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Abstract: 12 

 13 

The history of the Fertile Crescent is well documented through archaeology and epigraphy. However, contrary to 14 

adjacent regions in the Mediterranean and Middle East, the reconstruction of diet and food ways through isotope 15 

analysis is limited for Mesopotamia and, consequently, matters of subsistence change are not well understood. To 16 

address this, collagen carbon and nitrogen isotopic ratios of human (N=84) and animal (N=8) samples from Tell Barri, 17 

Syria, predominantly ranging from the Early Bronze Age to Roman/Parthian times, were analysed to ascertain 18 

diachronic dietary patterns as well as gender- and age-related differences.  19 

 20 

Only in the early occupation periods is there evidence of gender-related diet, while the later phases do not display 21 

significant differences between males and females. In the early phases of occupation, subsistence is based on a 22 

terrestrial C3 diet, but changes towards the inclusion of more C4 based foodstuffs in later phases. This trend is 23 

unaffected by the clear historic reference to periods when increased pastoralism alternates with settled agricultural 24 

farming. 25 

 26 
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1. Introduction 30 

 31 

Analysis of stable carbon and nitrogen isotopes in human and animal tissues from archaeological contexts has become 32 

an established method for the reconstruction of diet and subsistence in past human populations (Katzenberg, 2008; 33 

Lee-Thorp, 2008). Studies on dietary variation within and between populations (e.g., Le Huray and Schutkowski, 2005; 34 

Knipper et al., 2013) as well as overarching questions about diachronic change (e.g., Grupe et al., 2013; Müldner et al., 35 

2014) have produced an increasingly fine-grained appreciation of past subsistence regimes and dietary behaviour. 36 

While this includes the Eastern Mediterranean, Anatolia and adjacent regions (e.g., Budd et al., 2013; Gregoricka and 37 

Sheridan, 2013; Pearson et al., 2013; Schutkowski and Richards, 2014), there is still little understanding of subsistence 38 
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change in Mesopotamia, and sporadic attempts to address this so far were either confined or met with limited success 39 

(Batey, 2011; Hornig, 2010; Schutkowski, 2012). The site of Tell Barri, which is representative of the dry farming zone 40 

in the central part of the Fertile Crescent, and which was continuously inhabited from the beginning of the Early 41 

Bronze Age until the Roman/Parthian period (Pierobon Benoit, 2008), offers a rare opportunity to explore this in 42 

diachronic detail. 43 

 44 

After agriculture had been invented in that area in the 9
th

 millennium BCE, the subsistence of local human populations 45 

was based on plant cultivation and animal husbandry. The two most common cereals were wheat and barley, and 46 

legumes and vegetables supplemented the local diet (Riehl, 2009; cf. Ellison, 1978, 1984), all of them belonging to the 47 

C3 pathway. There is only marginal evidence of millet, which is a C4 cereal, during the Pre-Pottery Neolithic (Hunt et 48 

al., 2008), but it was re-introduced together with sorghum in the 1
st

 millennium BCE; however, it never became a very 49 

important crop (cf. Nesbitt and Summers, 1988). The most common domestic animals were ovicaprids, cattle, and pigs 50 

(Miller, 2013; Arbuckle, 2014), some of which were kept close to the human settlements, but especially ovicaprids 51 

may have been fed in more distant pastures on the dry steppe, which could not have been used for plant cultivation 52 

because of insufficient precipitation. 53 

 54 

Throughout the history of Mesopotamia farmers interacted with herders. In most periods these two groups co-55 

operated; for example the Middle Bronze Age archives from Mari (modern Tell Hariri) in the middle Euphrates region 56 

indicate that both groups not only exchanged their products, but were also linked with each other by a close network 57 

of social and kinship ties, a constellation termed dimorphic society by modern scholars (Rowton, 1977). However, any 58 

deterioration of environmental conditions (as e.g. prolonged drought) disrupted the balance between the two 59 

subsistence strategies and sometimes, when dry steppes became too dry for feeding ovicaprids, pastoralists invaded 60 

areas suitable for plant cultivation and contributed to the fall of early states that were economically based on cereal 61 

crops (Neumann and Parpola, 1987). In the history of ancient Mesopotamia, two major periods of increased mobility 62 

of herders were recorded in historical documents and there is evidence that this social instability was induced by 63 

climatic change and periods of prolonged drought (e.g. Riehl et al., 2012). 64 

 65 

The first period, the transition from the Early Bronze Age (EBA) to the Middle Bronze Age (MBA), started c. 2250 BCE 66 

and ended c. 1950 BCE (Cullen et al., 2000; Wossink, 2009). The beginning of this event was contemporary to the fall 67 

of the Akkadian empire and there has been a vivid discussion among archaeologists and environmentalists whether a 68 

volcanic eruption or a bolide impact triggered this period of drought and contributed to the abandonment of some 69 

settlements in Northern Mesopotamia (cf. Cullen et al., 2000; Kolioski, 2011). Although the central authority (i.e. the 70 

3
rd

 dynasty from Ur) recovered in Southern Mesopotamia at the turn of the 21
st

 century BCE (Van de Mieroop, 2007), 71 

herders known as Amorites kept migrating from the North to the South, and finally their leaders took control over all 72 

Sumerian cities c. 2000 BCE (Van de Mieroop, 2007). Amorites quickly adapted to the urban civilization, and in the 73 

early 2
nd

 millennium BCE the strict co-operation between farmers and herders was restored (cf. Rowton, 1977). 74 

 75 

The second period of social instability, caused by climatic change that increased mobility of herders, lasted from c. 76 
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1200 BCE to c. 850 BCE, the transition from the Late Bronze Age (LBA) to the Early Iron Age (EIA) (Neumann and 77 

