

Rockett, KA; Clarke, GM; Fitzpatrick, K; Hubbart, C; Jeffreys, AE; Rowlands, K; Craik, R; Jallow, M; Conway, DJ; Bojang, KA; Pinder, M; Usen, S; Sisay-Joof, F; Sirugo, G; Toure, O; Thera, MA; Konate, S; Sissoko, S; Niangaly, A; Poudiougou, B; Mangano, VD; Bougouma, EC; Sirima, SB; Modiano, D; Amenga-Etego, LN; Ghansah, A; Koram, KA; Wilson, MD; Enimil, A; Evans, J; Amodu, O; Olaniyan, S; Apinjoh, T; Mugri, R; Ndi, A; Ndila, CM; Uyoga, S; Macharia, A; Peshu, N; Williams, TN; Manjurano, A; Riley, E; Drakeley, C; Reyburn, H; Nyirongo, V; Kachala, D; Molyneux, M; Dunstan, SJ; Nguyen Hoan, P; Nguyen Thi Ngoc, Q; Cao Quang, T; Tran Tinh, H; Manning, L; Laman, M; Siba, P; Karunajeewa, H; Allen, S; Allen, A; Davis, TME; Michon, P; Mueller, I; Green, A; Molloy, S; Johnson, KJ; Kerasidou, A; Cornelius, V; Hart, L; Vanderwal, A; Sanjoaquin, M; Band, G; le, SQ; Pirinen, M; Sepulveda, N; Spencer, CCA; Clark, TG; Agbenyega, T; Achidi, E; Doumbo, O; Farrar, J; Marsh, K; Taylor, T; Kwiatkowski, DP; Malaria Genomic Epidemiology, N (2014) Reappraisal of known malaria resistance loci in a large multicenter study. Nature genetics, 46 (11). pp. 1197-1204. ISSN 1061-4036 DOI: https://doi.org/10.1038/ng.3107

Downloaded from: http://researchonline.lshtm.ac.uk/2026651/

DOI: 10.1038/ng.3107

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/

# **Supplementary Information Contents**

| Section detail         |                                                                                                                                        | Page |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------|
| Supplementar           | y Tables                                                                                                                               | 3    |
| Supplementary Table 1  | Partner sites.                                                                                                                         | 3    |
| Supplementary Table 2  | Summary study design descriptions of contributing partner studies to MalariaGEN Consortial Project 1 (CP1).                            | 4    |
| Supplementary Table 3  | Descriptive Statistics.                                                                                                                | 5    |
| Supplementary Table 4  | Gender, age and ethnicity of cases and controls collected by each contributing partner study to MalariaGEN Consortial Project 1 (CP1). | 6    |
| Supplementary Table 5  | Summary of 55 SNPs selected for analysis due to a known association with malaria and successfully genotyped.                           | 7    |
| Supplementary Table 6  | Additional genes and SNPs selected for analysis and successfully genotyped. Summary                                                    | 8    |
| Supplementary Table 7  | Genes and SNPs selected for genotyping and analyses dropped due to poor genotyping quality.                                            | 9    |
| Supplementary Table 8  | All severe malaria association signals.                                                                                                | 10   |
| Supplementary Table 9  | Cerebral malaria only association signals                                                                                              | 12   |
| Supplementary Table 10 | Severe malarial anaemia only association signals.                                                                                      | 14   |
| Supplementary Table 11 | HbS All Heterozygous Model.                                                                                                            | 16   |
| Supplementary Table 12 | Blood Group O All Individuals Recessive Model.                                                                                         | 17   |
| Supplementary Table 13 | G6PD+202 Males and Females Additive Model.                                                                                             | 18   |
| Supplementary Table 14 | G6PD+202 Males Hemizygote Model.                                                                                                       | 19   |
| Supplementary Table 15 | G6PD+202 Females Recessive Model.                                                                                                      | 20   |
| Supplementary Table 16 | G6PD+202 Females Heterozygote Advantage Model.                                                                                         | 21   |
| Supplementary Table 17 | G6PD+202 Female Various Models                                                                                                         | 22   |
| Supplementary Table 18 | ATP2B4 Males and Females Dominant Model                                                                                                | 23   |
| Supplementary Table 19 | CD40LG Females Recessive Model.                                                                                                        | 24   |
| Supplementary Table 20 | Gene-Gene Interaction.                                                                                                                 | 25   |
| Supplementary Table 21 | Logic table used to combine the cerebral malaria and severe malarial anaemia phenotypes.                                               | 26   |
| Supplementary Table 22 | Header Dictionary for Supplementary Tables 23 and 24.                                                                                  | 27   |
| Supplementary Table 23 | Sequenom assay designs for the SNPs used in this study (Supplementary tables 5-7).                                                     | 28   |
| Supplementary Table 24 | Sequenom assay designs for the ATP2B4 SNPs used in this study (Supplementary tables 5).                                                | 29   |
| Supplementary Table 25 | Coding of Alleles for logistic regression analysis with respect to the derived allele.                                                 | 30   |
| Supplementar           | y Note: MalariaGEN Sample Handling Procedures                                                                                          | 31   |
| Sample Archiving       |                                                                                                                                        | 31   |
| Sample Collection      | on                                                                                                                                     | 31   |
| DNA extraction         |                                                                                                                                        | 31   |

Sample Processing

Primer-extension Amplification (PEP)

- PEP reaction
- PEP testing

31

31

31

32

| Genotypi | ng                                              | 32 |
|----------|-------------------------------------------------|----|
| •        | Platform                                        | 32 |
| •        | SNP sets                                        | 32 |
| •        | iPLEX design                                    | 32 |
| •        | Sample preparation                              | 33 |
| •        | iPLEX primers                                   | 33 |
| •        | First-Round reaction master-mix                 | 33 |
| •        | First-Round Reaction                            | 33 |
| •        | Shrimp-alkaline Phosphatase treatment           | 34 |
| •        | Primer-Extension Reaction                       | 34 |
| •        | Sequenom Assay details                          | 34 |
| Gene     | etic Heterogeneity                              | 35 |
| Cont     | ributors to the MalariaGEN Consortial Project 1 | 36 |
| URL      | 5                                               | 41 |
| Refe     | rences                                          | 42 |

-

# **Supplementary Tables**

| Country          | Institute                                                                                      | Ethics approving institution                                               | Ethics committee                           | local ID(s)                                           |
|------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|
| Gambia           | MRC Laboratories                                                                               | MRC Gambia                                                                 | MRC Ethics Committee                       | SCC 1029v2                                            |
|                  |                                                                                                | Wite Guillold                                                              | Whe Ethes committee                        | SCC670/630                                            |
| Mali             | University of Bamako                                                                           | University of Bamako,                                                      |                                            | No/18/FMPOS                                           |
|                  |                                                                                                | FMPOS, MRTC                                                                | FIMIPUS REC                                | No/06-18bis/FMPOS                                     |
| Burkina Faso     | Centre National de<br>Recherche et de Formation<br>sur le Paludisme                            | Ministry of Health &<br>Ministry of Science and<br>Education               | Health Research Ethics<br>Committee        | No 2007-048                                           |
| Ghana (Navrongo) | Navrongo Memorial<br>Institute for Medical<br>Research with Navrongo<br>Health Research Centre | Navrongo                                                                   | Navrongo IRB                               | NMIMR-IRB CPN<br>016/01-02                            |
|                  |                                                                                                |                                                                            |                                            | NMIMR-IRB CPN<br>029/05-06                            |
| Ghana (Kumasi)   | Kwame Nkrumah<br>University of Science and<br>Technology                                       | Ghana Health Service                                                       | GHS ERC                                    | GHS-ERC-03/9/06                                       |
|                  | reemology                                                                                      | Cohool Madical Calanaa                                                     | Committee on Human                         | CHRPF/07/01/06                                        |
|                  |                                                                                                | KNUST                                                                      | Research Publication<br>and Ethics         | CHRPE SMS UST<br>dated 24-05-2007                     |
| Nigeria          | University of Ibadan (UI)                                                                      | Institute of Child Health,<br>College of Medicine, University<br>of Ibadan | UI/UCH Ethics<br>committee                 | UI/IRC/06/0034                                        |
| Cameroon         | University of Buea                                                                             | University of Buea                                                         | IRB                                        | University of Buea<br>ethical clearance<br>07-12-2005 |
|                  |                                                                                                | Govt of Cameroon                                                           | Provincial Delegate for<br>Public Health   | D7.1.A/MPH/SWP/PDPH<br>/PS.CH/2340/811                |
| Кепуа            | KEMRI-Wellcome Research<br>Programme                                                           | KEMRI, Kilifi                                                              | KEMRI REC                                  | SCC1192                                               |
| Tanzania         | Joint Malaria Programme,<br>Kilimanjaro Christian<br>Medical Centre                            | London School Hygiene and<br>Tropical Medicine                             | LSHTM ERC                                  | 4093                                                  |
|                  |                                                                                                | NIMR                                                                       | NIMR Research<br>Coordinating Committee    | NIMR/HQ/R.8a/Vol.<br>IX/513                           |
| Malawi           | Blantyre Malaria<br>Project with Malawi-<br>Liverpool-Wellcome<br>Programme                    | University of Malawi,<br>College of Medicine                               | CoM REC                                    | P.05/06/442                                           |
| Viet Nam         | Oxford University Clinical<br>Research Unit                                                    | Hospital Tropical Diseases                                                 | REC                                        | SECHTD<br>dated 20/04/2006                            |
| Papua New Guinea | Papua New Guinea<br>Institute for Medical<br>Research                                          | Govt PNG                                                                   | PNG Medical Research<br>Advisory Committee | MRAC No:06.21                                         |
|                  |                                                                                                | PNG IMR                                                                    | PNG IMR IRB                                | IMR IRB 0603                                          |
| UK               | Oxford University                                                                              | Oxford University                                                          | OXTREC                                     | OXTREC 020-06                                         |

**Supplementary Table 1: Partner sites.** Partner sites for MalariaGEN Consortial Project 1 (Genetic Determinants of Resistance to Malaria) with details of the partner institution and local approving bodies. Supplementary Figure 5 shows a map of these Partner sites (http://www.malariagen.net/projects/cp1).

| Country                     | Study Design                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gambia                      | <ul> <li>Unmatched Case-Control study.</li> <li>2801 cases - recruited from hospitals in/near Banjul.</li> <li>4527 controls - cord blood samples were collected from labour wards of various hospitals primarily in western division of the country. Other samples were sampled from Gambian Biobank blood donors.</li> </ul>                                                                                                  |
| Mali                        | Matched Case-Control study.<br>510 cases - recruited from a hospital in Bamako.<br>389 controls - recruited from community, individually matched to cases by age, ethnicity, place<br>of residence & duration of residence                                                                                                                                                                                                      |
| Burkina Faso                | Unmatched Case-Control study.<br>983 cases - recruited from hospitals in Ouagadougou.<br>816 controls - recruited from rural villages near Ouagoadougou                                                                                                                                                                                                                                                                         |
| Ghana<br>(Navrongo/Noguchi) | Matched Case-control study.<br>2459 cases - recruited from hospitals in Kassena-Nankana District.<br>2129 controls - selected from demographic surveillance system in same district, some<br>frequency & some individually matched to cases by age, gender, location & ethnicity                                                                                                                                                |
| Ghana<br>(Kumasi)           | Unmatched Case-Control study.<br>1923 cases recruited from hospitals in Kumasi.<br>2326 controls are cord bloods recruited from labour wards in Kumasi.                                                                                                                                                                                                                                                                         |
| Nigeria                     | Unmatched Case-Control study.<br>114 cases - recruited from hospitals in Ibadan.<br>88 controls - recruited from communities in areas surrounding hospitals from which cases<br>recruited                                                                                                                                                                                                                                       |
| Cameroon                    | Unmatched Case-Control study.<br>914 cases - recruited from hospitals/health centres in South-West, Litteral & Central Regions.<br>914 controls - recruited from schools in South-West Region and blood bank in Central Region                                                                                                                                                                                                  |
| Kenya                       | Unmatched Case-Control study.<br>2741 cases - recruited from Kilifi District Hospital.<br>4183 controls - recruited from demographic surveillance system representative of area in<br>which cases reside                                                                                                                                                                                                                        |
| Tanzania                    | Matched Case-Control study.<br>501 cases - recruited from a hospital in Muheza.<br>504 controls - recruited from community, individually matched to cases by ethnicity of at least<br>one parent, electorial ward of residence & age                                                                                                                                                                                            |
| Malawi                      | Unmatched Case-Control study.<br>1815 cases - recruited from a hospital in Blantyre.<br>3272 controls - cord blood samples taken from same hospital as cases                                                                                                                                                                                                                                                                    |
| Viet Nam                    | <ul> <li>Case-control study.</li> <li>1014 cases - recruited from a hospital in Ho Chi Minh City &amp; provincial hospitals in Southern Vietnam.</li> <li>2791 controls - recruited from community, individually matched to cases by age, gender, ethnicity &amp; location, &amp; cord blood samples taken from a hospital in Ho Chi Minh City and a hospital in Dong Thap province</li> </ul>                                  |
| PNG                         | <ul> <li>Matched Case-Control study.</li> <li>658 cases - recruited from main hospital in Madang province.</li> <li>553 controls - recruited from community, individually matched to cases by ethnicity, age, gender &amp; residence, &amp; from children with chronic minor skin infections presenting to clinics near residence of case, individually matched to cases by age, gender and ethnicity where possible</li> </ul> |
| Total                       | 16433 cases                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | 22492 controls                                                                                                                                                                                                                                                                                                                                                                                                                  |

Supplementary Table 2: Summary study design descriptions of contributing partner studies to MalariaGEN Consortial Project 1 (CP1). Data incudes total numbers of cases and controls collected at each site preceding the filtering process as described in the Methods section. Further information for each site and study can be found on the MalariaGEN web site (see URLs)

|                  |        | Case       | s                           | Controls |            |                             |  |  |
|------------------|--------|------------|-----------------------------|----------|------------|-----------------------------|--|--|
| Study site       | Number | %<br>Males | Age in Years<br>Median(IQR) | Number   | %<br>Males | Age in Years<br>Median(IQR) |  |  |
| Gambia           | 2425   | 52         | 3.8(2.2-4.3)                | 3342     | 50         | 0(0-0)                      |  |  |
| Mali             | 453    | 56         | 3(1.7-3.7)                  | 344      | 51         | 3.1(2-3.8)                  |  |  |
| Burkina Faso     | 865    | 57         | 3.7(2-4.4)                  | 729      | 52         | 3(2-2.7)                    |  |  |
| Ghana (Kumasi)   | 682    | 57         | 1.3(0.9-1.6)                | 489      | 56         | 1.2(0.8-1.4)                |  |  |
| Ghana (Navrongo) | 1496   | 54         | 2(1-2.8)                    | 2042     | 52         | 0(0-0)                      |  |  |
| Nigeria          | 77     | 61         | 2.9(1.6-3.3)                | 40       | 45         | 2.6(1.2-3.1)                |  |  |
| Cameroon         | 621    | 54         | 2.1(1.2-3.1)                | 578      | 72         | 21(7.6-19.2)                |  |  |
| Kenya            | 2268   | 52         | 2.2(1.2-2.7)                | 3949     | 50         | 0.5(0.4-0.6)                |  |  |
| Tanzania         | 429    | 53         | 1.7(1.1-2)                  | 453      | 45         | 2.8(2.1-3.1)                |  |  |
| Malawi           | 1388   | 51         | 2.8(1.8-3.3)                | 2697     | 52         | 0(0-0)                      |  |  |
| Viet Nam         | 794    | 73         | 29(22-32.2)                 | 2538     | 54         | 0(0-5.1)                    |  |  |
| Papua New Guinea | 392    | 56         | 3(2.1-3.4)                  | 240      | 52         | 3.3(2.2-3.7)                |  |  |
| Total            | 11890  | 55         | 2.8(1.5-5.2)                | 17441    | 52         | 0(0-1.9)                    |  |  |

**Supplementary Table 3: Descriptive Statistics.** Features of severe malaria cases and controls after quality control filtering, as described in the Methods section. IQR, interquartile range.

| Study site         |          | Gender: %       | Age in years: %           | Ethnicity (%)                                                                                                         |
|--------------------|----------|-----------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                    |          | M / F / missing | <5 / 5-15 / >15 / missing | -                                                                                                                     |
| Gambia             | Cases    | 51 / 46 / 3     | 71 / 29 / 0 / 0.4         | Mandinka (32), Jola (15), Fula (13), Wollof (12),<br>Other (28), Not recorded (0.4)                                   |
| Gambia             | Controls | 44 / 51 / 4     | 84 / 0.4 / 5 / 11         | Mandinka (30), Jola (12), Fula (18), Wollof (13),<br>Other (20), Not recorded (8)                                     |
| Mali               | Cases    | 55 / 43 / 2     | 78 / 22 / 0 / 0           | Bambara (42), Bambara mixed (9), Malinke (12),<br>Peulh (6), Sarakole (7), Other (25)                                 |
| IVIAII             | Controls | 47 / 48 / 5     | 77 / 23 / 0 / 0.5         | Bambara (46), Bambara mixed (5), Malinke (12),<br>Peulh (6), Sarakole (5), Other (26)                                 |
| Burkina            | Cases    | 54 / 42 / 4     | 72/28/0/1                 | Mossi (100)                                                                                                           |
| Faso               | Controls | 50 / 48 / 2     | 99/1/0/0                  | Mossi (100)                                                                                                           |
| Ghana              | Cases    | 50 / 44 / 7     | 84 / 15 / 0 / 0.2         | Akans (Ashanti/Eastern) (54),<br>Frafra/Nankana/Grushie/Kusasu (8), Other (36)                                        |
| (Kumasi)           | Controls | 50 / 46 / 4     | 100/0/0/0                 | Akans (Ashanti/Eastern) (66),<br>Frafra/Nankana/Grushie/Kusasu (5), Other (30)                                        |
| Ghana<br>(Noguchi/ | Cases    | 55 / 42 / 3     | 100/0/0/0                 | Kasem (58), Nankam (29), Other (14), Not<br>recorded (0.2)                                                            |
| Navrongo)          | Controls | 52 / 43 / 5     | 60 / 0 / 0 / 20           | Kasem (55), Nankam (33), Other (12)                                                                                   |
| Nigoria            | Cases    | 57 / 38 / 5     | 87/13/0/0                 | Yoruba (97), Other (3)                                                                                                |
| Nigeria            | Controls | 49/41/10        | 75 / 25 / 0 / 0           | Yoruba (98), Other (2)                                                                                                |
| <b>C</b>           | Cases    | 47 / 43 / 10    | 74/15/0.1/11              | Bantu (38), Semi-Bantu (42), Other (11), Not<br>recorded (9)                                                          |
| Cameroon           | Controls | 65 / 33 / 2     | 7 / 43 / 41 / 9           | Bantu (41), Semi-Bantu (40), Other (5), Not<br>recorded (11)                                                          |
| Kenya              | Cases    | 49 / 45 / 7     | 83 / 11 / 0.04 / 6        | Chonyi (23), Giriama (59), Kauma (7), Other<br>(10), Not recorded (0.2)                                               |
|                    | Controls | 49 / 48 / 3     | 100/0/0/0                 | Chonyi (36), Giriama (46), Kauma (11), Other (7)                                                                      |
| Tanzania           | Cases    | 51 / 45 / 4     | 96 / 4 / 0 / 0            | Mzigua(26), Mzigua mixed (7), Wasambaa (20),<br>Wasambaa mixed (11), Wabondei (11),<br>Wabondei mixed (7), Other (18) |
|                    | Controls | 44 / 53 / 3     | 92 / 8 / 0 / 0            | Mzigua (28), Mzigua mixed (5), Wasambaa (20),<br>Wasambaa mixed (10), Wabondei (12),<br>Wabondei (6), Other (18)      |
| N 4 - Laure        | Cases    | 50 / 46 / 4     | 82 / 18 / 0 / 0.5         | Malawi (100)                                                                                                          |
| IVIAIAWI           | Controls | 47 / 42 / 12    | 100/0/0/0                 | Malawi (100)                                                                                                          |
| Viet News          | Cases    | 71/29/1         | 5/6/89/0                  | Kinh (88), Other (10), Not recorded (3)                                                                               |
| viet Nam           | Controls | 51 / 45 / 4     | 82 / 5 / 13 / 0.3         | Kinh (94), Other (6), Not recorded (0.4)                                                                              |
| DNC                | Cases    | 55 / 44 / 1     | 82 / 18 / 0 / 0.2         | Madang (67), Madang mixed (6), Sepik (8),<br>Other (9), Not recorded (10)                                             |
| PNG                | Controls | 38 / 33 / 30    | 81 / 18 / 0 / 2           | Madang (63), Madang mixed (5), Sepik (7),<br>Other (8), Not recorded (16)                                             |
| Total              | Cases    | 52 / 43 / 4     | 78 / 15 / 6 / 2           |                                                                                                                       |
| Total              | Controls | 49 / 46 / 5     | 88 / 4 / 4 / 5            |                                                                                                                       |

