perspectives have produced regenerative
effects in the hippocampus (Whitlock
et al., 2006; Lövdén et al., 2011).

These findings strongly suggest that hip-
pocampal integrity and function can be
improved using training procedures that
employ spatial tasks. While this already has
potential implications forPTSDrecovery—
particularly for interventions that make use
of spatial contextualization— recent results
from genetics research suggest that training
success may depend on specific genotypes
(Lövdén et al., 2011).

DNA
Many genes have been associated with
PTSD symptomology (Koenen et al., 2009;
Schmidt et al., 2011; Skelton et al.,
2012)—several by means of the phenotype
or “candidate approach” (Yehuda et al.,
2011; Skelton et al., 2012) which selects
genes already known to result in simi-
lar traits as the PTSD symptom of inter-
est (Gottesman and Gould, 2003; Acheson
et al., 2012). Whilst this has provided
insight into many areas of the neurobi-
ological system and various “symptoms”
associated with PTSD, Hemmings et al.
(2013b) recently stated that “no gene vari-
ant has yet been reported as unequivocally
involved in the development of this dis-
order [PTSD].” We suggest that the Brain
Derived Neurotropic Factor (BDNF) gene
may be that gene: primarily because of
its role in hippocampal processing and its
recent associations with PTSD.

BDNF determines levels of
N-acetylaspartate (NAA) in the hip-
pocampus, which is a putative marker
of neural integrity (Egan et al., 2003;
Salehi et al., 2013), is crucial for main-
taining a healthy hippocampal volume
(Carballedo et al., 2013) and plays an
important role in managing the stress
response (Suliman et al., 2013). The
BDNF vall66met polymorphism involves
three genotypes: val/val, val/met and
met/met. In the Caucasian population,
70% of the population carry the single
nucleotide polymorphism val66val, 27%
carry val66met and 3% carry met66met
(Petryshen et al., 2010).

WHAT EVIDENCE LINKS BDNF TO
PTSD?
A wide literature introduces the role of
BDNF and val66met in psychological well-
being, in overall development (Casey et al.,
2009), in mood disorders (Duman and
Monteggia, 2006), depression (Aguilera
et al., 2009; Gatt et al., 2009) and even
attempted suicide (Perroud et al., 2008;
Pregelj et al., 2011).

The BDNF polymorphism has been
associated with childhood trauma, with
carriers of the “met” variation being par-
ticularly sensitive to the impact of child
abuseandrecent stress (Elzingaetal., 2011).
BNDF variations are also considered as
modifiers of the risk of childhood trauma in
obsessive-compulsive disorder (Hemmings
et al., 2013a,b; Suliman et al., 2013) and
as mediators of the impact of childhood
adversity on lifetime depression (Carver
et al., 2011). A plethora of studies demon-
strate a connection between the val66met
polymorphism of BDNF and PTSD in rela-
tion to: extinguishing the fear and startle
response (Rattiner et al., 2004; Zhang et al.,
2014); PTSD symptomology and severity
(Koenen et al., 2009; Frielingsdorf et al.,
2010; Hemmings et al., 2013b); psychotic
PTSD (Pivac et al., 2012); and the efficacy
of PTSD therapy (Felmingham et al., 2013).

Recently, Zhang et al. (2014) reported
that amongst a sample of 461 trauma
exposed US soldiers deployed in
Afghanistan and Iran, 10% had proba-
ble PTSD (Zhang et al., 2014). Within that
group (n = 42), the frequency of met/met
genotypes was nearly three-fold higher
than in the controls, and the frequency
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FIGURE 1 | From DNA to treatment success: BDNF, the hippocampus, spatial, and trauma

processing.

of val/met genotypes was two-fold higher
in individuals with probable-PTSD than
in controls. The frequency of the BDNF
val66met genotypes was significantly
higher in those with PTSD and in those
with exaggerated startle (a core symp-
tom of PTSD) than in non-PTSD groups.
Overall, the val66val genotype has been
suggested to increase PTSD resilience,
while the val66met allele increases vul-
nerability of PTSD (Koenen et al., 2009;
Elzinga et al., 2011; Hemmings et al.,
2013b; Zhang et al., 2014).

WHAT IS THE RELATION BETWEEN
THE BDNF POLYMORPHISM AND THE
HIPPOCAMPUS?
“Met” carriers develop smaller hip-
pocampi (Szeszko et al., 2005), especially
if they are exposed to early life stress (Gatt
et al., 2009)—and as they age, are more
likely to show lower hippocampal activ-
ity and resilience (Raz and Rodrigue,
2006; Fehér et al., 2013; Wiener et al.,
2013), poorer performance on spatial
tasks (Sanchez et al., 2011) and are less
prone to explore unfamiliar environ-
ments (Chen et al., 2006). Furthermore,
val66met has been shown to impair the
hippocampal plasticity induced by SSRI
anti-depressants (such as fluoxetine)
which are often used in the treatment
of PTSD (Bath et al., 2012). Kleim et al.
(2006) showed that changes in neural plas-
ticity and motor function are mediated
by the val66met BDNF polymorphism,

and Lövdén et al. (2011) demonstrated
that increased levels of hippocampal NAA
(a putative marker of neural integrity) as a
result of spatial training were restricted to
BDNF val homozygotes (val/val). Val/met
heterozygotes and met/met homozygotes
did not benefit from the spatial training
which required allocentric processing, the
very processing which is thought to be so
useful to manage trauma.

CAN WE PREDICT SUCCESS RATES OF
DIFFERENT PTSD TREATMENTS?
We have reviewed research demonstrating
that:

(1) PTSD is inextricably linked to the hip-
pocampus (Astur et al., 2006; Bisby
et al., 2010; Brewin et al., 2010;
Acheson et al., 2012; Pitman et al.,
2012);

(2) Hippocampal integrity and develop-
ment has a strong genetic component
(Szeszko et al., 2005; Gatt et al., 2009;
Lövdén et al., 2011) and

(3) Some forms of PTSD treatments rely
on hippocampal processing (McIsaac
and Eich, 2004; Vasterling and Brewin,
2005; Adenauer et al., 2011).

Figure 1 illustrates the interrelations
between BDNF, the hippocampus, spatial
processing and trauma processing.

Together, these findings allow for
an intriguing conclusion: the success
rate of specific PTSD treatments may

well be predicted by analysing patients’
BDNF genotype. Specifically, we argue
that PTSD therapies involving spatial
contextualization of traumatic event (such
as exposure therapy) will have lower suc-
cess rates in val/met heterozygotes and
met/met homozygotes than in val/val
homozygotes, especially if individuals
have been exposed to early life stress.
This is because spatial contextualization
is dependent on hippocampal processing,
and hippocampal integrity and plastic-
ity is mediated by the val66met BDNF
polymorphism.

In conclusion, we suggest that genetic
analysis can help to predict the success of
different types of PTSD treatments and
methods of trauma processing, and may
be used to improve referral pathways and
eventually PTSD recovery rates.

Research between UCL, Bournemouth
University, the NHS and Combat Stress
is currently being undertaken to quantify
the relationship between the BDNF gene,
combat and childhood trauma process-
ing and hippocampal-dependent naviga-
tion, with the intention of providing new
insight into the experience of PTSD in
the UK.
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