Parpola, 1987; Issar and Zohar, 2007; Langgut et al., 2013). During that time, all LBA states (Egypt, Assyria, Babylonia, 78 

Hatti) collapsed or at least entered into a period of social upheaval, and pastoral populations, especially Arameans in 79 

Mesopotamia, dominate the historical record (Sader, 2000). Unlike a millennium earlier, Arameans did not readily 80 

adapt to urban civilization and their tribes in Northern Mesopotamia were gradually conquered by the expanding Neo-81 

Assyrian empire in the 9
th–8

th
 centuries BCE (Liverani, 2014). 82 

 83 

The available textual evidence does not refer directly to the area of Tell Barri, which was the second-ranked town in 84 

the Early Bronze Age, then the capital city of the kingdom of Kahat in the Middle Bronze Age, and finally, after c. 850 85 

BCE, the garrison city in the time of empires (Pecorella, 2008; Pierobon Benoit, 2013). However, it is clear that the 86 

periods of instability recorded in Babylonia and Assyria must have affected also the north-western part of 87 

Mesopotamia. Using samples of human and animal calcified tissues representing several millennia of human 88 

settlement at Tell Barri, it should be possible to ascertain whether and how instability at the transition between EBA 89 

and MBA and between LBA and EIA affected diet and subsistence of human populations in this region. We 90 

hypothesize that the relative proportion of animal-derived food is higher in times when mobile herders dominate and 91 

the size of the sedentary agricultural population decreases, and that during the periods of social and economic 92 

instability some alternative resources must have been occasionally exploited and thus the diet became more variable. 93 

Moreover, some C4 grasses and reeds are present in the dry steppe and in the valleys of permanent rivers and wadis 94 

(Nesbitt, 2006); therefore changes in the exploitation of these areas by herders may influence δ
13

C values. All of these 95 

effects should register in changes of isotope ratios. 96 

 97 

2. Biogeochemistry of dietary reconstruction 98 

 99 

The principles underpinning the reconstruction of dietary patterns and the inference on underlying subsistence 100 

activities in past populations are well-established and have been described in considerable detail (e.g. Schwarcz and 101 

Schoeninger, 1991; Katzenberg, 2008; Lee-Thorp, 2008; Richards and Hedges 2008). The ratios of carbon and nitrogen 102 

isotopes, (δ
13

C and δ
15

N) of various food sources are reflected in the ratios of consumer tissues (Ambrose, 1993; 103 

DeNiro and Epstein, 1978, 1981; Schoeninger and DeNiro, 1984, Tiezsen and Fagre, 1983). When measured from bone 104 

collagen, carbon and nitrogen stable isotopes largely represent protein intake accumulated over about ten years prior 105 

to the death of an individual (Hedges et al., 2007). Fractionation, the systematic alteration of isotopic ratios along the 106 

food chain and in the passage from one tissue to another, is used to infer trophic position of consumers relative to 107 

other individuals and those organisms that supply the food web.  108 

 109 

Fractionation for carbon typically amounts to 1-3‰, relative to the baseline ratio of marine bicarbonate in the PeeDee 110 

Belemnite formation (Vienna PeeDee Belemnite standard, VPDB), and for nitrogen to 3-5‰, measured against the 111 

ratio for nitrogen in air (Ambient Inhalable Reservoir, AIR). In addition to fractionation, origin of foodstuffs and 112 

biochemical properties are responsible for further isotopic differentiation of dietary intake.  113 

 114 
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Depending on the photosynthetic pathway, the vast majority of plants divide into C3 (Hatch-Slack cycle) or C4 plants 115 

(Calvin-Benson cycle). C4 plants are more enriched in
 13

C carbon than C3 plants, which results in an isotopic separation 116 

of these two groups when compared against the reference standard (Smith and Epstein, 1971). Carbon isotope 117 

signatures therefore permit distinction between groups of plants and the identification of relative amounts of major 118 

plant groups contributing to human diet. C3 plants grow in temperate climates and comprise common cultivars, 119 

including wheat, rye or barley and most vegetables. C4 plants originate from more arid environments. Maize, millet 120 

and sorghum belong into this group, but also some native grasses and chenopods. 121 

 122 

As a result of fractionation, carbon derived from animal protein is isotopically different from plants of the same 123 

habitat and human δ
13

C values will be less negative when domestic or wild animals are contributing to the diet in 124 

measurable quantities (De Niro and Epstein, 1978). Nitrogen isotopic ratios of bone collagen essentially reflect intake 125 

of animal protein (De Niro and Epstein, 1981; Hedges and Reynard, 2007), and thus, for the reconstruction of human 126 

food ways, allow the detection of trophic level effects caused by the consumption of meat or animal products . 127 

 128 

Carbon and nitrogen isotope ratios have also been used to assess the timing of weaning, as the introduction of solid 129 

foods marks the transition from exclusive breastfeeding to the consumption of an omnivorous human diet. This 130 

process is reflected in trophic level changes of isotope ratios from younger to older children (e.g. Fogel et al., 1989; 131 