Supplementary Table 4: Gender, age and ethnicity of cases and controls collected by each contributing partner study to MalariaGEN Consortial Project 1 (CP1). These data represent the proportions included for analysis following the filtering process (as described in the Methods section). Ethnic groups representing <5% of the site sample set are grouped together as 'Other'.

| Gene    | Chr | SNP Ref             | Alternative<br>Name | Location  | Ancestral<br>Allele <sup>ª</sup> | Derived<br>Allele | Single<br>Letter<br>code | Mean Frequency<br>(min - max)      | References        |
|---------|-----|---------------------|---------------------|-----------|----------------------------------|-------------------|--------------------------|------------------------------------|-------------------|
| ATP2B4  | 1   | rs55868763          |                     | 203652140 | С                                | G                 | S                        | 0.73(0.62-1)                       |                   |
| ATP2B4  | 1   | rs1541255           |                     | 203652141 | А                                | G                 | D                        | 0.27(0-0.38)                       |                   |
| ATP2B4  | -   | rs10900585          |                     | 203654024 | G                                | т                 | ĸ                        | 0 71(0 57-0 98)                    | 12                |
| ATD284  | 1   | rs/95107/           |                     | 203660781 | G                                | ^                 | R                        | 0.26(0-0.37)                       | 1,2               |
| ATT 204 | 1   | 134551074           |                     | 203000781 | 0                                |                   |                          | 0.20(0-0.37)                       |                   |
| ATP2B4  | 1   | rs3753036           |                     | 203677250 | G                                | A                 | R                        | 0.04(0-0.17)                       |                   |
| CR1     | 1   | rs17047660          | McC (McCoy)         | 207782856 | A                                | G                 | R                        | 0.26(0.16-0.37)                    | 3-8,9             |
|         | 1   | rs1/04/661          | SI (Swain-Lagley)   | 207782889 | A<br>                            | G                 | R<br>V                   | 0.72(0.67-0.8)                     | 10.12             |
| DARC    | 1   | rs2814778           | Duffy – FYA/FYB     | 1591/4683 | 1                                | <u> </u>          | Y<br>D                   |                                    | 10-12             |
| IL10    | 1   | rs3024500           |                     | 206940831 | G<br>T                           | A                 | ĸ                        | 0.39(0.06-0.55)                    | 13,14             |
| 1110    | 1   | rs1800890           |                     | 200940897 | ۱<br>۸                           | т                 | T<br>\\\/                | 0.29(0.00-0.4)<br>0.19(0.04_0.34)  |                   |
| II 1 A  | 2   | rs17561             | II 14 G4845T        | 113537223 |                                  | Δ                 | M                        | 0.15(0.04-0.34)                    | 15-17             |
| II 1B   | 2   | rs1143634           | II 1B A2            | 113590390 | G                                | A                 | R                        | 0.1(0.01-0.24)                     | 15-17             |
| TLR9    | 3   | rs187084            |                     | 52261031  | G                                | A                 | R                        | 0.70(0.50-0.77)                    | 18-20             |
| TI R1   | 4   | rs4833095           |                     | 38799710  | C                                | Т                 | Y                        | 0.15(0.07-0.47)                    | 21                |
| TLR6    | 4   | rs5743810           |                     | 38830350  | G                                | A                 | R                        | 0.01(0.01-0.02)                    | 21                |
| TLR6    | 4   | rs5743809           |                     | 38830514  | A                                | G                 | R                        | 0.04(0.01-0.08)                    |                   |
| C6      | 5   | rs1801033           |                     | 41199959  | Т                                | G                 | К                        | 0.48 (0.42-0.60)                   | 22-24             |
| IL13    | 5   | rs20541             |                     | 131995964 | G                                | А                 | R                        | 0.23(0.09-0.42)                    | 25                |
| IL4     | 5   | rs2243250           | IL-4-589            | 132009154 | С                                | Т                 | Y                        | 0.76(0.45-0.83)                    | 17,25-27          |
| IRF1    | 5   | rs2706384           |                     | 131826880 | G                                | Т                 | К                        | 0.44(0.38-0.78)                    | 28                |
| LTA     | 6   | rs2239704           | LTA +77             | 31540141  | С                                | А                 | М                        | 0.26(0.12-0.46)                    | 17,29-43          |
| LTA     | 6   | rs909253            | LTA NCO1            | 31540313  | А                                | G                 | R                        | 0.47(0.12-0.56)                    |                   |
| TNF     | 6   | rs1799964           | TNFa -1031          | 31542308  | Т                                | С                 | Y                        | 0.2(0.12-0.41)                     | 31,32,37,40,44-49 |
| TNF     | 6   | rs1800750           | TNF-376             | 31542963  | G                                | А                 | R                        | 0.04(0.01-0.42)                    |                   |
| TNF     | 6   | rs1800629           | TNF -308            | 31543031  | G                                | А                 | R                        | 0.11(0.07-0.14)                    |                   |
| TNF     | 6   | rs361525            | TNF -238            | 31543101  | G                                | А                 | R                        | 0.05(0.01-0.09)                    |                   |
| TNF     | 6   | rs3093662           | TNF +851            | 31544189  | А                                | G                 | R                        | 0.08(0.01-0.12)                    |                   |
| CD36    | 7   | rs3211938           | CD36 T1264G         | 80300449  | Т                                | G                 | К                        | 0.09(0.02-0.27)                    | 50-56             |
| CD36    | 7   | G1439C <sup>°</sup> | CD36 G1439C         | 80302110  | G                                | С                 | S                        | 0.02(0.01-0.06)                    |                   |
| ABO     | 9   | rs8176746           |                     | 136131322 | G                                | T                 | ĸ                        | 0.17(0.13-0.26)                    | 57-59             |
| ABO     | 9   | rs8176719           |                     | 136132909 | C (INS)                          | - (DEL)           | <br>                     | 0.69(0.59-0.78)                    | 10.10.00.01       |
| TLR4    | 9   | rs4986791           |                     | 120475602 | C<br>A                           |                   | Y                        | 0.01(0.01-0.02)                    | 18,19,60-64       |
| I LR4   | 9   | rs4986790           | ut c                | 120475302 | A<br>C (INIC)                    | G                 | <u>к</u>                 | 0.06(0.01-0.11)                    | 65.60             |
| НВВ     | 11  | rs33950507          | HDE                 | 5248173   |                                  | - (DEL)           | 1                        | 0.01(0.01-0.04)                    | 65-68<br>60 72 72 |
|         | 11  | rc33030165          | HbC                 | 5246252   | G                                | A<br>A            | VV<br>R                  | 0.07(0.03-0.11)<br>0.03(0.01-0.15) | 73-77             |
| 1100    | 12  | rs2227507           | 1100                | 68642647  | <u>т</u>                         | <u> </u>          | v                        | 0.03(0.01-0.13)                    | 15-11             |
| 11.22   | 12  | rs1012356           | 1122+4505           | 68644618  | Δ                                | т                 | Ŵ                        | 0.51(0.04-0.58)                    |                   |
| IL22    | 12  | rs2227491           | IL22+708            | 68646521  | т                                | Ċ                 | Y                        | 0.63(0.05-0.71)                    | 78                |
| IL22    | 12  | rs2227485           | IL22-485            | 68647713  | G                                | A                 | R                        | 0.47(0.05-0.58)                    |                   |
| IL22    | 12  | rs2227478           | IL22-1394           | 68648622  | G                                | А                 | R                        | 0.67(0.28-0.85)                    |                   |
| SPTB    | 14  | rs229587            |                     | 65263300  | Т                                | С                 | Y                        | 0.35(0.22-0.61)                    | 79                |
| ADORA2B | 17  | rs2535611           |                     | 15861332  | С                                | Т                 | Y                        | 0.07(0.01-0.14)                    | 80                |
| NOS2    | 17  | rs2297518           |                     | 26096597  | G                                | А                 | R                        | 0.12(0.05-0.16)                    | 81-86             |
| NOS2    | 17  | rs1800482           | NOS2A -954/969      | 26128509  | С                                | G                 | S                        | 0.09(0.06-0.12)                    |                   |
| NOS2    | 17  | rs9282799           | NOS2A -1173         | 26128728  | G                                | А                 | R                        | 0.05(0.03-0.08)                    |                   |
| NOS2    | 17  | rs8078340           | NOS2A -1659         | 26129212  | G                                | А                 | R                        | 0.2(0.02-0.28)                     |                   |
| ICAM1   | 19  | rs1799969           | ICAM1 codon241      | 10394792  | G                                | Α                 | R                        | 0(0-0)                             | 55,56,87,88       |
| ICAM1   | 19  | rs5498              | ICAM1 codon469      | 10395683  | А                                | G                 | R                        | 0.14(0.11-0.54)                    |                   |
| GNAS    | 20  | rs8386              |                     | 57485812  | С                                | Т                 | Y                        | 0.16(0.12-0.27)                    | 89,90             |
| CD40LG  | 23  | rs3092945           | CD40LG -727         | 135729609 | Т                                | С                 | Y                        | 0.27(0.03-0.47)                    | 91-93             |
| CD40LG  | 23  | rs1126535           | CD40LG +220         | 135730555 | Т                                | С                 | Y                        | 0.14(0.08-0.4)                     |                   |
| G6PD    | Х   | rs1050829           | G6PD +376           | 153763492 | Т                                | С                 | Y                        | 0.39 (0.32-0.52)                   | 94-98             |
| G6PD    | х   | rs1050828           | G6PD +202           | 153764217 | С                                | Т                 | Y                        | 0.15(003-0.29)                     |                   |

Supplementary Table 5: Summary of 55 SNPs selected for analysis due to a known association with malaria and successfully genotyped. Details of SNPs include an alternate name, ancestral or reference allele, the single letter nucleotide code, the mean frequency of the derived allele in controls (with range by ethnicity) plus selected references. All SNPs are referenced to GRCh37, dbSNP137 and Ensembl build 73.

#### Chr, Chromosome.

<sup>a</sup>Ancestral allele is assigned from dbSNP137 or, where not available, from human reference sequence Ensembl build 73. <sup>b</sup>No rs designation.

| Gene        | Chr | SNP Ref       | Alternative<br>Name | Location  | Ancestral<br>Allele <sup>a,b</sup> | Derived<br>Allele <sup>b</sup> | Single<br>Letter<br>code | Mean Frequency<br>(min - max) | References |
|-------------|-----|---------------|---------------------|-----------|------------------------------------|--------------------------------|--------------------------|-------------------------------|------------|
| GBP7        | 1   | rs1803632     |                     | 89582690  | G                                  | С                              | S                        | 0.51(0.28-0.75)               | 25         |
| IL17RD      | 3   | rs6780995     |                     | 57138419  | G                                  | А                              | R                        | 0.51(0.15-0.61)               | 99         |
| IL17RE      | 3   | rs708567      |                     | 9960070   | С                                  | Т                              | Y                        | 0.43(0.11-0.71)               | 99         |
| CTL4        | 6   | rs2242665     |                     | 31839309  | С                                  | Т                              | Y                        | 0.70(0.62-0.82)               |            |
| IL20RA      | 6   | rs1555498     |                     | 137325847 | С                                  | Т                              | Y                        | 0.53(0.39-1)                  | 100,101    |
| CFTR        | 7   | rs17140229    |                     | 117230283 | Т                                  | С                              | Y                        | 0.36(0.29-0.45)               | 102,103    |
| NOD1        | 7   | rs2075820     |                     | 30492237  | С                                  | Т                              | Y                        | 0.38(0.15-0.45)               | 104,105    |
| RTN3        | 11  | rs542998      |                     | 63487386  | Т                                  | С                              | Y                        | 0.49(0.34-0.98)               |            |
| TRIM5       | 11  | rs7935564     |                     | 5718517   | G                                  | А                              | R                        | 0.42(0.17-0.52)               | 106        |
| ADCY9       | 16  | rs2230739     |                     | 4033436   | Т                                  | С                              | Y                        | 0.15(0.07-0.39)               | 80,107     |
| ADCY9       | 16  | rs10775349    |                     | 4079823   | С                                  | G                              | S                        | 0.30(0.11-0.99)               |            |
| IL4R        | 16  | rs1805015     |                     | 27374180  | Т                                  | С                              | Y                        | 0.39(0.11-0.49)               | 108,109    |
| EMR1        | 19  | rs373533      |                     | 6919624   | С                                  | А                              | М                        | 0.43(0.31-0.67)               | 110        |
| EMR1        | 19  | rs461645      |                     | 6919753   | А                                  | G                              | R                        | 0.57(0.34-0.69)               |            |
| DERL3       | 22  | rs1128127     |                     | 24179132  | G                                  | А                              | R                        | 0.47(0.01-0.60)               |            |
| AMELX/AMELY | х   | None assigned | Amelogenin_SNP1     | 11313735  | G                                  | А                              | R                        | NA                            |            |
| AMELX/AMELY | х   | None assigned | Amelogenin_SNP2     | 11316106  | т                                  | С                              | Y                        | NA                            |            |
| AMELX/AMELY | х   | None assigned | Amelogenin_SNP6     | 11316650  | С                                  | А                              | М                        | NA                            |            |

**Supplementary Table 6: Additional genes and SNPs selected for analysis and successfully genotyped.** Summary of 18 additional SNPs genotyped, 15 of which were selected due to a non genetic association with severe malaria and 3 of which (in the AMELX/AMELY genes) were selected for gender typing. Details of SNPs include an alternate name, ancestral or reference allele, the single letter nucleotide code, the mean frequency of the derived allele in controls (with range by ethnicity) plus selected references. All SNPs are referenced to GRCh37, dbSNP137 and Ensembl build 73. Chr, Chromosome.

<sup>a</sup>Ancestral allele is assigned from dbSNP137 or, where not available, from human reference sequence Ensembl build 73. <sup>b</sup>For AMELX/AMELY SNPs, ancestral allele column shows X chromosome allele and derived allele column shows Y chromosome allele.

| Gene        | Chr | SNP Ref          | Alternative Name | Location  | Ancestral<br>Allele <sup>a,b</sup> | Derived<br>Allele <sup>b</sup> | Single<br>Letter<br>code | References  |
|-------------|-----|------------------|------------------|-----------|------------------------------------|--------------------------------|--------------------------|-------------|
| FCGR2a      | 1   | rs1801274        | FCGR2a-H131R     | 161479745 | А                                  | G                              | R                        | 111,112     |
| RGS2        | 1   | rs2179652        |                  | 192769826 | Т                                  | С                              | Y                        | 80,113      |
| TLR10       | 4   | rs1109695<br>7   |                  | 38776491  | т                                  | G                              | к                        | 114         |
| TLR1        | 4   | rs5743611        |                  | 38800214  | С                                  | G                              | S                        | 21          |
| CD36        | 7   | None<br>assigned | CD36_I1444D      | 80302115  | I                                  | D                              | I                        | 50-56       |
| ABO         | 9   | rs8176747        |                  | 136131315 | С                                  | G                              | S                        | 57-59       |
| ABO         | 9   | rs8176743        |                  | 136131415 | С                                  | т                              | Y                        | 57-59       |
| CASP5       | 11  | rs523104         |                  | 104869708 | G                                  | С                              | S                        |             |
| SPTB        | 14  | rs77806          |                  | 65253232  | С                                  | т                              | Y                        | 79          |
| RAGE        | 14  | rs2236493        |                  | 102695693 | С                                  | т                              | Y                        | 115         |
| MARVELD3    | 16  | rs2334880        |                  | 71653637  | А                                  | G                              | R                        | 2           |
| ICAM1       | 19  | rs5491           | ICAM-1codon29    | 10385540  | А                                  | Т                              | W                        | 55,56,87,88 |
| CEACAM1     | 19  | rs8110904        |                  | 43031369  | А                                  | G                              | R                        | 116         |
| APOE        | 19  | rs7412           | APOE_Arg176Cys   | 45412079  | С                                  | Т                              | Y                        | 117-120     |
| GNAS        | 20  | rs2057291        |                  | 57472043  | G                                  | А                              | R                        | 89          |
| AMELX/AMELY | х   | None<br>assigned | Amelogenin_SNP3  | 11316131  | А                                  | G                              | R                        |             |

**Supplementary Table 7: Genes and SNPs selected for genotyping and analyses dropped due to poor genotyping quality.** List of 16 additional SNPs, including 1 (in the AMELX/AMELY gene) selected for gender typing, which were dropped as a consequence of poor genotyping quality. Details of SNPs include an alternate name, ancestral or reference allele, the single letter nucleotide code, the mean frequency of the derived allele in controls (with range by ethnicity) plus selected references. All SNPs are referenced to GRCh37, dbSNP137 and Ensembl build 73.

Chr, Chromosome.