Richards et al., 2002; Fuller et al., 2006, Bourbou et al., 2013). The protein from breast milk is incorporated into the 132 

child’s body tissues with elevated carbon and nitrogen values and therefore the collagen isotope ratios of infants not 133 

yet weaned can be up to 3‰ higher than those of their mothers, as well as most adults at a site (Schurr, 1997; Herring 134 

et al., 1998).  During and after weaning, children’s bones will have a mix of collagen laid down during breastfeeding 135 

with high carbon and nitrogen values, and collagen laid down from consuming a diet similar to that of adults with 136 

lower carbon and nitrogen values (Millard, 2000).  Over time, bone collagen isotope ratios will change to levels typical 137 

of adults at the site.  138 

 139 

3. Materials 140 

 141 

Tell Barri, with its maximum size of 34 hectares and a height of more than 30 meters above the surrounding plain, is 142 

one of most prominent archaeological sites in the Khabour drainage. It has been excavated since 1980 by the Italian 143 

expedition from the universities of Florence and Naples, first under direction of Paolo Emilio Pecorella (Florence), then 144 

of Raffaella Pierobon Benoit (Naples) (Pecorella, 2008; Pierobon Benoit, 2013). 145 

 146 

In the course of more than 30 seasons of excavations, the stratigraphy of the site has been well recognised, 147 

particularly due to the large trench G at the south-eastern slope of the site, where the Early Bronze Age I settlement 148 

(c. 2900 BCE) was found on virgin soil. The site was occupied continuously from the Bronze Age through the Iron Age 149 

to the Parthian/Roman period, with some traces of settlement also dated to later times (Pierobon Benoit, 2013). No 150 

regular cemetery has been found, but several human skeletons and a few isolated human bones were retrieved from 151 

domestic contexts. The total number of individuals in primary and secondary burials amounts to 117 (Sołtysiak, 2008; 152 
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2010). The state of preservation is variable, but skeletons found in the trenches G and J had been usually retrieved 153 

from deep strata and therefore most of them were only slightly affected by taphonomic factors. 154 

 155 

Bone samples were taken from all human skeletons excavated at Tell Barri that were not heavily weathered and could 156 

be dated by their archaeological context and stratigraphy. In total, 84 samples were available, covering a chronological 157 

range from the Early Bronze Age to the Modern cemetery of the 19
th

 and early 20
th

 century at the top of the site 158 

(Table 1). No systematic archaeozoological study has been conducted so far, but teeth of ten animals (four pigs, four 159 

ovicaprids and two canids) were collected for analysis and dentin samples were used to establish a limited isotopic 160 

foodweb background. All available animal tooth samples represent relatively late periods of occupation at Tell Barri, 161 

i.e. Neo-Assyrian and Achaemenian periods. For comparative purposes, the NISP (number of identifiable specimens) 162 

frequencies of taxa in animal bone assemblages at Tell Arbid are used to check the possible impact of changes in 163 

animal husbandry on isotopic data. This site is located in the same ecological zone only some 15 kilometers north-west 164 

of Tell Barri (Bielioski, 2013). Especially the proportion of pigs at Tell Arbid decreased clearly between the Middle and 165 

Late Bronze Age, ranging between 40% and 45% in the EBA and MBA assemblages and 15-25% during the LBA and the 166 

Hellenistic period (Piątkowska-Małecka and Kolioski, 2006; Piątkowska-Małecka and Smogorzewska, 2010); this 167 

decrease was accompanied by growth of the ovicaprid proportion. 168 

 169 

4. Methods 170 

 171 

Duplicate samples were taken from cortical human bone and dentin from terrestrial animal specimens. Surfaces were 172 

cleaned using air abrasion with an aluminium oxide powder to remove adhering soil particles, and then subjected to a 173 

modified Longin method (Brown et al., 1988) for collagen extraction: samples are demineralised in 0.5M HCl at 2-5°C 174 

and then gelatinised at 72°C for 48h in deionised water adjusted to pH 3, with 0.5M Hcl. This process typically took as 175 

long as 14 days, but occasionally, extraction times were extended depending on the actual size of the specimen. The 176 

extraction mix was filtered using Ezee filter separators (Elkay Laboratory Products, Basingstoke) to remove insoluble 177 

materials and then was purified again using Amicon Ultra-4 centrifugal filters (Millipore) to remove contaminants 178 

lower than 30,000 nominal molecular weight limit (Brown et al., 1988). The resulting solutions were lyophilised, a sub-179 

sample of 0.4±0.1mg combusted and analysed by Isotope Ratio Mass Spectrometry (Finnigan Delta Plus XL). 180 

 181 

Methionine standard reference material, with known both 
13

C (-26.6‰) and 
15

N (-3.0‰) values (Elemental 182 

Microanalysis, Devon, UK) was measured at regular intervals in tandem with samples of bone collagen to examine the 183 

accuracy and precision of analytical methods, together with internal and external certified laboratory standards (e.g. 184 

IAEA standards, bovine liver, fish gel etc.). Collagen yield, the percentages of carbon and nitrogen, and the C/N ratio 185 

were recorded to control for possible effects of diagenetic processes (Ambrose, 1993). In conjunction with the sample 186 

preparation method employed here (Brown et al., 1988), collagen yields as low as 0.5% are deemed acceptable (van 187 

Klinken, 1999), however, usually only yields of 1% and higher are considered sufficient to indicate preservation of 188 

authentic collagen. For this study, samples that yielded between 0.5 and 1% collagen were considered suspect and 189 

any samples with collagen yields below 0.5% were discarded from the analysis to take account of local sediment 190 
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conditions that could have potentially impaired collagen preservation. Samples not having a C/N ratio between 2.9 191 

and 3.6 (the range known for native bone collagen) (Ambrose, 1993) were omitted. 192 

 193 

As the sample size was small in most cases, non-parametric tests were used, i.e. Kruskal-Wallis ANOVA to compare 194 

three and more samples, with post-hoc multiple comparison, and Mann-Whitney U test for differences between 195 

distributions of two samples. Correlations were explored using both Pearson’s correlation coefficient and Spearman’s 196 

rank order correlation. All statistics were calculated using Statistica 10 software. 197 

 198 

5. Results 199 

 200 

In total, 71 out of 84 human bone samples (86%) and eight out of ten animal dentin samples contained acceptable 201 

amounts of collagen and met the established quality standard criteria (van Klinken et al. 1999) (see Table 2). Table 3 202 

presents data for the animal samples and Table 4 contains descriptive stastistics for all samples analysed. 203 

 204 

The spread of isotope ratios for the overall human sample is considerable, amounting to about two trophic levels for 205 

carbon (δ
13

C -20.3‰ to -17.6‰) and to about three trophic levels for nitrogen values (δ
15

N 6.1‰ to 15.3‰). Even if 206 

adults and sub-adults are taken into account separately, the picture principally does not change (adults: δ
13

C -20.3‰ 207 

to -18.3‰, δ
15

N 6.1‰ to 14.2‰; sub-adults: δ
13

C -20.3‰ to -17.5‰, δ
15

N 7.8‰ to 15.3‰). Overall, the results and 208 

their spread suggest a terrestrial diet based largely on C3 plants and varying input from animal-derived foodstuffs. 209 

 210 

In the sub-adult sample, overall, children and adolescents are generally within the range of adults for both carbon and 211 

nitrogen ratios. Infants (0-2 years of age) display a much more diverse pattern. About half of them (eight out of 212 

fourteen; see Figure 2) cluster closely within the adult range, whereas the smaller subset is clearly separated by 213 

elevated nitrogen ratios as well as slightly more positive carbon values. This suggests that those young children with 214 

nitrogen ratios above 11.5‰ to 12‰ represent individuals that died while they were still entirely or largely breast-215 

fed. Among them are one neonate and five infants ranging from 0.75 to 1.75 years of age. Those with nitrogen values 216 

below 11.5‰ were neonates or infants who died a few months after birth (six individuals) and older infants who had 217 

been weaned already as indicated by their values within the adolescent and adult distribution (two individuals 218 

approximately 1.5 and 2 years old). Since all children between the age of 2.5 and 7 lack these elevated ratios, it can be 219 

assumed that they had been completely weaned. 220 

 221 

Due to small sample sizes, the differences in δ
13

C and δ
15

N between four defined age groups (infants 0-2 years old, 222 

young children 2.5-7.5 years old, older children 8-15 years old, adults and adolescents) were tested for the whole 223 

sample, without division into chronological subsets (Figure 2). The Kruskal-Wallis test results are statistically 224 

significant both for δ
13

C (H=8.82, p=0.0318) and for δ
15

N (H=14.52, p=0.0023) and this significance is related only to 225 

differences between infants and all other age categories. For nitrogen, all multiple comparisons between infants and 226 

other age groups produced p<0.05 and for carbon only the difference between infants and adults has p<0.05. Since all 227 

pairwise p-values for the three post-weaning age groups equal 1.0, only infants will be excluded from the subsequent 228 
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analyses of temporal trends assuming that in 2-2.5 year old children the weaning process was already completed. 229 

 230 

For all individuals older than 2.5 years, the sample size is small in case of all temporal subsets, so although the Kruskal-231 

Wallis test is statistically significant for δ
13

C (H=14.52, p=0.043), for all pairwise comparisons p>0.05. However, some 232 

difference between early (i.e., EBA, EMB and MBA) and later (i.e., LBA, NAS, ACH, PAR and MOD) samples may be 233 

observed, with mean δ
13

C ratios shifting from -19.7‰ to -19.3‰ towards -19.1‰ to -18.9‰ (Figure 3). This 234 

difference is very small, but quite clear, so this general division between earlier and later samples will be used in 235 

further analyses. There are no significant differences between subsets in the δ
15

N values (H=9.10, p=0.25) and there is 236 

no clear temporal pattern (Figure 4). Apart from some differences in mean δ
13

C values between the chronological 237 

subsets, variance also seems to be slightly higher in later periods, and especially NAS and EMB values are more 238 

scattered than EBA values (Table 4). 239 

 240 

For all subsets with six or more individuals, the correlation between δ
13

C and δ
15

N values was tested using both 241 

parametric and non-parametric methods (Table 4). The correlation is rather weak (although statistically significant) in 242 

the whole sample, but there are striking differences between subsets: both values were strongly correlated in the 243 

EBA, moderately correlated in the MBA and weakly or not correlated in the EMB, NAS and ACH subsets. The 244 

correlation for all early subsets is moderate (N=26, Pearson r=0.48, p<0.05; Spearman rs=0.39, p<0.05) and absent for 245 

all late subsets (N=31, r=-0.02; rs=0.22, both values are not significant) 246 

 247 

Non-parametric analysis of variance in the whole dataset of the early and late subsets of humans together with three 248 

animal taxa confirmed significant differences between the early and late subsets, both in case of δ
13

C (Kruskal-Wallis 249 

H=17.35, p<0.002) and for δ
15

N (H=18.13, p<0.002) (Figure 5). There are no significant differences between the early 250 

human subset and pigs, but differences between the late human subset and pigs are significant both for carbon and 251 

for nitrogen (Table 5). This effect is paralleled by the clear decrease in the number of pigs at Tell Arbid between MBA 252 

and LBA. 253 

 254 

The pattern of differences between males and females changed between the early and late phases of occupation. In 255 

the early periods, males exhibit both elevated carbon (Mann-Whitney U test, Z=2.21, p<0.03) and to some extent also 256 

nitrogen values (Z=1.64, p=0.10) compared to females. On the other hand, in the late periods values for males are 257 

more scattered, but there is no statistically significant difference between the sexes in either δ
13