<sup>a</sup>Ancestral allele is assigned from dbSNP137 or, where not available, from human reference sequence Ensembl build 73. <sup>b</sup>For AMELX/AMELY SNPs, ancestral allele column shows X chromosome allele and derived allele column shows Y chromosome allele.

| е       | osome | Ref        | ple | lodel <sup>a</sup> | Aodel<br>% CI)  | Jodel                    | zygote<br>(% CI)  | ved<br>:ygote<br>:% CI) | typic                     | F<br>(Derive         | Frequency<br>(Derived Homozygote/<br>Hotorozygota (Apportal Homozygota) |    | eles     |
|---------|-------|------------|-----|--------------------|-----------------|--------------------------|-------------------|-------------------------|---------------------------|----------------------|-------------------------------------------------------------------------|----|----------|
| Ge      | Chrom | SNP        | Sam | Best N             | Best N<br>OR(95 | Best N<br>F              | Hetero<br>OR(95   | Deri<br>Homoz<br>OR(95  | Geno<br>F                 | Cases                | Controls                                                                | An | De       |
| ABO     | 9     | rs8176746  | All | D                  | 1.25(1.19-1.32) | 2.01 X 10 <sup>-17</sup> | 1.24(1.18-1.31)   | 1.37(1.2-1.56)          | 8.19 X 10- <sup>-17</sup> | 0.2(7512/3817/507)   | 0.17(11943/4852/565)                                                    | С  | А        |
| ABO     | 9     | rs8176719  | All | R                  | 0.74(0.7-0.78)  | 4.99 X 10 <sup>33</sup>  | 0.88(0.81-0.96)   | 0.67(0.62-0.73)         | 1.01 X 10 <sup>33</sup>   | 0.64(1506/5533/4750) | 0.69(1700/7215/8238)                                                    | I  | D        |
| ADCY9   | 16    | rs2230739  | All | н                  | 0.94(0.89-1)    | 0.05                     | 0.94(0.88-1)      | 0.99(0.85-1.16)         | 0.15                      | 0.13(9115/2463/290)  | 0.15(12706/4094/604)                                                    | A  | G        |
| ADCY9   | 16    | rs10775349 | All | R                  | 1.09(0.96-1.24) | 0.18                     | 1(0.94-1.06)      | 1.09(0.96-1.24)         | 0.4                       | 0.26(7270/3134/1461) | 0.3(9884/4518/3000)                                                     | С  | G        |
| ADORA2B | 17    | rs2535611  | All | А                  | 1.01(0.95-1.08) | 0.69                     | 1.01(0.94-1.09)   | 1.03(0.78-1.36)         | 0.92                      | 0.08(10044/1629/98)  | 0.07(14377/2198/130)                                                    | Т  | С        |
| ATP2B4  | 1     | rs55868763 | All | D                  | 1.33(1.21-1.47) | 9.52 X 10 <sup>09</sup>  | 1.31(1.19-1.46)   | 1.34(1.21-1.49)         | 5.91 X 10 <sup>08</sup>   | 0.71(742/3935/4554)  | 0.68(1428/5690/6229)                                                    | С  | G        |
| ATP2B4  | 1     | rs1541255  | All | R                  | 0.75(0.68-0.83) | 4.87 X 10 <sup>09</sup>  | 0.98(0.92-1.04)   | 0.74(0.67-0.82)         | 3.10 X 10 <sup>08</sup>   | 0.29(4558/3922/743)  | 0.32(6241/5667/1439)                                                    | A  | G        |
| ATP2B4  | 1     | rs10900585 | All | D                  | 1.32(1.21-1.45) | 1.69 X 10 <sup>09</sup>  | 1.32(1.2-1.46)    | 1.33(1.2-1.46)          | 1.37 X 10 <sup>08</sup>   | 0.68(868/4056/4203)  | 0.66(1644/5722/5737)                                                    | G  | Т        |
| ATP2B4  | 1     | rs4951074  | All | R                  | 0.77(0.7-0.86)  | 7.64 X 10 <sup>07</sup>  | 0.98(0.92-1.04)   | 0.76(0.69-0.85)         | 4.13 X 10 <sup>06</sup>   | 0.29(4365/3605/658)  | 0.31(6115/5392/1284)                                                    | G  | А        |
| ATP2B4  | 1     | rs3753036  | All | н                  | 0.98(0.87-1.09) | 0.67                     | 0.98(0.87-1.09)   | 0.99(0.64-1.54)         | 0.91                      | 0.03(9900/540/28)    | 0.04(14787/1253/81)                                                     | G  | А        |
| C6      | 5     | rs1801033  | All | R                  | 0.99(0.94-1.06) | 0.87                     | 1(0.94-1.06)      | 0.99(0.93-1.07)         | 0.98                      | 0.46(3418/5885/2531) | 0.48(4757/8591/4003)                                                    | А  | С        |
| CD36    | 7     | G1439C     | All | н                  | 0.67(0.54-0.84) | 4.19 X 10 <sup>04</sup>  | 0.67(0.54-0.84)   | 1.74(0.49-6.15)         | 1.36 X 10 <sup>03</sup>   | 0.01(6374/138/6)     | 0.02(7252/236/5)                                                        | G  | С        |
| CD36    | 7     | rs3211938  | All | н                  | 0.9(0.83-0.97)  | 6.17 X 10 <sup>03</sup>  | 0.9(0.84-0.97)    | 1.08(0.86-1.35)         | 0.02                      | 0.09(8904/1590/173)  | 0.09(12291/2178/174)                                                    | т  | G        |
| CD40LG  | Х     | rs3092945  | Μ   | М                  | 0.9(0.83-0.98)  | 1.04 X 10 <sup>02</sup>  | n.c. <sup>1</sup> | n.c. <sup>1</sup>       | n.c. <sup>1</sup>         | 0.28(4487/0/1737)    | 0.27(6449/0/2348)                                                       | т  | С        |
| CD40LG  | Х     | rs3092945  | F   | R                  | 0.78(0.69-0.88) | 8.93 X 10 <sup>05</sup>  | 1.03(0.95-1.12)   | 0.79(0.7-0.9)           | 3.63 X 10 <sup>04</sup>   | 0.3(2636/2035/513)   | 0.27(4581/2621/849)                                                     | т  | С        |
| CD40LG  | Х     | rs3092945  | All | R                  | 0.85(0.79-0.91) | 1.11 X 10 <sup>06</sup>  | 1.11(1.02-1.2)    | 0.86(0.81-0.92)         | 2.40 X 10 <sup>07</sup>   | 0.29(7123/2035/2250) | 0.27(11030/2621/3197)                                                   | т  | С        |
| CD40LG  | Х     | rs1126535  | Μ   | Μ                  | 1(0.91-1.1)     | 0.99                     | n.c. <sup>1</sup> | n.c. <sup>1</sup>       | n.c. <sup>1</sup>         | 0.15(5527/0/948)     | 0.14(7793/0/1290)                                                       | т  | С        |
| CD40LG  | Х     | rs1126535  | F   | R                  | 0.94(0.74-1.19) | 0.58                     | 1(0.92-1.1)       | 0.94(0.74-1.19)         | 0.86                      | 0.14(3967/1283/126)  | 0.14(6206/1904/193)                                                     | т  | С        |
| CD40LG  | Х     | rs1126535  | All | R                  | 0.98(0.89-1.07) | 0.59                     | 1.03(0.95-1.12)   | 0.98(0.89-1.07)         | 0.67                      | 0.14(9494/1283/1074) | 0.14(13999/1904/1483)                                                   | т  | С        |
| CFTR    | 7     | rs17140229 | All | н                  | 0.98(0.92-1.04) | 0.49                     | 0.98(0.92-1.05)   | 1.02(0.93-1.12)         | 0.72                      | 0.38(3314/3963/1234) | 0.36(5182/5816/1632)                                                    | т  | С        |
| CR1     | 1     | rs17047660 | All | R                  | 1.05(0.95-1.16) | 0.32                     | 1(0.94-1.06)      | 1.05(0.95-1.16)         | 0.61                      | 0.27(5669/4132/856)  | 0.26(8059/5508/1048)                                                    | А  | G        |
| CR1     | 1     | rs17047661 | All | н                  | 1.02(0.96-1.07) | 0.56                     | 1.02(0.92-1.13)   | 1(0.9-1.11)             | 0.84                      | 0.73(783/4181/5701)  | 0.72(1159/5820/7633)                                                    | А  | G        |
| CTL4    | 6     | rs2242665  | All | D                  | 0.92(0.85-1)    | 0.06                     | 0.92(0.84-1.01)   | 0.92(0.85-1.01)         | 0.16                      | 0.7(1163/4804/5816)  | 0.7(1670/7134/8465)                                                     | G  | А        |
|         | 1     |            |     |                    |                 |                          | 4.27(0.35-        |                         |                           |                      |                                                                         | ۸  | <u> </u> |
| DARC    | T     | rs2814778  | All | D                  | 4.91(0.4-60.95) | 0.2                      | 52.71)            | 4.08(0.32-52.06)        | 0.5                       | 0.89(1171/44/9691)   | 0.83(2751/59/13799)                                                     | А  | G        |
| DERL3   | 22    | rs1128127  | All | н                  | 0.98(0.93-1.03) | 0.41                     | 0.97(0.91-1.03)   | 0.98(0.92-1.06)         | 0.66                      | 0.49(3314/5323/3159) | 0.47(5327/7634/4290)                                                    | G  | А        |
| EMR1    | 19    | rs373533   | All | D                  | 1.03(0.98-1.09) | 0.28                     | 1.03(0.98-1.09)   | 1.02(0.95-1.09)         | 0.51                      | 0.45(3612/5755/2376) | 0.43(5667/8256/3280)                                                    | G  | Т        |
| EMR1    | 19    | rs461645   | All | R                  | 0.97(0.92-1.02) | 0.2                      | 1.02(0.95-1.09)   | 0.98(0.91-1.05)         | 0.38                      | 0.55(2413/5784/3650) | 0.57(3357/8303/5726)                                                    | т  | С        |
| G6PD    | Х     | rs1050829  | Μ   | Μ                  | 1.08(1.01-1.17) | 0.04                     | n.c. <sup>1</sup> | n.c. <sup>1</sup>       | n.c. <sup>1</sup>         | 0.4(3396/0/2228)     | 0.38(4679/0/2869)                                                       | т  | С        |
| G6PD    | Х     | rs1050829  | F   | н                  | 0.93(0.86-1)    | 0.06                     | 0.92(0.85-1)      | 0.98(0.87-1.1)          | 0.17                      | 0.38(1921/2285/762)  | 0.39(2606/3356/1062)                                                    | т  | С        |
| G6PD    | Х     | rs1050829  | All | R                  | 1.06(1-1.13)    | 0.05                     | 0.94(0.87-1.02)   | 1.05(0.99-1.12)         | 0.05                      | 0.39(5317/2285/2990) | 0.38(7285/3356/3931)                                                    | т  | С        |
| G6PD    | Х     | rs1050828  | Μ   | Μ                  | 1.1(0.99-1.22)  | 0.07                     | n.c. <sup>1</sup> | n.c. <sup>1</sup>       | n.c. <sup>1</sup>         | 0.15(4811/0/866)     | 0.15(6483/0/1105)                                                       | С  | Т        |
| G6PD    | Х     | rs1050828  | F   | н                  | 0.9(0.82-0.99)  | 0.02                     | 0.9(0.82-0.99)    | 1.11(0.87-1.42)         | 0.06                      | 0.14(3705/1152/134)  | 0.15(5069/1770/174)                                                     | С  | Т        |
| G6PD    | Х     | rs1050828  | All | А                  | 1.02(0.97-1.06) | 0.15                     | 0.9(0.82-0.98)    | 1.1(1-1.21)             | 6.35 X 10 <sup>03</sup>   | 0.15(8516/1152/1000) | 0.15(11552/1770/1279)                                                   | С  | Т        |
| GBP7    | 1     | rs1803632  | All | А                  | 1.03(0.99-1.07) | 0.11                     | 1.03(0.97-1.09)   | 1.06(0.99-1.14)         | 0.27                      | 0.49(3170/5725/2965) | 0.51(4369/8259/4777)                                                    | G  | С        |
| GNAS    | 20    | rs8386     | All | н                  | 0.96(0.9-1.02)  | 0.16                     | 0.96(0.9-1.02)    | 1.04(0.89-1.22)         | 0.33                      | 0.16(7505/2863/318)  | 0.16(10246/3995/398)                                                    | С  | т        |
| HBB     | 11    | rs33950507 | All | н                  | 0.99(0.67-1.45) | 0.94                     | 1.01(0.68-1.48)   | 1.4(0.55-3.58)          | 0.78                      | 0.01(4029/39/8)      | 0.01(6447/127/27)                                                       | G  | А        |
| HBB     | 11    | rs334      | All | н                  | 0.14(0.12-0.16) | $1.62 \times 10^{-225}$  | 0.14(0.12-0.16)   | 1.4(1.02-1.92)          | 7.92 X 10 <sup>225</sup>  | 0.02(10388/213/84)   | 0.07(12773/1791/77)                                                     | А  | т        |
| HBB     | 11    | rs33930165 | All | А                  | 0.71(0.63-0.8)  | 6.87 X 10 <sup>09</sup>  | 0.71(0.61-0.82)   | 0.5(0.34-0.73)          | 5.13 X 10 <sup>08</sup>   | 0.04(6866/445/46)    | 0.03(9341/515/74)                                                       | G  | А        |
|         | 10    |            |     | ADH                | . ,             |                          | n a <sup>§</sup>  | n n <sup>§</sup>        | n o <sup>§</sup>          | , ,                  | , ,                                                                     | c  | ٨        |
| ICAM1   | 19    | rs1799969  | All | *                  | 0.94(0.45-1.96) | 0.86                     | 11.C.             | n.c.                    | п.с.                      | 0(5459/11/0)         | 0(9294/27/0)                                                            | G  | А        |

| ICAM1  | 19 | rs5498    | All | D | 1.04(0.98-1.1)  | 0.18                    | 1.04(0.98-1.1)  | 1.03(0.87-1.21) | 0.4  | 0.15(8560/2900/334)  | 0.14(12716/4164/411)  | А | G |
|--------|----|-----------|-----|---|-----------------|-------------------------|-----------------|-----------------|------|----------------------|-----------------------|---|---|
| IL10   | 1  | rs3024500 | All | н | 0.98(0.93-1.03) | 0.39                    | 0.98(0.92-1.03) | 0.99(0.92-1.07) | 0.69 | 0.41(4274/5380/2197) | 0.39(6859/7440/3080)  | А | G |
| IL10   | 1  | rs1800896 | All | R | 0.94(0.87-1.02) | 0.15                    | 1.02(0.97-1.08) | 0.95(0.87-1.04) | 0.27 | 0.3(5800/4869/1168)  | 0.29(8946/6734/1723)  | т | С |
| IL10   | 1  | rs1800890 | All | R | 0.88(0.78-0.99) | 0.04                    | 0.98(0.92-1.03) | 0.87(0.77-0.99) | 0.08 | 0.19(7740/3647/486)  | 0.19(11441/5183/784)  | А | Т |
| IL13   | 5  | rs20541   | All | А | 0.99(0.95-1.04) | 0.77                    | 0.99(0.93-1.06) | 0.98(0.87-1.12) | 0.96 | 0.21(6031/2955/492)  | 0.23(8778/4974/938)   | С | т |
| IL17RD | 3  | rs6780995 | All | н | 1.03(0.98-1.08) | 0.29                    | 1.04(0.97-1.11) | 1.02(0.95-1.09) | 0.51 | 0.53(2739/5616/3486) | 0.51(4680/7806/4890)  | G | А |
| IL17RE | 3  | rs708567  | All | D | 1.05(0.99-1.11) | 0.08                    | 1.06(1-1.12)    | 1.04(0.97-1.12) | 0.19 | 0.47(3416/5579/2750) | 0.43(5820/7587/3555)  | G | А |
| IL1A   | 2  | rs17561   | All | н | 1.07(1.02-1.13) | 0.01                    | 1.07(1.02-1.14) | 1.02(0.88-1.18) | 0.04 | 0.17(8141/3377/361)  | 0.16(12491/4439/479)  | G | Т |
| IL1B   | 2  | rs1143634 | All | А | 1.05(1-1.11)    | 0.07                    | 1.05(0.98-1.12) | 1.14(0.93-1.4)  | 0.18 | 0.12(9216/2457/188)  | 0.1(13962/3178/215)   | С | Т |
| IL20RA | 6  | rs1555498 | All | А | 1.02(0.99-1.06) | 0.23                    | 1.02(0.96-1.08) | 1.05(0.97-1.13) | 0.49 | 0.49(3368/5336/3162) | 0.53(4600/7179/5633)  | С | Т |
| IL22   | 12 | rs2227507 | All | А | 0.98(0.89-1.08) | 0.65                    | 0.96(0.87-1.06) | 1.42(0.74-2.72) | 0.41 | 0.03(9960/708/19)    | 0.04(13593/1033/20)   | Т | С |
| IL22   | 12 | rs1012356 | All | D | 1.06(1-1.13)    | 0.04                    | 1.06(1-1.13)    | 1.06(0.99-1.14) | 0.13 | 0.5(3017/5757/3091)  | 0.51(4254/8493/4643)  | А | Т |
| IL22   | 12 | rs2227491 | All | D | 1.07(0.99-1.15) | 0.1                     | 1.06(0.98-1.14) | 1.08(0.99-1.16) | 0.21 | 0.64(1717/5075/4986) | 0.63(2505/7684/7080)  | Т | С |
| IL22   | 12 | rs2227485 | All | н | 1.04(0.99-1.09) | 0.11                    | 1.05(0.99-1.11) | 1.02(0.95-1.09) | 0.24 | 0.46(3495/5705/2627) | 0.47(4979/8362/4021)  | G | А |
| IL22   | 12 | rs2227478 | All | н | 1.04(0.99-1.09) | 0.15                    | 1.04(0.96-1.13) | 1(0.92-1.09)    | 0.35 | 0.65(1562/5209/5089) | 0.67(2059/7268/8059)  | G | А |
| IL4    | 5  | rs2243250 | All | н | 1.06(1.01-1.12) | 0.03                    | 1.1(0.99-1.23)  | 1.04(0.94-1.16) | 0.07 | 0.75(754/4284/6566)  | 0.76(1101/6094/10066) | С | Т |
| IL4R   | 16 | rs1805015 | All | н | 0.98(0.93-1.03) | 0.48                    | 0.99(0.93-1.05) | 1.01(0.94-1.09) | 0.73 | 0.41(4375/5288/2172) | 0.39(6872/7570/2912)  | Т | С |
| IRF1   | 5  | rs2706384 | All | А | 0.94(0.91-0.98) | 1.35 X 10 <sup>03</sup> | 0.94(0.89-1)    | 0.89(0.83-0.96) | 0.01 | 0.42(3964/5423/2137) | 0.44(5462/8154/3434)  | С | А |
| LTA    | 6  | rs2239704 | All | D | 1.04(0.98-1.09) | 0.18                    | 1.04(0.98-1.09) | 1.04(0.95-1.14) | 0.4  | 0.28(6129/4502/1088) | 0.26(9604/6224/1411)  | G | Т |
| LTA    | 6  | rs909253  | All | А | 0.97(0.94-1)    | 0.08                    | 0.97(0.92-1.03) | 0.94(0.87-1.01) | 0.21 | 0.45(3676/5627/2464) | 0.47(4997/8355/3853)  | Т | С |
| NOD1   | 7  | rs2075820 | All | н | 1.03(0.98-1.08) | 0.21                    | 1.03(0.97-1.08) | 0.99(0.92-1.06) | 0.43 | 0.38(4526/5577/1732) | 0.38(6692/8105/2597)  | G | А |
| NOS2   | 17 | rs2297518 | All | А | 0.96(0.91-1.02) | 0.17                    | 0.97(0.91-1.03) | 0.89(0.73-1.09) | 0.35 | 0.11(9380/2301/159)  | 0.12(13373/3691/298)  | G | А |
| NOS2   | 17 | rs1800482 | All | н | 0.97(0.9-1.04)  | 0.38                    | 0.97(0.9-1.04)  | 1(0.75-1.34)    | 0.68 | 0.09(8916/1644/86)   | 0.09(12169/2320/120)  | G | С |
| NOS2   | 17 | rs9282799 | All | А | 1.1(1.02-1.19)  | 0.02                    | 1.08(0.99-1.18) | 1.49(0.98-2.27) | 0.03 | 0.06(9443/1196/51)   | 0.05(13124/1476/45)   | С | Т |
| NOS2   | 17 | rs8078340 | All | R | 0.92(0.82-1.03) | 0.14                    | 1.02(0.96-1.07) | 0.92(0.82-1.04) | 0.3  | 0.21(7302/4000/544)  | 0.2(11224/5365/808)   | С | Т |
| RTN3   | 11 | rs542998  | All | н | 0.97(0.92-1.02) | 0.28                    | 0.97(0.91-1.03) | 0.99(0.92-1.07) | 0.54 | 0.45(3897/5109/2775) | 0.49(5203/7090/4964)  | Т | С |
| SPTB   | 14 | rs229587  | All | R | 1.04(0.96-1.12) | 0.34                    | 0.98(0.93-1.04) | 1.03(0.95-1.12) | 0.52 | 0.33(5027/4720/1359) | 0.35(7361/7416/2348)  | Т | С |
| TLR1   | 4  | rs4833095 | All | R | 1.1(0.94-1.28)  | 0.23                    | 0.98(0.92-1.04) | 1.09(0.93-1.27) | 0.36 | 0.13(9042/2422/314)  | 0.15(12637/3942/681)  | С | т |
| TLR4   | 9  | rs4986791 | All | н | 1.12(0.92-1.37) | 0.25                    | 1.12(0.92-1.37) | 0.29(0.03-2.9)  | 0.27 | 0.01(11657/195/1)    | 0.01(17141/248/3)     | С | т |
| TLR4   | 9  | rs4986790 | All | R | 0.78(0.58-1.07) | 0.12                    | 1.04(0.96-1.12) | 0.79(0.58-1.07) | 0.18 | 0.07(10234/1525/75)  | 0.06(15371/1879/112)  | А | G |
| TLR6   | 4  | rs5743810 | All | н | 1.09(0.88-1.34) | 0.43                    | 1.09(0.88-1.34) | 0.87(0.09-8.7)  | 0.73 | 0.01(11243/166/1)    | 0.01(16903/227/3)     | С | Т |
| TLR6   | 4  | rs5743809 | All | D | 1.05(0.95-1.15) | 0.33                    | 1.05(0.95-1.15) | 1.03(0.63-1.66) | 0.62 | 0.04(10384/922/30)   | 0.04(15698/1279/43)   | Т | С |
| TLR9   | 3  | rs187084  | All | R | 1.04(0.98-1.09) | 0.2                     | 0.99(0.9-1.09)  | 1.02(0.93-1.13) | 0.42 | 0.71(960/4335/5625)  | 0.7(1455/6473/7909)   | С | Т |
| TNF    | 6  | rs1799964 | All | D | 1.04(0.98-1.09) | 0.18                    | 1.04(0.98-1.09) | 1.04(0.92-1.18) | 0.41 | 0.2(7689/3638/506)   | 0.2(11148/5452/767)   | Т | С |
| TNF    | 6  | rs1800629 | All | D | 1.01(0.95-1.07) | 0.76                    | 1.01(0.95-1.07) | 1.01(0.82-1.25) | 0.95 | 0.11(9373/2282/172)  | 0.11(13921/3273/222)  | G | А |
| TNF    | 6  | rs361525  | All | н | 1.08(0.99-1.17) | 0.09                    | 1.07(0.99-1.17) | 0.87(0.55-1.37) | 0.2  | 0.05(10704/1125/31)  | 0.05(15732/1647/55)   | G | А |
| TNF    | 6  | rs3093662 | All | Н | 1.04(0.97-1.12) | 0.24                    | 1.04(0.97-1.12) | 0.91(0.69-1.21) | 0.41 | 0.08(9954/1798/87)   | 0.08(14652/2591/143)  | А | G |
| TRIM5  | 11 | rs7935564 | All | Н | 0.98(0.93-1.03) | 0.37                    | 0.98(0.93-1.04) | 1.01(0.94-1.08) | 0.65 | 0.46(3564/5681/2514) | 0.42(5881/8072/3205)  | G | Α |

Supplementary Table 8: All severe malaria association signals. Summary of association signals at all SNPs for *all-severe-malaria* across the 12 contributing Consortial Project 1 study sites. Odds ratios (OR), 95% confidence intervals (95% CI) and p-values (*P*) are presented for the best model (for autosomal SNPs and for females at X chromosome SNPs this is the model (selected from additive, recessive, dominant or heterozygote advantage) that has the most significant association; for males at X chromosome, this is the male hemizygote model and; for all individuals combined at X chromosome SNPs this is the model (selected from additive, recessive or dominant) that has the most significant association. Heterozygote and homozygote ORs from a genotypic model are also presented. Results are adjusted for HbS (except rs334), gender and ethnicity. Sites at which a SNP was found to be monomorphic were excluded from the analysis. An, ancestral; De, derived; n.c., not calculated. <sup>a</sup>Models are A, additive; D, dominant; H, heterozygote advantage; M, male hemizygote; R, recessive. <sup>§</sup> Genotype counts too small for accurate calculation. <sup>¶</sup>Not applicable to male hemizygotes. \*Models are equivalent due to zero genotype class.

| Gene    | Chromosome | SNP Ref    | Sample | Best Model <sup>a</sup> | Best Model<br>OR(95% Cl) | Best Model<br>P          | Heterozygote<br>OR(95% CI) | Derived<br>Homozygote<br>OR(95% CI) | Genotypic<br>P           | Frequency<br>(Derived Homozygote/<br>Heterozygote/Ancestal Homozygote)<br>Cases Controls |                       | Al<br>An | leles<br>De |
|---------|------------|------------|--------|-------------------------|--------------------------|--------------------------|----------------------------|-------------------------------------|--------------------------|------------------------------------------------------------------------------------------|-----------------------|----------|-------------|
| ABO     | 9          | rs8176746  | All    | А                       | 1.27(1.18-1.36)          | 2.00 X 10 <sup>11</sup>  | 1.29(1.19-1.4)             | 1.53(1.25-1.88)                     | $1.38 \times 10^{-10}$   | 0.2(2148/1049/138)                                                                       | 0.17(11943/4852/565)  | С        | A           |
| ABO     | 9          | rs8176719  | All    | R                       | 0.73(0.67-0.79)          | 8.85 X 10 <sup>16</sup>  | 0.84(0.74-0.96)            | 0.63(0.56-0.72)                     | 2.95 X 10 <sup>16</sup>  | 0.64(415/1537/1373)                                                                      | 0.69(1700/7215/8238)  | I        | D           |
| ADCY9   | 16         | rs2230739  | All    | Α                       | 0.95(0.87-1.03)          | 0.23                     | 0.95(0.86-1.05)            | 0.91(0.7-1.19)                      | 0.49                     | 0.12(2593/675/69)                                                                        | 0.15(12706/4094/604)  | А        | G           |
| ADCY9   | 16         | rs10775349 | All    | Α                       | 0.97(0.9-1.04)           | 0.35                     | 0.98(0.9-1.07)             | 0.9(0.73-1.11)                      | 0.58                     | 0.24(2065/944/327)                                                                       | 0.3(9884/4518/3000)   | С        | G           |
| ADORA2B | 17         | rs2535611  | All    | Н                       | 1.09(0.98-1.22)          | 0.13                     | 1.09(0.98-1.21)            | 0.94(0.61-1.45)                     | 0.30                     | 0.09(2779/524/27)                                                                        | 0.07(14377/2198/130)  | Т        | С           |
| ATP2B4  | 1          | rs55868763 | All    | D                       | 1.41(1.21-1.66)          | 9.35 X 10 <sup>06</sup>  | 1.43(1.17-1.77)            | 1.53(1.25-1.89)                     | 1.48 X 10 <sup>04</sup>  | 0.71(137/791/929)                                                                        | 0.68(1428/5690/6229)  | С        | G           |
| ATP2B4  | 1          | rs1541255  | All    | R                       | 0.7(0.59-0.82)           | 4.03 X 10 <sup>06</sup>  | 0.93(0.83-1.04)            | 0.65(0.53-0.79)                     | 1.02 X 10 <sup>04</sup>  | 0.29(932/788/137)                                                                        | 0.32(6241/5667/1439)  | А        | G           |
| ATP2B4  | 1          | rs10900585 | All    | D                       | 1.35(1.17-1.57)          | 3.06 X 10 <sup>05</sup>  | 1.49(1.22-1.81)            | 1.58(1.3-1.92)                      | 1.34 X 10 <sup>-05</sup> | 0.69(159/816/851)                                                                        | 0.66(1644/5722/5737)  | G        | Т           |
| ATP2B4  | 1          | rs4951074  | All    | R                       | 0.75(0.64-0.88)          | 3.66 X 10 <sup>04</sup>  | 1(0.89-1.12)               | 0.64(0.51-0.79)                     | 6.97 X 10 <sup>-05</sup> | 0.28(890/762/121)                                                                        | 0.31(6115/5392/1284)  | G        | А           |
| ATP2B4  | 1          | rs3753036  | All    | н                       | 0.92(0.76-1.11)          | 0.38                     | 1.22(0.93-1.59)            | 1.34(0.3-5.94)                      | 0.36                     | 0.02(1946/72/2)                                                                          | 0.04(14787/1253/81)   | G        | А           |
| C6      | 5          | rs1801033  | All    | R                       | 0.99(0.9-1.09)           | 0.89                     | 1(0.92-1.1)                | 1(0.89-1.11)                        | 0.99                     | 0.47(942/1667/720)                                                                       | 0.48(4757/8591/4003)  | A        | С           |
| CD36    | 7          | G1439C     | All    | н                       | 0.71(0.49-1.02)          | 0.06                     | 0.71(0.49-1.02)            | 4.09(0.86-19.43)                    | 0.04                     | 0.02(1228/37/3)                                                                          | 0.02(7252/236/5)      | G        | С           |
| CD36    | 7          | rs3211938  | All    | R                       | 1.35(0.94-1.94)          | 0.12                     | 0.96(0.85-1.08)            | 1.33(0.93-1.92)                     | 0.23                     | 0.08(2621/412/42)                                                                        | 0.09(12291/2178/174)  | Т        | G           |
| CD40LG  | Х          | rs3092945  | Μ      | Μ                       | 0.85(0.75-0.97)          | 1.35 X 10 <sup>02</sup>  | n.c."                      | n.c."                               | n.c."                    | 0.25(1289/0/439)                                                                         | 0.27(6449/0/2348)     | Т        | С           |
| CD40LG  | Х          | rs3092945  | F      | R                       | 0.9(0.74-1.09)           | 0.27                     | 1.02(0.9-1.16)             | 0.91(0.74-1.11)                     | 0.52                     | 0.29(813/576/157)                                                                        | 0.27(4581/2621/849)   | Т        | С           |
| CD40LG  | Х          | rs3092945  | All    | R                       | 0.85(0.76-0.94)          | 0                        | 1.07(0.95-1.2)             | 0.86(0.77-0.95)                     | 4.74 X 10 <sup>-03</sup> | 0.27(2102/576/596)                                                                       | 0.27(11030/2621/3197) | Т        | С           |
| CD40LG  | Х          | rs1126535  | Μ      | Μ                       | 1.02(0.88-1.19)          | 0.76                     | n.c."                      | n.c."                               | n.c."                    | 0.15(1495/0/266)                                                                         | 0.14(7793/0/1290)     | Т        | С           |
| CD40LG  | Х          | rs1126535  | F      | R                       | 0.72(0.48-1.07)          | 0.09                     | 1.01(0.89-1.15)            | 0.72(0.48-1.08)                     | 0.24                     | 0.15(1141/396/30)                                                                        | 0.14(6206/1904/193)   | Т        | С           |
| CD40LG  | Х          | rs1126535  | All    | R                       | 0.96(0.83-1.1)           | 0.57                     | 1.05(0.93-1.2)             | 0.96(0.84-1.11)                     | 0.62                     | 0.15(2636/396/296)                                                                       | 0.14(13999/1904/1483) | Т        | С           |
| CFTR    | 7          | rs17140229 | All    | D                       | 0.95(0.86-1.05)          | 0.35                     | 0.95(0.86-1.06)            | 0.97(0.83-1.13)                     | 0.64                     | 0.35(871/916/255)                                                                        | 0.36(5182/5816/1632)  | Т        | С           |
| CR1     | 1          | rs17047660 | All    | A                       | 1.09(1.02-1.17)          | 7.56 X 10 <sup>-03</sup> | 1.09(1-1.19)               | 1.19(1.02-1.4)                      | 0.03                     | 0.27(1647/1185/248)                                                                      | 0.26(8059/5508/1048)  | A        | G           |
| CR1     | 1          | rs17047661 | All    | н                       | 1.03(0.95-1.12)          | 0.41                     | 1.02(0.88-1.2)             | 0.99(0.85-1.15)                     | 0.71                     | 0.71(246/1266/1566)                                                                      | 0.72(1159/5820/7633)  | A        | G           |
| CTL4    | 6          | rs2242665  | All    | A                       | 0.97(0.92-1.03)          | 0.39                     | 0.96(0.84-1.11)            | 0.94(0.82-1.08)                     | 0.68                     | 0.7(319/1375/1624)                                                                       | 0.7(1670/7134/8465)   | G        | A           |
| DARC    | 1          | rs2814778  | All    | н                       | 0.72(0.37-1.38)          | 0.3                      | n.c. <sup>3</sup>          | n.c. <sup>®</sup>                   | n.c³.                    | 0.92(250/11/2960)                                                                        | 0.83(2751/59/13799)   | A        | G           |
| DERL3   | 22         | rs1128127  | All    | A                       | 0.99(0.94-1.05)          | 0.76                     | 0.99(0.9-1.09)             | 0.98(0.88-1.1)                      | 0.95                     | 0.49(911/1539/865)                                                                       | 0.47(5327/7634/4290)  | G        | A           |
| EMR1    | 19         | rs373533   | All    | н                       | 1.07(0.99-1.16)          | 0.08                     | 1.09(1-1.19)               | 1.05(0.94-1.17)                     | 0.16                     | 0.46(971/1665/681)                                                                       | 0.43(5667/8256/3280)  | G        | Т           |
| EMR1    | 19         | rs461645   | All    | н                       | 1.08(1-1.17)             | 0.05                     | 1.07(0.96-1.18)            | 0.98(0.87-1.09)                     | 0.12                     | 0.55(675/1675/984)                                                                       | 0.57(3357/8303/5726)  | Т        | C           |
| G6PD    | Х          | rs1050829  | М      | M                       | 0.92(0.82-1.03)          | 0.16                     | n.c."                      | n.c."                               | n.c."                    | 0.35(1009/0/553)                                                                         | 0.38(4679/0/2869)     | Т        | C           |
| G6PD    | X          | rs1050829  | F      | A                       | 0.93(0.86-1.02)          | 0.12                     | 0.94(0.83-1.07)            | 0.87(0.72-1.04)                     | 0.29                     | 0.36(601/703/195)                                                                        | 0.39(2606/3356/1062)  | T        | C           |
| G6PD    | X          | rs1050829  | All    | A                       | 0.95(0.9-1)              | 0.03                     | 0.95(0.84-1.06)            | 0.9(0.82-0.99)                      | 0.11                     | 0.36(1610/703/748)                                                                       | 0.38(7285/3356/3931)  | Т        | C           |
| G6PD    | X          | rs1050828  | M      | M                       | 0.81(0.68-0.96)          | 1.39 X 10 °2             | n.c."                      | n.c."                               | n.c."                    | 0.12(1384/0/191)                                                                         | 0.15(6483/0/1105)     | С        | T           |
| G6PD    | X          | rs1050828  | F      | н                       | 0.87(0.76-1.01)          | 0.06                     | 0.87(0.76-1.01)            | 1.04(0.72-1.51)                     | 0.16                     | 0.14(1129/338/39)                                                                        | 0.15(5069/1770/174)   | С        | T           |
| G6PD    | X          | rs1050828  | All    | A                       | 0.91(0.85-0.97)          | 6.08 X 10                | 0.86(0.75-0.99)            | 0.85(0.72-0.99)                     | 0.02                     | 0.13(2513/338/230)                                                                       | 0.15(11552/1770/1279) | C        | Т           |
| GBP7    | 1          | rs1803632  | All    | D                       | 1.08(0.98-1.18)          | 0.11                     | 1.07(0.98-1.18)            | 1.08(0.97-1.21)                     | 0.28                     | 0.5(835/1640/856)                                                                        | 0.51(4369/8259/4777)  | G        | C           |
| GNAS    | 20         | rs8386     | All    | R                       | 1.21(0.95-1.55)          | 0.13                     | 0.96(0.87-1.05)            | 1.2(0.94-1.54)                      | 0.22                     | 0.15(2225/773/85)                                                                        | 0.16(10246/3995/398)  | C        | Т           |
| НВВ     | 11         | rs33950507 | All    | н                       | 1.1(0.56-2.15)           | 0.79                     | 1.11(0.57-2.19)            | 1.74(0.16-19.46)                    | 0.88                     | 0.01(1091/10/1)                                                                          | 0.01(6447/127/27)     | G        | A           |
| НВВ     | 11         | rs334      | All    | н                       | 0.11(0.08-0.15)          | 4.67 X 10 <sup>-00</sup> | 0.11(0.08-0.15)            | 0.3(0.12-0.74)                      | 9.16 X 10                | 0.01(3041/42/5)                                                                          | 0.07(12773/1791/77)   | A        | Т           |
| HBB     | 11         | rs33930165 | All    | A<br>AD                 | 0.72(0.56-0.94)          | 1.07 X 10 <sup>32</sup>  | 0.73(0.54-0.99)<br>ه       | 0.5(0.2-1.25)<br>ه                  | 0.04<br>۶                | 0.02(1412/56/5)                                                                          | 0.03(9341/515/74)     | G        | A           |
| ICAM1   | 19         | rs1799969  | All    | H*                      | 0.59(0.14-2.54)          | 0.44                     | n.c. <sup>~</sup>          | n.c. <sup>°</sup>                   | n.c <sup>°</sup> .       | 0(1982/2/0)                                                                              | 0(9294/27/0)          | G        | A           |
|         | 19         | 155498     | All    | А                       | 1.07(0.99-1.12)          | 0.11                     | 1.07(0.97-1.17)            | 1.13(0.87-1.47)                     | 0.27                     | 0.14(2435/801/80)                                                                        | 0.14(12/10/4104/411)  | А        | G           |