C or δ
15

N (Figure 7). 258 

 259 

6. Discussion 260 

 261 

In general, most individuals from all periods at Tell Barri fall into a relatively narrow range of δ
13

C values between -262 

20‰ and -18.5‰, which indicates a diet based almost exclusively on C3 plants. Such a result was expected taking into 263 

account the observation that since the very beginning of agriculture the main crops in Northern Mesopotamia were C3 264 

cereals like wheat and barley (Riehl, 2009). In contrast, δ
15

N values are more variable, although largely ranging 265 

between 8 and 11, which may indicate relatively broad spectrum of omnivorous diets. 266 
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 267 

For both carbon and nitrogen several outliers were detected, and most of them represent individuals that date to the 268 

Neo-Assyrian and Achaemenian periods. Of the three individuals with highest δ
15

N values two were males (NAS and 269 

EMB) and one individual yielded no reliable sex assessment (ACH). Relatively more negative δ
13

C values in all these 270 

individuals suggest a diet abundant in proteins of animals fed almost exclusively on C3 plant resources. On the other 271 

hand, two female individuals with lowest δ
15

N values, even below the level of herbivores, and also low δ
13

C values, 272 

were dated to the EBA and MBA periods. One individual with the highest δ
13

C value in the analysed sample, close to -273 

17.5‰, was an 8-year old child (NAS). 274 

 275 

The most interesting difference between the earlier and later samples is a small but clear shift towards higher δ
13

C 276 

ratios in later periods, with a threshold at the transition from the MBA to the LBA. Whilst a detailed analysis of animal 277 

remains from Tell Barri is not yet available, a comparison with nearby Tell Arbid as the closest possible proxy suggests 278 

that the observed change in isotopic values may be correlated with some shift in animal husbandry: pigs were much 279 

more important in the earlier Bronze Age periods than in the LBA and later (Zeder, 1998; Piątkowska-Małecka and 280 

Kolioski, 2006). As pigs at Tell Barri, which the present study shows, were fed exclusively on C3 plants (most likely from 281 

surplus of plant cultivation), a diet based mainly on cereals and even a greater share of pig meat should be 282 

characterised by low and less variable
 
δ

13
C values in the early phases of occupation. 283 

 284 

Data of the ovicaprids from Tell Barri exhibit clearly higher δ
13

C values than the pigs and are associated with later 285 

phases of occupation. Whilst the elevated average human δ
13

C in later periods can partly be explained by higher 286 

relative consumption of lamb meat or dairy products,  the positive correlation between δ
13

C and δ
15

N in the EBA and – 287 

to a lesser extent – in the MBA may indicate that in the earlier period animals other than pigs fed partially on C4 288 

plants. It is possible that some distant pastures in the dry steppe with several C4 grasses such as Chloridoideae or 289 

Panicoideae (cf. Nesbitt, 2006) or wetlands along Wadi Jaghjagh and other streams with Phragmites (Al-Jassem et al., 290 

2010) were used for pasture in these earlier periods in a more systematic way than in later periods, when at least 291 

ovicaprids fed almost exclusively on C3 plants. Unfortunately, no ovicaprid tooth samples from the early periods were 292 

available in the present study, so this pattern cannot be directly corroborated. 293 

 294 

Another factor contributing to the temporal change in δ
13

C values may be related to climate. It has been observed 295 

that water stress in C3 cereals like barley results in higher absorption of 
13

C and this effect may be higher than the shift 296 

of 0.5‰ observed here (Ferrio et al., 2005). Indeed, research on barley grains from several Syrian sites dated to the 297 

Bronze Age has shown that δ
13

C values ranged from 13.5‰ to 19‰ and there were quite clear temporal trends that 298 

may be correlated with known periods of aridification (Riehl, 2008). However, the major shift towards higher water 299 

stress in barley was noted between EBA and MBA and it is consistent with other proxy data suggesting a climatic 300 

change during that time. On the other hand, arid conditions continue from MBA to LBA and there is no major 301 

difference at the transition between these periods (Riehl, 2008). Therefore, it is not likely that water stress in C3 302 

cereals was a factor in the pattern observed here, although this effect may have contributed to the overall variability 303 

of δ
13

C values in the human remains. 304 
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 305 

In general, the higher average δ
13

C value in later periods seems to be the consequence of at least two processes: a 306 

much smaller share of pigs in the livestock, and higher variability of subsistence in general, combined with the possible 307 

introduction of some C4 cereals, for example millet, which has been recorded in large quantities in the Neo-Assyrian 308 

stratum at Tille Höyük, a site located on the upper middle Euphrates (Nesbitt and Summers, 1988) and depicted, 309 

together with sorghum, another C4 crop, in Sennacherib's palace in Nineveh, dating back to c. 700 BCE (Vinall et al., 310 

1936). These cereals were absent in earlier periods, so even if their share in cereal production of the later period was 311 

small, they could contribute to the observed shift in δ
13

C values. 312 

 313 

Another difference in the ratios of stable carbon and nitrogen isotopes between the earlier and later periods concerns 314 

dietary differences between the sexes. Males and females from the early subset (EBA to MBA) are relatively well 315 

differentiated. Male values suggest a diet more abundant in animal protein and also more shifted towards the 316 

consumption of C4 food items, which again may be the consequence of herding some animal taxa in places more 317 

abundant in C4 grasses. In contrast, males from later periods (LBA to MOD) differ from females mainly because their 318 

δ
13

C and especially δ
15

N values are more dispersed. Some correlation between isotopic ratios of both elements is 319 

noted here (especially when an outlier with a very high δ
15

N value is omitted), but the overall pattern is clearly 320 

different in the two compared temporal subsets. 321 

 322 

The most unexpected outcome of the present analysis is the lack of a clear isotopic signal that would indicate 323 

increased pastoralism in the transitional periods between EBA and MBA and between LBA and NAS/ACH. It should be 324 

expected that mobile herders who, according to historical sources, dominated the region in both these “dark ages” 325 