| IL10   | 1  | rs3024500 | All | D | 0.94(0.86-1.03) | 0.17                    | 0.94(0.86-1.02)   | 0.96(0.85-1.07)   | 0.36               | 0.42(1177/1501/655) | 0.39(6859/7440/3080)  | А | G |
|--------|----|-----------|-----|---|-----------------|-------------------------|-------------------|-------------------|--------------------|---------------------|-----------------------|---|---|
| IL10   | 1  | rs1800896 | All | R | 0.95(0.83-1.07) | 0.38                    | 0.98(0.91-1.07)   | 0.94(0.82-1.07)   | 0.64               | 0.32(1586/1377/358) | 0.29(8946/6734/1723)  | Т | С |
| IL10   | 1  | rs1800890 | All | Α | 0.96(0.89-1.02) | 0.2                     | 0.97(0.89-1.05)   | 0.89(0.74-1.07)   | 0.39               | 0.2(2128/1058/148)  | 0.19(11441/5183/784)  | Α | Т |
| IL13   | 5  | rs20541   | All | н | 0.97(0.88-1.07) | 0.52                    | 0.97(0.88-1.07)   | 1(0.82-1.23)      | 0.81               | 0.21(1570/773/133)  | 0.23(8778/4974/938)   | С | Т |
| IL17RD | 3  | rs6780995 | All | R | 0.94(0.86-1.02) | 0.16                    | 1(0.91-1.11)      | 0.94(0.84-1.05)   | 0.37               | 0.54(753/1575/999)  | 0.51(4680/7806/4890)  | G | A |
| IL17RE | 3  | rs708567  | All | Α | 1.03(0.97-1.09) | 0.33                    | 1.03(0.94-1.13)   | 1.06(0.95-1.18)   | 0.61               | 0.47(988/1566/759)  | 0.43(5820/7587/3555)  | G | A |
| IL1A   | 2  | rs17561   | All | н | 1.09(1-1.19)    | 0.06                    | 1.09(1-1.19)      | 1(0.8-1.26)       | 0.16               | 0.18(2264/976/99)   | 0.16(12491/4439/479)  | G | Т |
| IL1B   | 2  | rs1143634 | All | н | 1.03(0.93-1.13) | 0.56                    | 1.03(0.93-1.13)   | 0.99(0.7-1.39)    | 0.84               | 0.11(2614/681/43)   | 0.1(13962/3178/215)   | С | Т |
| IL20RA | 6  | rs1555498 | All | н | 0.97(0.9-1.06)  | 0.52                    | 0.98(0.9-1.08)    | 1.02(0.91-1.14)   | 0.76               | 0.5(924/1500/912)   | 0.53(4600/7179/5633)  | С | Т |
| IL22   | 12 | rs2227507 | All | Α | 1(0.86-1.16)    | 0.99                    | 1.01(0.87-1.18)   | 0.75(0.25-2.22)   | 0.85               | 0.04(2742/217/4)    | 0.04(12811/980/20)    | Т | С |
| IL22   | 12 | rs1012356 | All | R | 1.02(0.94-1.12) | 0.6                     | 1.01(0.91-1.11)   | 1.03(0.92-1.15)   | 0.86               | 0.5(835/1632/868)   | 0.51(4254/8493/4643)  | Α | Т |
| IL22   | 12 | rs2227491 | All | D | 1.08(0.96-1.21) | 0.21                    | 1.07(0.95-1.21)   | 1.08(0.96-1.23)   | 0.44               | 0.64(453/1488/1369) | 0.63(2505/7684/7080)  | Т | С |
| IL22   | 12 | rs2227485 | All | н | 1.07(0.99-1.15) | 0.1                     | 1.06(0.96-1.16)   | 0.97(0.87-1.09)   | 0.22               | 0.45(995/1651/684)  | 0.47(4979/8362/4021)  | G | A |
| IL22   | 12 | rs2227478 | All | R | 0.92(0.85-1)    | 0.04                    | 1.04(0.92-1.18)   | 0.95(0.84-1.08)   | 0.10               | 0.64(433/1524/1380) | 0.67(2059/7268/8059)  | G | Α |
| IL4    | 5  | rs2243250 | All | R | 0.89(0.82-0.96) | 3.61 X 10 <sup>03</sup> | 1.07(0.9-1.26)    | 0.94(0.8-1.11)    | 0.01               | 0.74(204/1222/1762) | 0.76(1101/6094/10066) | С | Т |
| IL4R   | 16 | rs1805015 | All | R | 1.06(0.96-1.18) | 0.23                    | 1(0.92-1.1)       | 1.07(0.95-1.19)   | 0.48               | 0.42(1184/1523/624) | 0.39(6872/7570/2912)  | Т | С |
| IRF1   | 5  | rs2706384 | All | D | 0.92(0.85-1)    | 0.04                    | 0.92(0.85-1.01)   | 0.9(0.8-1.01)     | 0.11               | 0.4(1189/1509/550)  | 0.44(5462/8154/3434)  | С | A |
| LTA    | 6  | rs2239704 | All | Α | 1.06(1-1.14)    | 0.06                    | 1.07(0.99-1.17)   | 1.12(0.96-1.3)    | 0.16               | 0.26(1852/1186/268) | 0.26(9604/6224/1411)  | G | Т |
| LTA    | 6  | rs909253  | All | Α | 0.96(0.91-1.01) | 0.13                    | 0.95(0.87-1.04)   | 0.92(0.82-1.03)   | 0.31               | 0.45(1024/1602/693) | 0.47(4997/8355/3853)  | Т | С |
| NOD1   | 7  | rs2075820 | All | н | 1.08(1-1.16)    | 0.06                    | 1.07(0.98-1.16)   | 0.97(0.86-1.09)   | 0.16               | 0.39(1230/1609/486) | 0.38(6692/8105/2597)  | G | A |
| NOS2   | 17 | rs2297518 | All | R | 0.76(0.55-1.05) | 0.08                    | 0.97(0.89-1.07)   | 0.75(0.54-1.04)   | 0.20               | 0.12(2569/709/47)   | 0.12(13341/3684/298)  | G | A |
| NOS2   | 17 | rs1800482 | All | Α | 0.89(0.8-0.99)  | 0.03                    | 0.91(0.81-1.02)   | 0.59(0.33-1.05)   | 0.05               | 0.08(2613/442/13)   | 0.09(12169/2320/120)  | G | С |
| NOS2   | 17 | rs9282799 | All | Α | 1.12(0.99-1.27) | 0.07                    | 1.1(0.97-1.26)    | 1.59(0.84-3.03)   | 0.14               | 0.06(2741/332/13)   | 0.05(13124/1476/45)   | С | Т |
| NOS2   | 17 | rs8078340 | All | R | 0.84(0.69-1.01) | 0.06                    | 1.04(0.95-1.13)   | 0.85(0.7-1.03)    | 0.11               | 0.22(2012/1168/145) | 0.2(11224/5365/808)   | С | Т |
| RTN3   | 11 | rs542998  | All | н | 0.96(0.88-1.04) | 0.3                     | 0.96(0.87-1.05)   | 0.99(0.88-1.12)   | 0.58               | 0.45(1112/1448/759) | 0.49(5203/7090/4964)  | Т | С |
| SPTB   | 14 | rs229587  | All | R | 1.01(0.9-1.15)  | 0.82                    | 1(0.92-1.09)      | 1.01(0.89-1.16)   | 0.97               | 0.33(1512/1390/368) | 0.35(7361/7416/2348)  | Т | С |
| TLR1   | 4  | rs4833095 | All | R | 1.15(0.89-1.48) | 0.29                    | 1.01(0.91-1.12)   | 1.15(0.89-1.5)    | 0.56               | 0.12(2580/662/82)   | 0.15(12637/3942/681)  | С | Т |
| TLR4   | 9  | rs4986791 | All | н | 0.98(0.7-1.38)  | 0.93                    | n.c. <sup>s</sup> | n.c. <sup>§</sup> | n.c <sup>°</sup> . | 0.01(828/12/0)      | 0.01(4187/74/3)       | С | Т |
| TLR4   | 9  | rs4986790 | All | R | 0.63(0.35-1.13) | 0.1                     | 1.01(0.9-1.15)    | 0.62(0.35-1.12)   | 0.24               | 0.07(2687/378/13)   | 0.07(12626/1852/112)  | A | G |
| TLR6   | 4  | rs5743810 | All | н | 1.01(0.73-1.41) | 0.93                    | n.c. <sup>°</sup> | n.c.°             | n.c°.              | 0.01(1693/33/0)     | 0.01(7539/184/3)      | С | Т |
| TLR6   | 4  | rs5743809 | All | н | 1.13(0.99-1.3)  | 0.08                    | 1.13(0.99-1.29)   | 0.5(0.19-1.27)    | 0.06               | 0.05(2932/311/5)    | 0.04(15698/1279/43)   | Т | С |
| TLR9   | 3  | rs187084  | All | R | 1.07(0.99-1.17) | 0.1                     | 1.01(0.86-1.19)   | 1.08(0.93-1.27)   | 0.25               | 0.72(228/1087/1477) | 0.7(1455/6473/7909)   | С | Т |
| TNF    | 6  | rs1799964 | All | н | 1.06(0.97-1.15) | 0.18                    | 1.06(0.97-1.15)   | 0.97(0.8-1.18)    | 0.39               | 0.21(2080/1107/141) | 0.2(11148/5452/767)   | Т | С |
| TNF    | 6  | rs1800629 | All | R | 1.12(0.81-1.53) | 0.49                    | 0.97(0.88-1.07)   | 1.11(0.81-1.52)   | 0.65               | 0.11(2584/629/51)   | 0.11(13681/3273/222)  | G | A |
| TNF    | 6  | rs361525  | All | н | 1.05(0.93-1.19) | 0.43                    | 1.05(0.93-1.19)   | 0.81(0.41-1.61)   | 0.61               | 0.06(2947/378/10)   | 0.05(15732/1647/55)   | G | Α |
| TNF    | 6  | rs3093662 | All | R | 0.76(0.49-1.16) | 0.19                    | 1.01(0.91-1.12)   | 0.76(0.49-1.17)   | 0.42               | 0.1(2670/588/26)    | 0.08(14381/2583/143)  | Α | G |
| TRIM5  | 11 | rs7935564 | All | D | 0.93(0.85-1.01) | 0.09                    | 0.94(0.85-1.02)   | 0.92(0.82-1.02)   | 0.23               | 0.44(1042/1608/673) | 0.42(5881/8072/3205)  | G | А |

**Supplementary Table 9: Cerebral malaria only association signals**. Summary of association signals for all SNPs for *cerebral malaria only* across the 12 contributing Consortial Project 1 study sites. Odds ratios (OR), 95% confidence intervals (95% CI) and p-values (*P*) are presented for the best model (for autosomal SNPs and for females at X chromosome SNPs this is the model (selected from additive, recessive, dominant or heterozygote advantage) that has the most significant association; for males at X chromosome, this is the male hemizygote model and; for all individuals combined at X chromosome SNPs this is the model (selected from additive, recessive or dominant) that has the most significant association. Heterozygote and homozygote ORs from a genotypic model are also presented. Results are adjusted for HbS (except rs334), gender and ethnicity. Sites at which a SNP was found to be monomorphic were excluded from the analysis. An, ancestral; De, derived; n.c., not calculated. <sup>a</sup>Models are A, additive; D, dominant; H, heterozygote advantage; M, male hemizygote; R, recessive. <sup>§</sup> Genotype counts too small for accurate calculation. <sup>¶</sup>Not applicable to male hemizygotes. \*Models are equivalent due to zero genotype class.

| Gene    | Chromosome | SNP Ref    | Sample | Best Model <sup>a</sup> | Best Model<br>OR(95% CI) | Best Model<br>P          | Heterozygote<br>OR(95% CI) | Derived<br>Homozygote<br>OR(95% Cl) | Genotypic<br>P                       | Frequ<br>(Derived Ho<br>Heterozygote/Anc<br>Cases | uency<br>omozygote/<br>estal Homozygote)<br>Controls | Alle<br>An | eles<br>De |
|---------|------------|------------|--------|-------------------------|--------------------------|--------------------------|----------------------------|-------------------------------------|--------------------------------------|---------------------------------------------------|------------------------------------------------------|------------|------------|
| ABO     | 9          | rs8176746  | All    | D                       | 1.28(1.16-1.42)          | 1.71 X 10 <sup>06</sup>  | 1.28(1.15-1.42)            | 1.34(1.04-1.71)                     | 1.01 X 10 <sup>05</sup>              | 0.22(1342/746/97)                                 | 0.17(11943/4852/565)                                 | С          | А          |
| ABO     | 9          | rs8176719  | All    | R                       | 0.68(0.62-0.76)          | 7.97 X 10 <sup>14</sup>  | 0.9(0.77-1.05)             | 0.63(0.54-0.74)                     | 3.10 X 10 <sup>13</sup>              | 0.62(302/1054/816)                                | 0.69(1700/7215/8238)                                 | I          | D          |
| ADCY9   | 16         | rs2230739  | All    | R                       | 0.9(0.62-1.31)           | 0.59                     | 0.98(0.87-1.11)            | 0.9(0.62-1.3)                       | 0.84                                 | 0.12(1701/453/39)                                 | 0.15(12706/4094/604)                                 | А          | G          |
| ADCY9   | 16         | rs10775349 | All    | R                       | 1.18(0.9-1.54)           | 0.25                     | 1.02(0.91-1.14)            | 1.18(0.9-1.56)                      | 0.48                                 | 0.23(1396/581/214)                                | 0.3(9884/4518/3000)                                  | С          | G          |
| ADORA2B | 17         | rs2535611  | All    | Α                       | 0.95(0.83-1.08)          | 0.43                     | 0.95(0.82-1.1)             | 0.9(0.53-1.54)                      | 0.73                                 | 0.07(1865/280/19)                                 | 0.07(14377/2198/130)                                 | Т          | С          |
| ATP2B4  | 1          | rs55868763 | All    | D                       | 1.48(1.22-1.81)          | 5.39 X 10 <sup>05</sup>  | 1.43(1.17-1.77)            | 1.53(1.25-1.89)                     | 0.00                                 | 0.71(137/791/929)                                 | 0.68(1428/5690/6229)                                 | С          | G          |
| ATP2B4  | 1          | rs1541255  | All    | R                       | 0.67(0.55-0.82)          | 3.96 X 10 <sup>05</sup>  | 0.93(0.83-1.04)            | 0.65(0.53-0.79)                     | 0.00                                 | 0.29(932/788/137)                                 | 0.32(6241/5667/1439)                                 | А          | G          |
| ATP2B4  | 1          | rs10900585 | All    | D                       | 1.53(1.27-1.84)          | 3.68 X 10 <sup>06</sup>  | 1.49(1.22-1.81)            | 1.58(1.3-1.92)                      | 1.34 X 10 <sup>05</sup>              | 0.69(159/816/851)                                 | 0.66(1644/5722/5737)                                 | G          | т          |
| ATP2B4  | 1          | rs4951074  | All    | R                       | 0.64(0.51-0.79)          | 1.22 X 10 <sup>05</sup>  | 1(0.89-1.12)               | 0.64(0.51-0.79)                     | 6.97 X 10 <sup>05</sup>              | 0.28(890/762/121)                                 | 0.31(6115/5392/1284)                                 | G          | А          |
| ATP2B4  | 1          | rs3753036  | All    | А                       | 1.21(0.94-1.56)          | 0.15                     | 1.22(0.93-1.59)            | 1.34(0.3-5.94)                      | 0.36                                 | 0.02(1946/72/2)                                   | 0.04(14787/1253/81)                                  | G          | А          |
| C6      | 5          | rs1801033  | All    | D                       | 0.94(0.84-1.04)          | 0.24                     | 0.94(0.84-1.05)            | 0.95(0.82-1.09)                     | 0.49                                 | 0.45(675/1069/445)                                | 0.48(4757/8591/4003)                                 | А          | С          |
| CD36    | 7          | G1439C     | All    | н                       | 0.9(0.64-1.27)           | 0.56                     | n.c.§                      | n.c. <sup>§</sup>                   | n.c⁵.                                | 0.03(596/44/0)                                    | 0.03(3470/199/5)                                     | G          | С          |
| CD36    | 7          | rs3211938  | All    | А                       | 0.88(0.77-1)             | 0.05                     | 0.88(0.76-1.03)            | 0.73(0.44-1.22)                     | 0.14                                 | 0.08(1730/287/22)                                 | 0.09(12291/2178/174)                                 | т          | G          |
| CD40LG  | Х          | rs3092945  | М      | М                       | 0.87(0.75-1.01)          | 0.07                     | n.c. <sup>1</sup>          | n.c. <sup>1</sup>                   | n.c. <sup>1</sup>                    | 0.31(773/0/349)                                   | 0.27(6449/0/2348)                                    | т          | С          |
| CD40LG  | Х          | rs3092945  | F      | R                       | 0.71(0.56-0.9)           | 3.49 X 10 <sup>03</sup>  | 1.13(0.96-1.32)            | 0.75(0.58-0.97)                     | 4.89 X 10 <sup>03</sup>              | 0.33(424/411/103)                                 | 0.27(4581/2621/849)                                  | т          | С          |
| CD40LG  | х          | rs3092945  | All    | R                       | 0.82(0.73-0.94)          | 2.97 X 10 <sup>03</sup>  | 1.15(0.98-1.34)            | 0.84(0.74-0.96)                     | 2.11 X 10 <sup>03</sup>              | 0.32(1197/411/452)                                | 0.27(11030/2621/319                                  | т          | С          |
| CD40LG  | х          | rs1126535  | М      | М                       | 1.05(0.86-1.27)          | 0.65                     | n.c. <sup>1</sup>          | n.c. <sup>1</sup>                   | n.c. <sup>1</sup>                    | 0.15(1012/0/178)                                  | 0.14(7793/0/1290)                                    | т          | С          |
| CD40LG  | Х          | rs1126535  | F      | R                       | 1.31(0.86-1.99)          | 0.22                     | 0.96(0.81-1.15)            | 1.29(0.85-1.97)                     | 0.43                                 | 0.15(738/230/34)                                  | 0.14(6206/1904/193)                                  | T          | C          |
| CD40LG  | х          | rs1126535  | All    | R                       | 1.08(0.91-1.27)          | 0.37                     | 0.96(0.8-1.14)             | 1.08(0.91-1.27)                     | 0.61                                 | 0.15(1750/230/212)                                | 0.14(13999/1904/148                                  | т          | C          |
| CFTR    | 7          | rs17140229 | All    | н                       | 0.94(0.84-1.05)          | 0.27                     | 0.94(0.83-1.06)            | 0.99(0.84-1.17)                     | 0.54                                 | 0.38(694/807/265)                                 | 0.36(5182/5816/1632)                                 | т          | С          |
| CR1     | 1          | rs17047660 | All    | D                       | 0.91(0.82-1.01)          | 0.07                     | 0.91(0.82-1.01)            | 0.91(0.75-1.11)                     | 0.19                                 | 0.28(1065/803/163)                                | 0.26(8059/5508/1048)                                 | А          | G          |
| CR1     | 1          | rs17047661 | All    | D                       | 1.1(0.9-1.35)            | 0.35                     | 1.1(0.89-1.35)             | 1.1(0.9-1.36)                       | 0.64                                 | 0.75(135/767/1140)                                | 0.72(1159/5820/7633)                                 | А          | G          |
| CTL4    | 6          | rs2242665  | All    | н                       | 0.89(0.81-0.99)          | 0.03                     | 0.8(0.67-0.95)             | 0.87(0.74-1.03)                     | 0.03                                 | 0.71(214/821/1141)                                | 0.7(1670/7134/8465)                                  | G          | A          |
| DARC    | 1          | rs2814778  | All    | н                       | 1.75(0.83-3.68)          | 0.16                     | 13.95(0.23-835.58)         | 8.65(0.13-557.62)                   | 0.22                                 | 0.93(150/9/1981)                                  | 0.83(2751/59/13799)                                  | A          | G          |
| DERL3   | 22         | rs1128127  | All    | D                       | 0.93(0.82-1.05)          | 0.23                     | 0.93(0.81-1.05)            | 0.93(0.81-1.07)                     | 0.48                                 | 0.51(588/978/615)                                 | 0.47(5327/7634/4290)                                 | G          | А          |
| EMR1    | 19         | rs373533   | All    | R                       | 0.98(0.87-1.11)          | 0.78                     | 1(0.89-1.11)               | 0.98(0.85-1.13)                     | 0.96                                 | 0.45(667/1057/443)                                | 0.43(5667/8256/3280)                                 | G          | т          |
| EMR1    | 19         | rs461645   | All    | н                       | 1.02(0.92-1.12)          | 0.75                     | 1.02(0.9-1.16)             | 1.01(0.88-1.16)                     | 0.94                                 | 0.55(449/1065/675)                                | 0.57(3357/8303/5726)                                 | Т          | С          |
| G6PD    | Х          | rs1050829  | М      | М                       | 1.23(1.07-1.41)          | 4.55 X 10 <sup>03</sup>  | n.c. <sup>1</sup>          | n.c. <sup>1</sup>                   | n.c. <sup>1</sup>                    | 0.42(634/0/468)                                   | 0.38(4679/0/2869)                                    | т          | C          |
| G6PD    | х          | rs1050829  | F      | R                       | 1.23(1.01-1.5)           | 0.04                     | 1.01(0.86-1.2)             | 1.24(1-1.54)                        | 0.12                                 | 0.41(325/426/167)                                 | 0.39(2606/3356/1062)                                 | т          | C          |
| G6PD    | х          | rs1050829  | All    | R                       | 1.23(1.1-1.38)           | $4.08 \times 10^{-04}$   | 0.99(0.85-1.16)            | 1.23(1.09-1.38)                     | 2.11 X 10 <sup>-03</sup>             | 0.42(959/426/635)                                 | 0.38(7285/3356/3931)                                 | т          | Ċ          |
| G6PD    | Х          | rs1050828  | M      | M                       | 1.49(1.24-1.79)          | 3.55 X 10 <sup>-05</sup> | n.c. <sup>1</sup>          | n.c. <sup>1</sup>                   | n.c. <sup>¶</sup>                    | 0.2(894/0/222)                                    | 0.15(6483/0/1105)                                    | Ċ          | Т          |
| G6PD    | X          | rs1050828  | F      | R                       | 1.94(1.3-2.89)           | 1.92 X 10 <sup>03</sup>  | 0.96(0.8-1.16)             | 1.92(1.28-2.87)                     | 7.51 X 10 <sup>03</sup>              | 0.16(669/215/41)                                  | 0.15(5069/1770/174)                                  | Ċ          | т          |
| C(DD    | Х          | rs1050828  | All    | A                       | 1.19(1.1-1.28)           | 2.62 X 10 <sup>05</sup>  | 0.93(0.78-1.12)            | 1.55(1.31-1.83)                     | 1.66 X 10 <sup>06</sup>              | 0.18(1563/215/263)                                | 0.15(11552/1770/127                                  | C          | т          |
| GOPD    | 1          | **1902622  | A 11   | ^                       |                          | 0.10                     | 1 04/0 02 1 16)            | 1 1/0 06 1 26)                      | 0.41                                 | 0 47(622/1066/502)                                | 9)<br>0 51(4260/8250/4777)                           | C          | c          |
|         | 20         | 151003032  |        | A<br>L                  | 1.02(0.96-1.12)          | 0.19                     | 1.04(0.92-1.10)            | 1.1(0.30-1.20)                      | 0.41                                 | 0.47(025/1000/503)                                | 0.31(4303/8233/4/7/)                                 | G          | с<br>т     |
|         | 20         | 150300     |        |                         | 0.30(0.00-1.1)           | 0.70                     | 0.30(0.00-1.1)             | 0.99(0.73-1.54)                     | 0.95                                 | 0.1/(1413/3/1/01)                                 | 0.10(10240/3333/398)                                 | c          | 1          |
|         | 11         | 153395050/ |        |                         | 1.12(0.31-4.02)          | U.8/                     |                            | п.С.<br>2 01/2 с1 г 99\             | 1.0 .                                | 0.03(28/3/0)                                      | 0.04(2303/124/27)                                    | 6          | A          |
|         | 11         | 15334      |        |                         | 0.11(0.07-0.15)          | 9.23 A 10                | 0.11(0.08-0.10)            | 3.91(2.01-5.88)                     | 1.10 X 10<br>9 72 X 10 <sup>03</sup> | 0.03(1905/31/45)                                  | 0.07(127/3/1/91/77)                                  | A          | 1          |
|         | 10         | 1222220102 | All    | A<br>ADU*               | 0.74(0.0-0.9)            | 2.11 X 10                | 0.73(0.57-0.92)            | U.57(U.28-1.14)                     | 8./3 X 10                            | 0.04(1405/110/10)                                 | 0.03(9341/515//4)                                    | G          | A          |
|         | 10         | 121/33303  |        |                         | 1.33(U.37-4.81)          | 0.07                     |                            | 1.0.00 1.00                         | n.c .<br>0.40                        | U(977/3/U)                                        | U(9294/2//U)                                         | 6          | A          |
| ICAIVIT | 19         | rs5498     | All    | A                       | 1.07(0.97-1.18)          | 0.2                      | 1.05(0.94-1.18)            | 1.2(0.89-1.63)                      | 0.40                                 | 0.16(1555/555/78)                                 | 0.14(12/16/4164/411)                                 | A          | G          |