(EBA\MBA: Wossink, 2009; LBA\EIA: Younger, 2007) relied more on animal-related food and, moreover, fed their 326 

flocks in areas more abundant in C4 plants. Therefore, higher average values of both δ
13

C and δ
15

N should be 327 

expected. In fact, the only peculiarity of the transitional periods is a higher dispersion of individual values, with no 328 

clear differences in average values in relation to preceding and following periods. This is especially well visible in the 329 

Neo-Assyrian period, which, in case of Tell Barri, means 9
th

 century BCE, the very end of a “dark age”. 330 

 331 

Actually, the observed pattern may be much more comprehensible when interpreted from the perspective of Tell 332 

Barri itself and not from the general regional perspective. For most of its history, Tell Barri was an urban centre of 333 

primary or secondary rank with a population of several hundred or thousand people feeding particularly on local 334 

resources. During the “dark ages” it may have been less densely populated, but still was not the place where mobile 335 

pastoralists lived. So, the dispersal of individual isotopic signatures may reflect the need of searching for alternative 336 

food resources in these periods where the city was to some extent isolated from its hinterland, but throughout all 337 

periods individuals buried at Tell Barri represented the local population of farmers. 338 

 339 

Surprisingly, the clearest transition in diet and subsistence at Tell Barri occurred between the Middle and Late Bronze 340 

Age, when some continuity was expected, if we follow the historical sources. In that time, the area was under control 341 

of the Mitanni state, with a most prominent Hurrian ethnic background, but probably Indo-European ruling elites, as 342 
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suggested by onomastic evidence (Cancik-Kirschbaum and Eidem, 2014). In roughly the same time, nomadic 343 

pastoralists called aḫlamû became visible especially at the borders of the Syrian Desert and after the fall of the 344 

Mitanni state they transformed into Arameans known from Assyrian sources (Lipioski, 2000; Sader, 2014). It is possible 345 

that an increasing independence of herders was the major factor contributing to the observed shift in diet and 346 

subsistence. 347 

 348 

During the Early and Middle Bronze Age, Northern Mesopotamia was likely a place of strict co-operation between 349 

plant cultivators and herders, whether forced by central state administration or out of free will. The exchange of 350 

resources was well organised and the system was profitable for both sides, as herders led their flocks outside 351 

agricultural areas during the winter when dry steppes flourished due to abundant precipitation, and moved to the 352 

arable fields after the harvest, when flocks fed on the stubbles and manured the fields (Wossink, 2009). This so-called 353 

dimorphic society is well described in the archives from Mari on the Euphrates River and dated to the MBA (Rowton, 354 

1974, Pitard, 1996, Fleming, 2009), but such a system was likely present also in the earlier period and in the Khabour 355 

drainage. Even the “dark age” during the transition between EBA and MBA temporarily disturbed but did not change 356 

the system, as the herders known as Amorites quickly adapted to Mesopotamian urban civilisation (Liverani, 1973; 357 

Schwartz, 2013). The correlation between δ
13

C and δ
15

N in earlier periods at Tell Barri and the low variability in 358 

individual isotopic values suggests that during that time the site was inhabited by a society with stable subsistence 359 

and diet standardised by efficient administration. 360 

 361 

Although archaeological and epigraphical sources for the economy of later periods are very scarce, it is possible to 362 

propose a consistent interpretation of observed changes in isotopic values. When herders became more independent 363 

during the Late Bronze Age, the subsistence of the city must have been adapted to this new situation. Pigs became 364 

less popular, as they provided meat, but no secondary products like milk or wool (cf. Zeder, 1998). When distant 365 

pastures were occupied by aḫlamû and thus no longer available for the urban population (cf. Hole, 2007), only local 366 

plant resources may have been used for fodder. It is possible, then, that pigs must have given way for more ubiquitous 367 

ovicaprids or cattle. Also the introduction of new crops in the Neo-Assyrian period may be related to the cultivation of 368 

lands that were too arid for barley or wheat, but still suitable for drought-resistant millet and sorghum (Rostamza et 369 

al., 2013), which may have become the alternative source of grain and fodder. All this re-orientation of subsistence 370 

appeared to be permanent and the separation of mobile herders and settled plant cultivators remained stable 371 

throughout all later periods, as suggested also by increased δ
13

C values at Tell Barri. 372 

 373 

7. Conclusion 374 

 375 

Whilst only a relatively small number of skeletons were found during the past 30 years of excavations at Tell Barri, 376 

their temporal distribution enables some insight into changes in diet and subsistence of the local settled human 377 

population through several millennia. The most important shift happened between the Middle and Late Bronze Age 378 

when the average δ
13

C values significantly increased, and the correlation between δ
13

C and δ
15

N disappeared. Also the 379 

differences between sexes in isotopic ratios of both elements were no longer present. This shift in isotopic signatures 380 
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was paralleled by a clear decrease of pigs among the livestock and the small-scale introduction of more drought 381 

resistant cereals such as sorghum and millet. It is possible that this change in subsistence was the result of increased 382 

relative isolation between plant cultivators and herders operating in dry steppes, which forced the settled population 383 

to adapt their economy to higher direct exploitation of ovicaprids and to wider use of more arid areas for agriculture. 384 

 385 

It is interesting that two major episodes of prolonged drought, which were documented both by paleoenvironmental 386 

proxies and by historical and archaeological evidence, did not change the general subsistence modes, and contributed 387 

only to a greater dispersal of food acquisition strategies in the context of already existing practices. On the other 388 

hand, the only observed small but significant and irreversible shift in subsistence occurred in the period when the 389 

climate was rather stable and it is likely that this was the effect of social and economic and not environmental factors. 390 

 391 
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Tables 576 

 577 

Table 1: Defined chronological subsets with their age-at-death and sex profiles. 578 

 Period Abbrev. Dating 0-2 2.5-7.5 8-15 
Adults 

Total 
M ? F 

Ea
rl

y 
su

b
se

ts
 Early Bronze Age EBA c. 2800-2200 BCE  1 1 2 2 4 10 

Early/Middle Bronze Age EMB c. 2200-2000 BCE 2 2 1 1 2  8 

Middle Bronze Age MBA c. 2000-1500 BCE 8 2 1 2 1 3 17 

La
te

 s
u

b
se

ts
 

Late Bronze Age LBA c. 1500-1200 BCE 2 1  1 2  6 

Neo-Assyrian period NAS c. 900-800 BCE 1 1 2 4  1 9 

Achaemenian period ACH c. 500-300 BCE 1 2  4 4 4 15 

Parthian period PAR c. 100-300 CE     2  2 

Modern cemetery MOD c. 1850-1950 CE     4  4 

 Total   14 9 5 14 17 12 71 

 579 

Table 2: Carbon and nitrogen stable isotopic ratios for human bones. 580 

Id Chronology Age category Sex δ
13

C δ
15

N C/N ratio Coll. yield % 

TB122 EBA young child  -19.3 10.3 3.30 1.5 

TB1142 EBA adult F -19.4 9.9 3.28 1.1 

TB1267 EBA adult  -19.7 9.2 3.30 2.9 

TB1295 EBA adult  -19.8 9.8 3.40 1.6 

TB1302 EBA adult F -19.7 9.1 3.46 2.0 

TB1307 EBA adult M -19.5 10.9 3.37 2.8 

TB1515 EBA adult M -19.9 8.9 3.30 0.6 

TB1526 EBA adult F -20.3 6.5 3.22 3.3 

TB1527 EBA older child  -19.9 7.8 3.26 3.5 

TB1554 EBA adult F -20.0 7.5 3.22 5.8 

TB763 EMB young child  -18.9 10.7 3.18 5.4 

TB813 EMB older child  -20.3 8.6 3.20 5.1 

TB1065 EMB young child  -19.7 8.4 3.28 1.1 

TB1097 EMB adult  -19.3 8.2 3.21 3.5 

TB1148 EMB adult M -19.5 12.3 3.28 1.4 

TB1298 EMB infant  -18.9 9.4 3.22 2.4 

TB1422 EMB infant  -19.1 10.9 3.24 3.3 

TB1440 EMB adult  -19.2 8.1 3.21 4.3 
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Id Chronology Age category Sex δ
13

C δ
15

N C/N ratio Coll. yield % 

TB60 MBA adult F -20.0 8.9 3.24 2.5 

TB573 MBA adult M -18.8 11.3 3.24 1.8 

TB574 MBA adult  -19.7 8.7 3.27 1.1 

TB575/1 MBA infant  -19.2 12.1 3.19 7.5 

TB575/2 MBA infant  -19.1 9.6 3.36 0.9 

TB580 MBA adult F -19.9 9.7 3.19 9.2 

TB584 MBA infant  -19.3 11.1 3.21 5.8 

TB593 MBA adult F -19.9 6.1 3.39 6.2 

TB637 MBA young child  -19.2 8.3 3.18 4.7 

TB640 MBA older child  -19.2 8.3 3.20 8.5 

TB779 MBA infant  -19.1 9.2 3.16 6.5 

TB891 MBA adult M -19.3 8.0 3.44 0.1 

TB954 MBA infant  -18.8 10.1 3.19 7.6 

TB964 MBA infant  -18.5 15.3 3.21 3.6 

TB992 MBA young child  -19.8 9.0 3.38 0.8 

TB999 MBA adult M -19.1 9.8 3.25 5.5 

TB1043 MBA infant  -18.7 10.3 3.26 1.4 

TB1743 MBA infant  -19.3 12.0 3.14 12.1 

TB613 LBA infant  -19.1 10.9 3.21 3.4 

TB1094 LBA adult  -19.7 8.0 3.18 5.3 

TB1134 LBA adult M -18.4 11.0 3.20 6.0 

TB1368 LBA infant  -18.4 11.5 3.23 7.7 

TB1424 LBA adult  -18.8 9.7 3.21 7.6 

TB1744 LBA young child  -18.9 8.7 3.16 6.5 

TB592 NAS adult M -19.7 13.3 3.20 2.7 

TB774 NAS adult M -19.3 10.8 3.21 12.7 

TB835 NAS older child  -17.5 10.5 3.17 8.3 

TB836 NAS adult M -19.5 9.3 3.19 6.4 

TB838 NAS older child  -19.0 10.7 3.20 2.2 

TB877 NAS adult M -19.4 8.8 3.28 5.1 

TB962 NAS infant  -18.4 13.4 3.19 9.3 

TB991 NAS young child  -19.9 9.4 3.22 5.2 

TB1037 NAS adult F -18.3 10.9 3.28 2.4 

TB33 ACH young child  -18.9 8.8 3.22 2.0 

TB83 ACH young child  -18.9 10.1 3.25 2.6 

TB127 ACH adult  -19.3 8.4 3.17 6.1 

TB193 ACH adult  -20.0 14.2 3.23 1.2 

TB255 ACH adult F -19.2 9.2 3.19 7.2 
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Id Chronology Age category Sex δ
13