| IL10   | 1  | rs3024500 | All | D | 0.98(0.88-1.09) | 0.72 | 0.98(0.88-1.09) | 0.99(0.85-1.14)   | 0.93               | 0.41(769/1031/391) | 0.39(6859/7440/3080)      | Α | G |
|--------|----|-----------|-----|---|-----------------|------|-----------------|-------------------|--------------------|--------------------|---------------------------|---|---|
| IL10   | 1  | rs1800896 | All | R | 0.95(0.8-1.11)  | 0.5  | 1(0.9-1.11)     | 0.94(0.8-1.12)    | 0.79               | 0.3(1082/896/209)  | 0.29(8946/6734/1723)      | Т | С |
| IL10   | 1  | rs1800890 | All | Α | 0.95(0.87-1.03) | 0.23 | 0.97(0.87-1.08) | 0.85(0.67-1.09)   | 0.41               | 0.19(1442/666/85)  | 0.19(11441/5183/784)      | Α | т |
| IL13   | 5  | rs20541   | All | D | 1.13(1-1.26)    | 0.04 | 1.12(0.99-1.26) | 1.18(0.91-1.52)   | 0.12               | 0.21(1200/582/96)  | 0.23(8778/4974/938)       | С | Т |
| IL17RD | 3  | rs6780995 | All | А | 0.98(0.92-1.05) | 0.65 | 0.99(0.87-1.12) | 0.97(0.84-1.11)   | 0.90               | 0.53(493/1064/634) | 0.51(4680/7806/4890)      | G | А |
| IL17RE | 3  | rs708567  | All | н | 1.02(0.92-1.12) | 0.7  | 1.02(0.9-1.15)  | 1(0.87-1.15)      | 0.93               | 0.5(568/1044/550)  | 0.43(5820/7587/3555)      | G | А |
| IL1A   | 2  | rs17561   | All | R | 1.06(0.81-1.38) | 0.67 | 1(0.89-1.11)    | 1.06(0.81-1.39)   | 0.91               | 0.17(1520/601/74)  | 0.16(12491/4439/479)      | G | Т |
| IL1B   | 2  | rs1143634 | All | А | 1.02(0.92-1.13) | 0.72 | 1.01(0.9-1.14)  | 1.08(0.72-1.6)    | 0.92               | 0.12(1695/461/33)  | 0.1(13962/3178/215)       | С | Т |
| IL20RA | 6  | rs1555498 | All | А | 1.1(1.02-1.18)  | 0.01 | 1.06(0.95-1.19) | 1.21(1.05-1.39)   | 0.03               | 0.47(635/1042/518) | 0.53(4600/7179/5633)      | С | т |
| IL22   | 12 | rs2227507 | All | А | 0.96(0.79-1.17) | 0.72 | 0.92(0.75-1.13) | 2.35(0.76-7.32)   | 0.29               | 0.04(1551/110/4)   | 0.04(12811/980/20)        | Т | С |
| IL22   | 12 | rs1012356 | All | Α | 1.06(0.99-1.14) | 0.09 | 1.04(0.92-1.18) | 1.13(0.98-1.3)    | 0.21               | 0.5(595/1017/582)  | 0.51(4254/8493/4643)      | Α | Т |
| IL22   | 12 | rs2227491 | All | Α | 1.07(0.99-1.15) | 0.08 | 1.07(0.91-1.26) | 1.14(0.97-1.35)   | 0.21               | 0.65(326/883/972)  | 0.63(2505/7684/7080)      | Т | С |
| IL22   | 12 | rs2227485 | All | R | 1.06(0.94-1.19) | 0.36 | 0.97(0.86-1.09) | 1.04(0.9-1.19)    | 0.59               | 0.46(679/1004/501) | 0.47(4979/8362/4021)      | G | Α |
| IL22   | 12 | rs2227478 | All | н | 1.05(0.95-1.16) | 0.33 | 1.05(0.9-1.23)  | 1.01(0.86-1.18)   | 0.62               | 0.64(303/984/904)  | 0.67(2059/7268/8059)      | G | Α |
| IL4    | 5  | rs2243250 | All | D | 1.17(0.96-1.42) | 0.12 | 1.19(0.97-1.46) | 1.15(0.94-1.4)    | 0.23               | 0.74(150/830/1195) | 0.76(1101/6094/1006<br>6) | С | т |
| IL4R   | 16 | rs1805015 | All | R | 1.01(0.89-1.14) | 0.88 | 1(0.89-1.12)    | 1.01(0.87-1.16)   | 0.99               | 0.42(763/1000/422) | 0.39(6872/7570/2912)      | Т | С |
| IRF1   | 5  | rs2706384 | All | R | 0.88(0.77-1)    | 0.05 | 1(0.89-1.12)    | 0.88(0.76-1.02)   | 0.15               | 0.44(683/1028/408) | 0.44(5462/8154/3434)      | С | А |
| LTA    | 6  | rs2239704 | All | D | 0.93(0.84-1.04) | 0.19 | 0.93(0.83-1.03) | 0.96(0.81-1.14)   | 0.39               | 0.31(1059/854/237) | 0.26(9604/6224/1411)      | G | т |
| LTA    | 6  | rs909253  | All | R | 1.07(0.95-1.2)  | 0.29 | 1.01(0.9-1.14)  | 1.07(0.93-1.24)   | 0.56               | 0.46(680/999/493)  | 0.47(4997/8355/3853)      | Т | С |
| NOD1   | 7  | rs2075820 | All | А | 0.93(0.87-1)    | 0.05 | 0.92(0.82-1.02) | 0.87(0.75-1.02)   | 0.13               | 0.36(893/997/299)  | 0.38(6692/8105/2597)      | G | А |
| NOS2   | 17 | rs2297518 | All | R | 0.81(0.5-1.31)  | 0.38 | 1.02(0.9-1.16)  | 0.81(0.5-1.32)    | 0.64               | 0.1(1751/404/21)   | 0.12(13341/3684/298)      | G | А |
| NOS2   | 17 | rs1800482 | All | А | 1.07(0.95-1.21) | 0.29 | 1.06(0.92-1.21) | 1.23(0.75-2.01)   | 0.54               | 0.09(1678/342/21)  | 0.09(12169/2320/120)      | G | С |
| NOS2   | 17 | rs9282799 | All | А | 1.13(0.98-1.3)  | 0.11 | 1.12(0.96-1.31) | 1.4(0.65-3.01)    | 0.27               | 0.07(1781/251/9)   | 0.05(13124/1476/45)       | С | Т |
| NOS2   | 17 | rs8078340 | All | А | 0.97(0.89-1.05) | 0.45 | 0.98(0.88-1.09) | 0.92(0.73-1.15)   | 0.72               | 0.22(1322/765/103) | 0.2(11224/5365/808)       | С | Т |
| RTN3   | 11 | rs542998  | All | D | 0.98(0.89-1.09) | 0.74 | 0.98(0.88-1.1)  | 0.99(0.85-1.15)   | 0.94               | 0.42(770/985/426)  | 0.49(5203/7090/4964)      | Т | С |
| SPTB   | 14 | rs229587  | All | D | 0.93(0.84-1.03) | 0.16 | 0.92(0.83-1.03) | 0.95(0.79-1.13)   | 0.37               | 0.31(925/800/207)  | 0.35(7361/7416/2348)      | Т | С |
| TLR1   | 4  | rs4833095 | All | н | 0.87(0.77-0.99) | 0.04 | 0.88(0.77-1)    | 1.06(0.72-1.56)   | 0.11               | 0.11(1734/393/37)  | 0.15(12637/3942/681)      | С | Т |
| TLR4   | 9  | rs4986791 | All | н | 1.27(0.89-1.8)  | 0.19 | n.c.§           | n.c. <sup>§</sup> | n.c <sup>§</sup> . | 0.01(867/18/0)     | 0.01(4187/74/3)           | С | Т |
| TLR4   | 9  | rs4986790 | All | R | 0.63(0.35-1.13) | 0.1  | 1.02(0.89-1.18) | 0.63(0.35-1.13)   | 0.25               | 0.09(1694/323/16)  | 0.07(12626/1852/112)      | А | G |
| TLR6   | 4  | rs5743810 | All | н | 1.04(0.67-1.62) | 0.85 | 1.05(0.67-1.62) | 7.29(0.67-79.55)  | 0.38               | 0.01(785/14/1)     | 0.01(7539/184/3)          | С | Т |
| TLR6   | 4  | rs5743809 | All | А | 1.03(0.86-1.23) | 0.75 | 1.02(0.85-1.24) | 1.14(0.42-3.1)    | 0.94               | 0.04(1892/163/5)   | 0.04(15698/1279/43)       | Т | С |
| TLR9   | 3  | rs187084  | All | D | 0.87(0.74-1.03) | 0.12 | 0.87(0.73-1.04) | 0.87(0.73-1.04)   | 0.30               | 0.7(216/852/1091)  | 0.7(1455/6473/7909)       | С | Т |
| TNF    | 6  | rs1799964 | All | А | 1.06(0.97-1.16) | 0.23 | 1.05(0.94-1.17) | 1.14(0.88-1.48)   | 0.48               | 0.18(1487/614/87)  | 0.2(11148/5452/767)       | Т | С |
| TNF    | 6  | rs1800629 | All | R | 0.8(0.52-1.24)  | 0.31 | 1.03(0.91-1.17) | 0.81(0.52-1.25)   | 0.54               | 0.12(1606/435/28)  | 0.11(13681/3273/222)      | G | Α |
| TNF    | 6  | rs361525  | All | н | 1.12(0.94-1.34) | 0.21 | 1.12(0.94-1.34) | 0.86(0.33-2.25)   | 0.43               | 0.04(2019/171/5)   | 0.05(15732/1647/55)       | G | Α |
| TNF    | 6  | rs3093662 | All | R | 1.26(0.75-2.12) | 0.4  | 1.01(0.87-1.16) | 1.26(0.75-2.13)   | 0.69               | 0.07(1770/270/18)  | 0.08(14381/2583/143)      | А | G |
| TRIM5  | 11 | rs7935564 | All | А | 1.01(0.95-1.09) | 0.69 | 1.01(0.9-1.14)  | 1.03(0.89-1.18)   | 0.92               | 0.48(589/1078/487) | 0.42(5881/8072/3205)      | G | А |

**Supplementary Table 10: Severe malarial anaemia only association signals.** Summary of association signals for all SNPs for *severe malarial anaemia only* across the 12 contributing Consortial Project 1 study sites. Odds ratios (OR), 95% confidence intervals (95% CI) and p-values (*P*) are presented for the best model (for autosomal SNPs and for females at X chromosome SNPs this is the model (selected from additive, recessive, dominant or heterozygote advantage) that has the most significant association; for males at X chromosome, this is the male hemizygote model and; for all individuals combined at X chromosome SNPs this is the model (selected from additive, recessive or dominant) that has the most significant association. Heterozygote and homozygote ORs from a genotypic model are also presented. Results are adjusted for HbS (except rs334), gender and ethnicity. Sites at which a SNP was found to be monomorphic were excluded from the analysis. An, ancestral; De, derived; n.c., not calculated. <sup>a</sup>Models are A, additive; D, dominant; H, heterozygote advantage; M, male hemizygote; R, recessive. <sup>§</sup> Genotype counts too small for accurate calculation. <sup>¶</sup>Not applicable to male hemizygotes. \*Models are equivalent due to zero genotype class.

| Sickle Cell Trait         | Heter             | Dzygote Frequency        |                   |                          |
|---------------------------|-------------------|--------------------------|-------------------|--------------------------|
| Phenotype<br>Site         | Cases             | Controls                 | OR (95% CI)       | Р                        |
|                           | Males and Females | - Heterozygote Advantage | Model             |                          |
| Severe malaria            |                   |                          |                   |                          |
| Gambia                    | 0.01 (32/2415)    | 0.14 (460/3332)          | 0.09(0.06-0.12)   | 2.80 X 10 <sup>7</sup>   |
| Mali                      | 0.01 (4/453)      | 0.08 (28/344)            | 0.09(0.03-0.27)   | 4.08 X 10 <sup>0</sup>   |
| Burkina Faso              | 0.02 (21/865)     | 0.1 (73/729)             | 0.22(0.14-0.37)   | 6.94 X 10 <sup>1</sup>   |
| Ghana (Navrongo)          | 0.03 (19/682)     | 0.1 (50/489)             | 0.25(0.14-0.43)   | 7.99 X 10 <sup>0</sup>   |
| Ghana (Kumasi)            | 0.02 (32/1495)    | 0.13 (271/2042)          | 0.13(0.09-0.2)    | 4.83 X 10 <sup>3</sup>   |
| Nigeria                   | 0.12 (9/77)       | 0.22 (9/40)              | 0.46(0.16-1.28)   | 0.14                     |
| Cameroon                  | 0.05 (32/621)     | 0.17 (99/576)            | 0.26(0.17-0.4)    | 3.17 X 10 <sup>1</sup>   |
| Kenya                     | 0.03 (57/2261)    | 0.15 (594/3941)          | 0.15(0.12-0.2)    | 6.33 X 10 <sup>6</sup>   |
| Tanzania                  | 0.01 (5/428)      | 0.17 (75/452)            | 0.06(0.02-0.15)   | 5.31 X 10 <sup>-1</sup>  |
| Malawi                    | 0 (2/1388)        | 0.05 (132/2696)          | 0.03(0.01-0.11)   | 1.64 X 10 <sup>2</sup>   |
| All                       | 0.02 (213/10685)  | 0.12 (1791/14641)        | 0.14(0.12-0.16)   | 1.62 X 10 <sup>-22</sup> |
| Cerebral malaria only     | 0.02 (220, 20000) | 0.12 (1701/17071)        | 0.1 (0.11 0.10)   | 2.02 / 20                |
| Gambia                    | 0.01 (9/783)      | 0.14 (460/3332)          | 0.07(0.04-0.14)   | 1.10 X 10 <sup>3</sup>   |
| Mali                      | 0 (0/86)          | 0.08 (28/344)            | n.c. <sup>§</sup> | n.c.                     |
| Burkina Faso              | 0 (0/107)         | 0.1 (73/729)             | n.c. <sup>§</sup> | n.c.                     |
| Ghana (Navrongo)          | 0.05 (1/22)       | 0.1 (50/489)             | 0.42(0.06-3.21)   | 0.34                     |
| Ghana (Kumasi)            | 0.01 (3/230)      | 0.13 (271/2042)          | 0.1(0.03-0.31)    | 3.33 X 10 <sup>09</sup>  |
| Nigeria                   | 0 (0/6)           | 0.22 (9/40)              | n.c. <sup>§</sup> | n.c. <sup>4</sup>        |
| Cameroon                  | 0.05 (2/39)       | 0.17 (99/576)            | 0.26(0.06-1.08)   | 0.02                     |
| Kenya                     | 0.03 (25/908)     | 0 15 (594/3941)          | 0.17(0.11-0.26)   | 6 79 X 10 <sup>28</sup>  |
| Tanzania                  | 0 (0/34)          | 0.17 (75/452)            | 0(0-Inf)          | 7.73 X 10 <sup>0</sup>   |
| Malawi                    | 0 (2/873)         | 0.05 (132/2696)          | 0.04(0.01-0.18)   | 7 84 X 10 <sup>-15</sup> |
| All                       | 0 01 (42/3088)    | 0 12 (1791/14641)        | 0.11(0.08-0.15)   | $4.67 \times 10^{-8}$    |
| Severe malarial anaemia o | nly               | 0.12 (1701/17071)        | 0.11(0.00 0.10)   |                          |
| Gambia                    | 0.01 (3/456)      | 0 14 (460/3332)          | 0.04(0.01-0.13)   | 5 48 X 10 <sup>2</sup>   |
| Mali                      | 0.01 (1/185)      | 0.08 (28/344)            | 0.06(0.01-0.41)   | 9 55 X 10 <sup>0</sup>   |
| Burkina Faso              | 0 (0/39)          | 0.1 (73/729)             | n.c. <sup>§</sup> | n.c.                     |
| Ghana (Navrongo)          | 0.02 (5/248)      | 0.1 (50/489)             | 0.18(0.07-0.45)   | 8.22 X 10 <sup>0</sup>   |
| Ghana (Kumasi)            | 0.02 (11/551)     | 0.13 (271/2042)          | 0 14(0 07-0 27)   | 1 07 X 10 <sup>1</sup>   |
| Nigeria                   | 0.38 (3/8)        | 0.22 (9/40)              | 1.98(0.39-10.11)  | 0.42                     |
| Cameroon                  | 0.04 (3/82)       | 0.17 (99/576)            | 0.18(0.06-0.59)   | 3.23 X 10 <sup>-0</sup>  |
| Kenya                     | 0.02 (3/158)      | 0.15 (594/3941)          | 0.11(0.04-0.36)   | 5.18 X 10 <sup>-0</sup>  |
| Tanzania                  | 0.01 (2/182)      | 0.17 (75/452)            | 0.06(0.01-0.24)   | 6.83 X 10 <sup>-1</sup>  |
| Malawi                    | 0 (0/132)         | 0.05 (132/2696)          | n.c. <sup>§</sup> | n.c. <sup>(</sup>        |
| All                       | 0 02 (21/2041)    | 0 12 (1701 /14641)       | 0 11/0 07 0 15)   | 0.25 V 10 <sup>6!</sup>  |

**Supplementary Table 11: HbS All Heterozygous Model.** Frequency of cases and controls heterozygous for sickle-cell haemoglobin (HbS) derived from rs334. Odds Ratios (OR), 95% Confidence Intervals (95% CI) and p-values (*P*) for association of HbS heterozygotes with severe malaria, cerebral malaria only and severe malarial anaemia only for all individuals at each study site and at all study sites combined. Results are adjusted for gender and ethnicity. Sites at which HbS is not present (Vietnam and Papua New Guinea) were excluded from this analysis. Het, Heterozygotes; n.c., not calculated. <sup>§</sup> sample size too small for accurate calculation.

| Blood Group O           | Derived Hom<br>(Derived H | ozygote Frequency    |                 |                         |
|-------------------------|---------------------------|----------------------|-----------------|-------------------------|
| Phenotype<br>Site       | Cases                     | Controls             | OR (95% CI)     | Р                       |
|                         | Males and Fem             | ales – Recessive Mor |                 |                         |
| All sovere malaria      | indies and ren            |                      |                 |                         |
| Gambia                  | 0.39 (945/2418)           | 0.46 (1551/3337)     | 0.75(0.67-0.84) | 3.08 X 10 <sup>07</sup> |
| Mali                    | 0.29 (131/450)            | 0.43 (146/340)       | 0.57(0.42-0.78) | 3.15 X 10 <sup>04</sup> |
| Burkina Faso            | 0.37 (321/859)            | 0.44 (320/721)       | 0.75(0.61-0.92) | $6.30 \times 10^{-03}$  |
| Ghana (Navrongo)        | 0.39 (260/666)            | 0.4 (193/484)        | 0.93(0.73-1.19) | 0.58                    |
| Ghana (Kumasi)          | 0.37 (547/1478)           | 0.5 (984/1978)       | 0.61(0.52-0.7)  | 1.66 X 10 <sup>11</sup> |
| Nigeria                 | 0.35 (27/77)              | 0.62 (24/39)         | 0.31(0.14-0.71) | 4.68 X 10 <sup>03</sup> |
| Cameroon                | 0.44 (267/603)            | 0.54 (310/570)       | 0.69(0.54-0.88) | 2.46 X 10 <sup>03</sup> |
| Kenya                   | 0.47 (1055/2256)          | 0.55 (2126/3888)     | 0.74(0.66-0.82) | 2.64 X 10 <sup>08</sup> |
| Tanzania                | 0.44 (188/424)            | 0.48 (219/452)       | 0.85(0.64-1.12) | 0.25                    |
| Malawi                  | 0.43 (600/1385)           | 0.5 (1297/2603)      | 0.76(0.66-0.87) | 4.05 X 10 <sup>05</sup> |
| Vietnam                 | 0.34 (271/789)            | 0.4 (993/2506)       | 0.78(0.66-0.93) | 4.62 X 10 <sup>03</sup> |
| Papua New Guinea        | 0.36 (138/384)            | 0.32 (75/235)        | 1.22(0.86-1.72) | 0.27                    |
| All                     | 0.4 (4750/11789)          | 0.48 (8238/17153)    | 0.74(0.7-0.78)  | 4.99 X 10 <sup>33</sup> |
| Cerebral malaria only   |                           | , , , ,              | , ,             |                         |
| Gambia                  | 0.4 (311/783)             | 0.46 (1551/3337)     | 0.77(0.66-0.91) | 1.86 X 10 <sup>03</sup> |
| Mali                    | 0.28 (24/86)              | 0.43 (146/340)       | 0.55(0.32-0.94) | 0.03                    |
| Burkina Faso            | 0.34 (36/106)             | 0.44 (320/721)       | 0.66(0.43-1.01) | 5.32 X 10 <sup>02</sup> |
| Ghana (Navrongo)        | 0.35 (7/20)               | 0.4 (193/484)        | 0.73(0.28-1.89) | 0.51                    |
| Ghana (Kumasi)          | 0.4 (89/225)              | 0.5 (984/1978)       | 0.64(0.47-0.87) | 4.02 X 10 <sup>03</sup> |
| Nigeria                 | 0.17 (1/6)                | 0.62 (24/39)         | 0.1(0.01-1.06)  | 0.03                    |
| Cameroon                | 0.43 (16/37)              | 0.54 (310/570)       | 0.65(0.33-1.28) | 0.21                    |
| Kenya                   | 0.48 (437/903)            | 0.55 (2126/3888)     | 0.79(0.69-0.92) | 2.35 X 10 <sup>03</sup> |
| Tanzania                | 0.26 (9/34)               | 0.48 (219/452)       | 0.35(0.16-0.77) | 6.13 X 10 <sup>03</sup> |
| Malawi                  | 0.42 (369/872)            | 0.5 (1297/2603)      | 0.73(0.62-0.85) | 5.93 X 10 <sup>05</sup> |
| Vietnam                 | 0.29 (61/210)             | 0.4 (993/2506)       | 0.6(0.44-0.82)  | 1.00 X 10 <sup>03</sup> |
| Papua New Guinea        | 0.3 (13/43)               | 0.32 (75/235)        | 0.87(0.41-1.81) | 0.70                    |
| All                     | 0.41 (1373/3325)          | 0.48 (8238/17153)    | 0.73(0.67-0.79) | 8.85 X 10 <sup>16</sup> |
| Severe malarial anaemia | only                      |                      |                 |                         |
| Gambia                  | 0.36 (165/457)            | 0.46 (1551/3337)     | 0.65(0.53-0.8)  | 3.74 X 10 <sup>05</sup> |
| Mali                    | 0.3 (55/184)              | 0.43 (146/340)       | 0.61(0.41-0.9)  | 1.12 X 10 <sup>02</sup> |
| Burkina Faso            | 0.39 (15/38)              | 0.44 (320/721)       | 0.84(0.43-1.64) | 0.61                    |
| Ghana (Navrongo)        | 0.4 (96/242)              | 0.4 (193/484)        | 0.93(0.68-1.29) | 0.68                    |
| Ghana (Kumasi)          | 0.36 (195/549)            | 0.5 (984/1978)       | 0.55(0.45-0.69) | 5.19 X 10 <sup>08</sup> |
| Nigeria                 | 0.5 (4/8)                 | 0.62 (24/39)         | 0.67(0.14-3.18) | 0.61                    |
| Cameroon                | 0.38 (30/78)              | 0.54 (310/570)       | 0.55(0.33-0.92) | 2.09 X 10 <sup>02</sup> |
| Kenya                   | 0.42 (68/160)             | 0.55 (2126/3888)     | 0.62(0.45-0.85) | 3.18 X 10 <sup>03</sup> |
| Tanzania                | 0.42 (74/178)             | 0.48 (219/452)       | 0.76(0.53-1.11) | 0.15                    |
| Malawi                  | 0.48 (63/130)             | 0.5 (1297/2603)      | 0.93(0.65-1.33) | 0.69                    |
| Vietnam                 | 0.38 (11/29)              | 0.4 (993/2506)       | 1(0.47-2.15)    | 1.00                    |
| Papua New Guinea        | 0.34 (40/119)             | 0.32 (75/235)        | 1.05(0.65-1.7)  | 0.85                    |
| All                     | 0.38 (816/2172)           | 0.48 (8238/17153)    | 0.68(0.62-0.76) | 7.97 X 10 <sup>14</sup> |

**Supplementary Table 12: Blood Group O All Individuals Recessive Model.** Frequency of cases and controls homozygous for the derived allele at rs8176719. Odds Ratios (OR), 95% Confidence Intervals (95% CI) and p-values (*P*) for association of Blood Group O with severe malaria, cerebral malaria only and severe malarial anaemia only for all individuals at each study site and at all study sites combined. Results are adjusted for gender, sickle-cell haemoglobin and ethnicity.

| G6PD+202                | Derived-<br>(Deriv<br>Heterozygote | Allele Frequency<br>ed Homozygote/<br>e/Ancestal Homozygote) |                 |           |
|-------------------------|------------------------------------|--------------------------------------------------------------|-----------------|-----------|
| Phenotype<br>Site       | Cases                              | Controls                                                     | OR (95% CI)     | Р         |
|                         | Malas and Far                      |                                                              |                 |           |
| Severe malaria          | iviales and Fer                    | nales – Additive Model                                       |                 |           |
| Gambia                  | 0.02 (2341/45/32)                  | 0.03 (3202/83/51)                                            | 0.9(0.74-1.1)   | 0.3       |
| Mali                    | 0.17 (345/58/50)                   | 0.17 (263/47/34)                                             | 0.99(0.8-1.23)  | 0.9       |
| Burkina Faso            | 0.17 (661/116/85)                  | 0.14 (576/91/58)                                             | 1.12(0.95-1.32) | 0.        |
| Ghana (Navrongo)        | 0.21 (490/92/99)                   | 0.19 (353/81/54)                                             | 1.08(0.92-1.28) | 0.1       |
| Ghana (Kumasi)          | 0.2 (1093/214/187)                 | 0.18 (1510/299/216)                                          | 1.06(0.96-1.18) | 0.        |
| Nigeria                 | 0.14 (63/7/7)                      | 0.28 (22/12/5)                                               | 0.53(0.29-0.97) | 0.        |
| Cameroon                | 0.11 (523/48/47)                   | 0.11 (502/25/51)                                             | 1.09(0.89-1.34) | 0.        |
| Kenya                   | 0.19 (1673/311/270)                | 0.19 (2863/639/438)                                          | 1.01(0.93-1.09) | 0.        |
| Tanzania                | 0.16 (334/49/45)                   | 0.2 (319/85/49)                                              | 0.83(0.67-1.03) | 0.        |
| Malawi                  | 0.21 (993/212/178)                 | 0.2 (1942/408/323)                                           | 1.03(0.94-1.13) | 0.        |
| All                     | 0.15 (8516/1152/1000)              | 0.15 (11552/1770/1279)                                       | 1.02(0.97-1.06) | 0.        |
| Cerebral malaria only   | 0.10 (0010) 1101/ 1000)            | 0.10 (11001, 1770, 1170)                                     | 1.01(0.07 1.00) |           |
| Gambia                  | 0.02 (766/9/9)                     | 0.03 (3202/83/51)                                            | 0.75(0.53-1.06) | 0.        |
| Mali                    | 0.08 (75/8/3)                      | 0.17 (263/47/34)                                             | 0.58(0.35-0.94) | 0.        |
| Burkina Faso            | 0.16 (78/21/6)                     | 0.14 (576/91/58)                                             | 1.05(0.77-1.43) | 0.        |
| Ghana (Navrongo)        | 0.14 (18/2/2)                      | 0.19 (353/81/54)                                             | 0.75(0.34-1.65) | 0.        |
| Ghana (Kumasi)          | 0.15 (182/28/20)                   | 0.18 (1510/299/216)                                          | 0.86(0.68-1.09) | 0.        |
| Nigeria                 | 0.08 (5/1/0)                       | 0.28 (22/12/5)                                               | 0.32(0.07-1.36) | 0.        |
| Cameroon                | 0.06 (36/1/2)                      | 0.11 (502/25/51)                                             | 0.71(0.3-1.66)  | 0.        |
| Kenya                   | 0.17 (682/135/89)                  | 0.19 (2863/639/438)                                          | 0.94(0.84-1.05) | 0.        |
| Tanzania                | 0.19 (25/5/4)                      | 0.2 (319/85/49)                                              | 0.95(0.55-1.63) | 0.        |
| Malawi                  | 0.18 (646/128/95)                  | 0.2 (1942/408/323)                                           | 0.94(0.84-1.05) | 0.        |
| All                     | 0.13 (2513/338/230)                | 0.15 (11552/1770/1279)                                       | 0.91(0.85-0.97) | 6.08 x 10 |
| Severe malarial anaemia | aonly                              |                                                              |                 |           |
| Gambia                  | 0.03 (437/11/9)                    | 0.03 (3202/83/51)                                            | 1.11(0.8-1.53)  | 0.        |
| Mali                    | 0.22 (133/24/28)                   | 0.17 (263/47/34)                                             | 1.18(0.91-1.53) | 0.        |
| Burkina Faso            | 0.22 (28/5/6)                      | 0.14 (576/91/58)                                             | 1.36(0.85-2.18) | 0.        |
| Ghana (Navrongo)        | 0.24 (174/26/47)                   | 0.19 (353/81/54)                                             | 1.22(0.98-1.51) | 0.        |
| Ghana (Kumasi)          | 0.23 (383/83/85)                   | 0.18 (1510/299/216)                                          | 1.19(1.03-1.38) | 0.        |
| Nigeria                 | 0.31 (5/1/2)                       | 0.28 (22/12/5)                                               | 1.34(0.39-4.6)  | 0.        |
| Cameroon                | 0.17 (63/8/10)                     | 0.11 (502/25/51)                                             | 1.54(1.06-2.22) | 0.        |
| Kenya                   | 0.26 (108/20/32)                   | 0.19 (2863/639/438)                                          | 1.32(1.07-1.63) | 1.08 x 10 |
| Tanzania                | 0.15 (147/13/21)                   | 0.2 (319/85/49)                                              | 0.81(0.61-1.08) | 0.        |
| Malawi                  | 0.27 (85/24/23)                    | 0.2 (1942/408/323)                                           | 1.28(1.02-1.61) | 0.        |
| All                     | 0 18 (1563/215/263)                | 0 15 (11552/1770/1279)                                       | 1 19(1 1-1 28)  | 2 62 x 10 |

**Supplementary Table 13: G6PD+202 Males and Females Additive Model.** Frequency of the derived-allele at G6PD+202 (rs1050828) in all cases and controls. Odds ratios (OR), 95% confidence intervals (95% CI) and p-values are presented for association of the derived-allele with all severe malaria, cerebral malaria only and severe malarial anaemia only for all individuals at each study site and at all study sites combined. Results are adjusted for sickle-cell trait and ethnicity. Sites where rs1050828 is not present (Vietnam and Papua New Guinea) were excluded from this analysis.

| G6PD+202                | Derive          | ed-Allele Frequency |                 |                          |
|-------------------------|-----------------|---------------------|-----------------|--------------------------|
| Phenotype<br>Site       | Cases           | Controls            | OR (95% CI)     | Р                        |
|                         |                 |                     |                 |                          |
|                         | Males           | – Hemizygote Model  |                 |                          |
| All severe malaria      |                 |                     |                 |                          |
| Gambia                  | 0.02 (29/1265)  | 0.03 (49/1684)      | 0.81(0.5-1.31)  | 0.39                     |
| Mali                    | 0.18 (47/255)   | 0.18 (31/174)       | 0.94(0.56-1.58) | 0.82                     |
| Burkina Faso            | 0.15 (75/488)   | 0.14 (51/375)       | 1.15(0.78-1.69) | 0.49                     |
| Ghana (Navrongo)        | 0.22 (86/386)   | 0.18 (49/272)       | 1.29(0.87-1.92) | 0.21                     |
| Ghana (Kumasi)          | 0.2 (160/799)   | 0.18 (184/1051)     | 1.12(0.87-1.44) | 0.38                     |
| Nigeria                 | 0.09 (4/47)     | 0.17 (3/18)         | 0.32(0.06-1.71) | 0.20                     |
| Cameroon                | 0.13 (44/336)   | 0.11 (48/419)       | 1.31(0.83-2.07) | 0.25                     |
| Kenya                   | 0.2 (232/1167)  | 0.19 (376/1989)     | 1.13(0.93-1.36) | 0.22                     |
| Tanzania                | 0.15 (34/227)   | 0.19 (39/205)       | 0.75(0.44-1.27) | 0.29                     |
| Malawi                  | 0.22 (155/707)  | 0.2 (275/1401)      | 1.13(0.91-1.41) | 0.28                     |
| All                     | 0.15 (866/5677) | 0.15 (1105/7588)    | 1.1(0.99-1.22)  | 0.07                     |
| Cerebral malaria only   |                 |                     |                 |                          |
| Gambia                  | 0.02 (9/398)    | 0.03 (49/1684)      | 0.78(0.37-1.62) | 0.49                     |
| Mali                    | 0.06 (3/51)     | 0.18 (31/174)       | 0.25(0.07-0.92) | 0.02                     |
| Burkina Faso            | 0.07 (4/57)     | 0.14 (51/375)       | 0.46(0.16-1.33) | 0.12                     |
| Ghana (Navrongo)        | 0.08 (1/12)     | 0.18 (49/272)       | 0.39(0.05-3.15) | 0.32                     |
| Ghana (Kumasi)          | 0.16 (18/116)   | 0.18 (184/1051)     | 0.82(0.47-1.44) | 0.48                     |
| Nigeria                 | 0 (0/4)         | 0.17 (3/18)         | 0(0-Inf)        | 0.16                     |
| Cameroon                | 0.1 (2/20)      | 0.11 (48/419)       | 0.94(0.21-4.2)  | 0.93                     |
| Kenya                   | 0.15 (71/465)   | 0.19 (376/1989)     | 0.82(0.62-1.08) | 0.16                     |
| Tanzania                | 0.18 (3/17)     | 0.19 (39/205)       | 1.01(0.26-3.92) | 0.99                     |
| Malawi                  | 0.18 (80/435)   | 0.2 (275/1401)      | 0.91(0.69-1.2)  | 0.49                     |
| All                     | 0.12 (191/1575) | 0.15 (1105/7588)    | 0.81(0.68-0.96) | 0.01                     |
| Severe malarial anaemia | a only          |                     |                 |                          |
| Gambia                  | 0.03 (8/240)    | 0.03 (49/1684)      | 1.15(0.53-2.48) | 0.73                     |
| Mali                    | 0.24 (25/105)   | 0.18 (31/174)       | 1.32(0.71-2.47) | 0.38                     |
| Burkina Faso            | 0.21 (4/19)     | 0.14 (51/375)       | 1.63(0.52-5.12) | 0.42                     |
| Ghana (Navrongo)        | 0.25 (38/155)   | 0.18 (49/272)       | 1.48(0.9-2.41)  | 0.12                     |
| Ghana (Kumasi)          | 0.25 (72/289)   | 0.18 (184/1051)     | 1.4(0.99-1.97)  | 0.06                     |
| Nigeria                 | 0.25 (1/4)      | 0.17 (3/18)         | 1.5(0.1-23.07)  | 0.77                     |
| Cameroon                | 0.2 (8/40)      | 0.11 (48/419)       | 2.58(1.09-6.12) | 0.04                     |
| Kenya                   | 0.33 (29/89)    | 0.19 (376/1989)     | 2.2(1.39-3.5)   | 1.41 x 10 <sup>-03</sup> |
| Tanzania                | 0.16 (17/108)   | 0.19 (39/205)       | 0.9(0.47-1.74)  | 0.76                     |
| Malawi                  | 0.3 (20/67)     | 0.2 (275/1401)      | 1.72(1-2.94)    | 0.06                     |
| All                     | 0.2 (222/1116)  | 0.15 (1105/7588)    | 1.49(1.24-1.79) | 3.55 x 10 <sup>-05</sup> |