C δ
15

N C/N ratio Coll. yield % 

TB256 ACH adult F -19.0 9.3 3.19 5.2 

TB266 ACH adult M -18.2 11.6 3.19 2.3 

TB267 ACH adult F -19.0 9.9 3.18 4.0 

TB270 ACH adult  -18.5 9.7 3.18 6.6 

TB288 ACH adult M -19.0 10.1 3.17 3.0 

TB296 ACH adult M -18.9 10.0 3.16 3.8 

TB300 ACH infant  -18.3 13.1 3.18 9.6 

TB312 ACH adult F -19.5 8.8 3.28 2.7 

TB316 ACH adult M -20.0 8.7 3.17 9.2 

TB678 ACH adult  -19.7 11.1 3.17 7.1 

TB103 PAR adult  -19.5 9.3 3.36 0.8 

TB1573 PAR adult  -19.1 9.0 3.17 5.8 

A MOD adult  -18.8 8.9 3.19  

B MOD adult  -18.3 9.5 3.20  

C MOD adult  -19.2 8.2 3.21  

D MOD adult  -19.3 8.7 3.20  

 581 

Table 3: Carbon and nitrogen stable isotopic ratios for animal dentin. 582 

Id Chronology Taxon δ
13

C δ
15

N C/N ratio Coll. yield % 

TB310 ACH Canid -19.2 7.0 3.35 5.1 

TB310 ACH Canid -18.9 7.5 3.20 8.1 

TB102 NAS Pig -20.6 7.9 3.21 26.5 

TB331 ACH Pig -20.1 8.0 3.24 13.6 

TB1424 LBA Pig -19.9 5.5 3.32 8.5 

TB774 NAS Ovicaprid -18.8 8.7 3.19 10.7 

TB835 NAS Ovicaprid -19.4 7.3 3.26 5.5 

TB1424 LBA Ovicaprid -19.9 8.5 3.27 10.4 

 583 

 584 
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Table 4: Basic statistics for δ
13

C and δ
15

N in chronological subsets and correlations between δ
13

C and δ
15

N (only post-585 

weaning individuals). Correlations with p<0.05 are in bold face. 586 

Subset N* 
δ

13
C δ

15
N δ

13
C and δ

15
N correl. 

min max mean sd med min max mean sd med n* r rS 

EBA 10 -20.4 -19.3 -19.74 0.30 -19.7 6.5 10.9 8.98 1.36 9.1 10 0.89 0.92 

EMB 8 -20.3 -18.9 -19.36 0.47 -19.3 8.1 12.3 9.58 1.56 9.0 6 0.24 -0.14 

MBA 17 -20.0 -18.5 -19.27 0.44 -19.2 6.1 15.3 9.98 2.02 9.7 9 0.54 0.42 

LBA 6 -19.7 -18.4 -18.89 0.48 -18.9 8.0 11.5 9.96 1.38 10.3    

NAS 9 -19.9 -17.5 -19.00 0.77 -19.3 8.8 13.4 10.77 1.64 10.7 8 0.02 0.19 

ACH 15 -20.0 -18.2 -19.08 0.55 -19.0 8.4 14.2 10.20 1.66 9.9 14 -0.14 0.16 

PAR 2 -19.5 -19.1    9.0 9.3       

MOD 4 -19.3 -18.3 -18.93 0.45 -19.0 8.2 9.5 8.84 0.54 8.8    

early 35 -20.4 -18.5 -19.43 0.45 -19.3 6.1 15.3 9.61 1.76 9.4 26 0.46 0.39 

late 36 -20.0 -17.5 -19.07 0.51 -19.0 8.0 14.2 10.09 1.56 9.7 31 -0.02 0.22 

all humans 71 -20.4 -17.5 -19.22 0.55 -19.2 6.5 15.3 9.85 1.66 9.6 57 0.28 0.34 

pigs 3 -20.6 -19.9 -20.23 0.33 -20.1 5.5 8.0 7.15 1.41 7.9    

ovicaprids 3 -19.9 -18.8 -19.36 0.56 -19.4 7.3 8.7 8.17 0.74 8.5    

canids 2 -19.2 -18.9    7.0 7.5       

*N – total number of individuals; n – number of post-weaning individuals. 587 

 588 

Table 5: Multiple comparisons p-values for Kruskal-Wallis test of differences in δ
13

C (below the diagonal) and δ
15

N 589 

values (above the diagonal). Early and late subsets for human bones compared with three animal taxa. Values below 590 

0.05 are in bold face. 591 

  δ
15

N p-values 

  Humans early Humans late Pigs Ovicaprids Canids 

δ
13

C
 p

-v
a

lu
e

s 

Humans early  0.408 0.405 1.000 0.649 

Humans late 0.022  0.030 0.340 0.092 

Pigs 0.697 0.015  1.000 1.000 

Ovicaprids 1.000 1.000 0.574  1.000 

Canids 1.000 1.000 0.142 1.000  

 592 

 593 
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Figures 594 

 595 

Figure 1: Map showing the location of Tell Barri. 596 

Figure 2: Distribution of δ
13

C and δ
15

N in four defined age-at-death classes. 597 

Figure 3: Temporal trends in δ
13

C at Tell Barri, only post-weaning individuals. 598 

Figure 4: Temporal trends in δ
15

N at Tell Barri, only post-weaning individuals. 599 

Figure 5: Distribution of δ
13

C and δ
15

N in early (EBA to MBA) and late subsets, only post-weaning individuals, and in 600 

animal dentin samples. 601 

Figure 6: Distribution of δ
13

C and δ
15

N for males and females in early (a) and late (b) subsets. 602 

 603 

 604 
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