**Supplementary Table 14: G6PD+202 Males Hemizygote Model.** Frequency of the derived-allele at G6PD+202 (rs1050828) in male cases and controls Odds ratios (OR), 95% confidence intervals (95% CI) and p-values (*P*) are presented for association of the derived-allele with severe malaria, cerebral malaria only and severe malarial anaemia only for males at each study site and at all study sites combined. Results are adjusted for sickle-cell trait and ethnicity. Sites where rs1050828 is not present (Vietnam and Papua New Guinea) were excluded from this analysis.

| G6PD+202                | Derived H<br>(Deriv | lomozygote Frequency<br>ved Homozgote/Total) |                   |                         |
|-------------------------|---------------------|----------------------------------------------|-------------------|-------------------------|
| Phenotype<br>Site       | Cases               | Controls                                     | OR (95% CI        | ) P                     |
|                         | Femal               | es – Recessive Model                         |                   |                         |
| Sovere malaria          | i cina              |                                              |                   |                         |
| Gambia                  | 0 (3/1153)          | 0 (2/1652)                                   | n c <sup>§</sup>  | n c <sup>§</sup>        |
| Mali                    | 0.02 (3/198)        | 0 (2/1052)                                   | n.c.              | n c <sup>§</sup>        |
| Burkina Faso            | 0.02 (3/138)        | 0.02 (7/350)                                 | 1 36(0 5-3 65)    | 0.54                    |
| Ghana (Navrongo)        | 0.04 (13/295)       | 0.02 (5/216)                                 | 2 39(0 79-7 19)   | 0.54                    |
| Ghana (Kumasi)          | 0.04 (27/695)       | 0.03 (32/974)                                | 1 11(0 63-1 95)   | 0.10                    |
| Nigeria                 | 0.1 (3/30)          | 0.1 (2/21)                                   | n c <sup>§</sup>  | n c <sup>§</sup>        |
| Cameroon                | 0.01 (3/282)        | 0.02(3/159)                                  | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Kenya                   | 0.03 (38/1087)      | 0.03 (62/1951)                               | 1.16(0.76-1.78)   | 0.50                    |
| Tanzania                | 0.05 (11/201)       | 0.04 (10/248)                                | 1.66(0.63-4.34)   | 0.30                    |
| Malawi                  | 0.03 (23/676)       | 0.04 (48/1272)                               | 0.89(0.53-1.48)   | 0.65                    |
| All                     | 0.03 (134/4991)     | 0.02 (174/7013)                              | 1.15(0.9-1.46)    | 0.27                    |
| Cerebral malaria only   |                     |                                              |                   | •                       |
| Gambia                  | 0 (0/386)           | 0 (2/1652)                                   | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Mali                    | 0 (0/35)            | 0.02 (3/170)                                 | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Burkina Faso            | 0.04 (2/48)         | 0.02 (7/350)                                 | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Ghana (Navrongo)        | 0.1 (1/10)          | 0.02 (5/216)                                 | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Ghana (Kumasi)          | 0.02 (2/114)        | 0.03 (32/974)                                | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Nigeria                 | 0 (0/2)             | 0.1 (2/21)                                   | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Cameroon                | 0 (0/19)            | 0.02 (3/159)                                 | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Kenya                   | 0.04 (18/441)       | 0.03 (62/1951)                               | 1.4(0.81-2.44)    | 0.24                    |
| Tanzania                | 0.06 (1/17)         | 0.04 (10/248)                                | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Malawi                  | 0.03 (15/434)       | 0.04 (48/1272)                               | 0.9(0.5-1.63)     | 0.73                    |
| All                     | 0.03 (39/1506)      | 0.02 (174/7013)                              | 1.09(0.76-1.57)   | 0.65                    |
| Severe malarial anaemia | only                |                                              |                   |                         |
| Gambia                  | 0 (1/217)           | 0 (2/1652)                                   | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Mali                    | 0.04 (3/80)         | 0.02 (3/170)                                 | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Burkina Faso            | 0.1 (2/20)          | 0.02 (7/350)                                 | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Ghana (Navrongo)        | 0.1 (9/92)          | 0.02 (5/216)                                 | 7.37(2.04-26.67)  | 1.15 x 10 <sup>-0</sup> |
| Ghana (Kumasi)          | 0.05 (13/262)       | 0.03 (32/974)                                | 1.31(0.6-2.85)    | 0.50                    |
| Nigeria                 | 0.25 (1/4)          | 0.1 (2/21)                                   | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Cameroon                | 0.05 (2/41)         | 0.02 (3/159)                                 | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Kenya                   | 0.04 (3/71)         | 0.03 (62/1951)                               | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Tanzania                | 0.05 (4/73)         | 0.04 (10/248)                                | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| Malawi                  | 0.05 (3/65)         | 0.04 (48/1272)                               | n.c. <sup>§</sup> | n.c. <sup>§</sup>       |
| All                     | 0.04 (41/925)       | 0.02 (174/7013)                              | 1.94(1.3-2.89)    | 1.92 x 10 <sup>-0</sup> |

**Supplementary Table 15: G6PD+202 Females Recessive Model.** Frequency of female cases and controls homozygous for the derived-allele at G6PD+202 (rs1050828). Odds ratios (OR), 95% confidence intervals (95% CI) and p-values are presented for association of derived homozygotes with severe malaria, cerebral malaria only and severe malarial anaemia only for females at each study site and at all study sites combined. Results are adjusted for sickle-cell trait and ethnicity. Sites where rs1050828 is not present (Vietnam and Papua New Guinea) were excluded from this analysis. n.c. not calculated. <sup>§</sup> Genotype counts too small for accurate calculation.

| G6PD+202              | Heter<br>(H      | ozygote Frequency<br>eterozgote/Total) |                  |                         |
|-----------------------|------------------|----------------------------------------|------------------|-------------------------|
| Phenotype<br>Site     | Cases            | Controls                               | OR (95% CI)      | Р                       |
|                       | Females - He     | terozugote Advantage N                 | Aodel            |                         |
| Severe malaria        | Tennales The     |                                        |                  |                         |
| Gambia                | 0.04 (45/1153)   | 0.05 (83/1652)                         | 0 82(0 56-1 21)  | 0 32                    |
| Mali                  | 0.29 (58/198)    | 0.03 (03/1032)                         | 1 02(0 64-1 63)  | 0.92                    |
| Burkina Faso          | 0.31 (116/374)   | 0.26 (91/350)                          | 1 23(0 88-1 7)   | 0.33                    |
| Ghana (Navrongo)      | 0.31 (92/295)    | 0.38 (81/216)                          | 0.75(0.52-1.09)  | 0.14                    |
| Ghana (Kumasi)        | 0.31 (214/695)   | 0.31 (299/974)                         | 1.06(0.85-1.33)  | 0.62                    |
| Nigeria               | 0.23 (7/30)      | 0.57 (12/21)                           | 0.23(0.07-0.77)  | 0.01                    |
| Cameroon              | 0.17 (48/282)    | 0.16 (25/159)                          | 0.9(0.52-1.56)   | 0.72                    |
| Kenya                 | 0.29 (311/1087)  | 0.33 (639/1951)                        | 0.82(0.7-0.97)   | 0.02                    |
| Tanzania              | 0.24 (49/201)    | 0.34 (85/248)                          | 0.54(0.35-0.85)  | 6.34 x 10 <sup>-0</sup> |
| Malawi                | 0.31 (212/676)   | 0.32 (408/1272)                        | 0.98(0.8-1.2)    | 0.85                    |
| All                   | 0.23 (1152/4991) | 0.25 (1770/7013)                       | 0.9(0.82-0.99)   | 0.02                    |
| Cerebral malaria only |                  |                                        |                  |                         |
| Gambia                | 0.02 (9/386)     | 0.05 (83/1652)                         | 0.48(0.24-0.98)  | 0.03                    |
| Mali                  | 0.23 (8/35)      | 0.28 (47/170)                          | 0.79(0.33-1.92)  | 0.60                    |
| Burkina Faso          | 0.44 (21/48)     | 0.26 (91/350)                          | 2.08(1.12-3.87)  | 0.02                    |
| Ghana (Navrongo)      | 0.2 (2/10)       | 0.38 (81/216)                          | 0.4(0.08-1.94)   | 0.22                    |
| Ghana (Kumasi)        | 0.25 (28/114)    | 0.31 (299/974)                         | 0.78(0.48-1.27)  | 0.31                    |
| Nigeria               | 0.5 (1/2)        | 0.57 (12/21)                           | 0.89(0.05-16.66) | 0.94                    |
| Cameroon              | 0.05 (1/19)      | 0.16 (25/159)                          | 0.24(0.03-1.93)  | 0.11                    |
| Kenya                 | 0.31 (135/441)   | 0.33 (639/1951)                        | 0.89(0.71-1.13)  | 0.34                    |
| Tanzania              | 0.29 (5/17)      | 0.34 (85/248)                          | 0.69(0.23-2.07)  | 0.50                    |
| Malawi                | 0.29 (128/434)   | 0.32 (408/1272)                        | 0.9(0.71-1.14)   | 0.38                    |
| All                   | 0.22 (338/1506)  | 0.25 (1770/7013)                       | 0.87(0.76-1.01)  | 0.06                    |
| Severe malarial anaem | ia only          |                                        |                  |                         |
| Gambia                | 0.05 (11/217)    | 0.05 (83/1652)                         | 1.06(0.55-2.04)  | 0.87                    |
| Mali                  | 0.3 (24/80)      | 0.28 (47/170)                          | 1.12(0.61-2.03)  | 0.72                    |
| Burkina Faso          | 0.25 (5/20)      | 0.26 (91/350)                          | 0.89(0.31-2.53)  | 0.83                    |
| Ghana (Navrongo)      | 0.28 (26/92)     | 0.38 (81/216)                          | 0.66(0.39-1.13)  | 0.13                    |
| Ghana (Kumasi)        | 0.32 (83/262)    | 0.31 (299/974)                         | 1.22(0.88-1.68)  | 0.23                    |
| Nigeria               | 0.25 (1/4)       | 0.57 (12/21)                           | 0.17(0.01-2.77)  | 0.17                    |
| Cameroon              | 0.2 (8/41)       | 0.16 (25/159)                          | 1.14(0.46-2.84)  | 0.77                    |
| Kenya                 | 0.28 (20/71)     | 0.33 (639/1951)                        | 0.77(0.45-1.33)  | 0.34                    |
| Tanzania              | 0.18 (13/73)     | 0.34 (85/248)                          | 0.34(0.17-0.67)  | 9.81 x 10 <sup>-0</sup> |
| Malawi                | 0.37 (24/65)     | 0.32 (408/1272)                        | 1.26(0.75-2.11)  | 0.39                    |
| All                   | 0.23 (215/925)   | 0.25 (1770/7013)                       | 0.93(0.77-1.11)  | 0.42                    |

**Supplementary Table 16: G6PD+202 Females Heterozygote Advantage Model.** Frequency of female cases and controls heterozygous for the the derived-allele at G6PD+202 (rs1050828). Odds ratios (OR), 95% confidence intervals (95% CI) and p-values are presented for association of heterozygotes with severe malaria, cerebral malaria and severe malarial anaemia for females at each study site and at all study sites combined. Results are adjusted for sickle-cell trait and ethnicity. Sites where rs1050828 is not present (Vietnam and Papua New Guinea) were excluded from this analysis.

| G6PD+202                           | Model All                 | ele Counts               |                 |                          |
|------------------------------------|---------------------------|--------------------------|-----------------|--------------------------|
| Phenotype                          | Cases                     | Controls                 | OR (95% CI)     | Р                        |
|                                    |                           |                          |                 |                          |
| Females – All Sites – Heterozygote | e vs. Homozygous for Anco | estral Allele            |                 |                          |
| All severe malaria                 | 1152/3705                 | 1770/5069                | 0.9(0.82-0.99)  | 0.03                     |
| Cerebral malaria only              | 338/1129                  | 1770/5069                | 0.87(0.76-1.01) | 0.06                     |
| Severe malarial anaemia only       | 215/669                   | 01770/5069               | 0.96(0.8-1.16)  | 0.68                     |
| Females – All Sites – Heterozygote | e vs. Homozygous for Deri | ved-Allele               |                 |                          |
| All severe malaria                 | 1152/134                  | 1770/174                 | 0.8(0.62-1.03)  | 0.09                     |
| Cerebral malaria only              | 338/39                    | 01770/174                | 0.84(0.57-1.23) | 0.38                     |
| Severe malarial anaemia only       | 0.84 (215/41)             | 1770/174                 | 0.49(0.32-0.75) | 1.51 x 10 <sup>-03</sup> |
| Females – All Sites – Homozygous   | for Derived vs. Homozygo  | ous for Ancestral Allele |                 |                          |
| All severe malaria                 | 134/3705                  | 174/5069                 | 1.1(0.87-1.41)  | 0.43                     |
| Cerebral malaria only              | 39/1129                   | 174/5069                 | 1.05(0.73-1.52) | 0.80                     |
| Severe malarial anaemia only       | 41/669                    | 174/5069                 | 1.88(1.25-2.83) | 3.54 x 10 <sup>-03</sup> |

**Supplementary Table 17: G6PD+202 Female Various Models.** Counts of cases and controls in given model categories at G6PD+202 (rs1050828). Odds ratios (OR), 95% Confidence Intervals (95% CI) and p-values (*P*) are presented for association of G6PD+202 with severe malaria, cerebral malaria only and severe malarial anaemia only in females for various models at all study sites combined. Results are adjusted for sickle-cell trait and ethnicity. Sites where rs1050828 is not present (Vietnam and Papua New Guinea) were excluded from this analysis.

| ATP2B4                | Deriv<br>(D<br>Heterozyg | ed-Allele Frequency<br>erived Homozygote/<br>gote/Ancestal Homozygote) |                      |                        |
|-----------------------|--------------------------|------------------------------------------------------------------------|----------------------|------------------------|
| Phenotype             | Cases                    | Controls                                                               | OR (95% CI)          | D                      |
| Site                  |                          |                                                                        | 01 (55% CI)          | r                      |
|                       |                          |                                                                        |                      |                        |
|                       | Males and                | Females – Dominant Mode                                                | l                    |                        |
| Severe malaria        |                          |                                                                        |                      |                        |
| Gambia                | 0.91 (204/1021/1161)     | 0.87 (426/1369/1485)                                                   | 1.61(1.34-1.93)      | 1.64 X 10 <sup>0</sup> |
| Mali                  | 0.92 (35/164/228)        | 0.92 (25/141/156)                                                      | 0.97(0.56-1.68)      | 0.92                   |
| Burkina Faso          | 0.91 (78/377/388)        | 0.91 (63/292/365)                                                      | 0.94(0.66-1.34)      | 0.75                   |
| Ghana (Navrongo)      | 0.94 (34/246/334)        | 0.97 (5/74/86)                                                         | 0.52(0.19-1.39)      | 0.16                   |
| Ghana (Kumasi)        | 0.87 (102/365/294)       | 0.81 (240/586/405)                                                     | 1.54(1.16-2.03)      | 2.32 X 10 <sup>0</sup> |
| Nigeria               | 0.84 (12/39/25)          | 0.88 (4/15/15)                                                         | 0.77(0.22-2.68)      | 0.68                   |
| Cameroon              | 0.87 (80/264/253)        | 0.83 (96/240/240)                                                      | 1.24(0.89-1.74)      | 0.20                   |
| Kenya                 | 0.91 (150/786/688)       | 0.89 (429/1689/1644)                                                   | 1.29(1.06-1.58)      | 1.14 X 10 <sup>0</sup> |
| Tanzania              | 0.89 (48/199/178)        | 0.87 (58/211/182)                                                      | 1.18(0.77-1.81)      | 0.44                   |
| Malawi                | 0.91 (125/595/654)       | 0.88 (298/1105/1159)                                                   | 1.27(1.01-1.58)      | 0.04                   |
| Vietnam               | 1 (0/33/746)             | 1 (0/89/2367)                                                          | n.c. <sup>§</sup>    | n.c.§                  |
| All                   | 0.9 (868/4056/4203)      | 0.87 (1644/5722/5737)                                                  | 1.32(1.21-1.45)      | 1.69 X 10 <sup>0</sup> |
| Cerebral malaria only | 1                        |                                                                        |                      |                        |
| Gambia                | 0.92 (65/330/380)        | 0.87 (426/1369/1485)                                                   | 1.67(1.27-2.21)      | 1.48 X 10 <sup>0</sup> |
| Mali                  | 0.91 (7/35/39)           | 0.92 (25/141/156)                                                      | 0.89(0.35-2.26)      | 0.81                   |
| Burkina Faso          | 0.93 (8/46/53)           | 0.91 (63/292/365)                                                      | 1.16(0.54-2.51)      | 0.70                   |
| Ghana (Navrongo)      | 1 (0/10/9)               | 0.97 (5/74/86)                                                         | n.c. <sup>9</sup>    | n.c. <sup>§</sup>      |
| Ghana (Kumasi)        | 0.86 (16/58/43)          | 0.81 (240/586/405)                                                     | 1.43(0.77-2.63)      | 0.24                   |
| Nigeria               | 0.67 (2/3/1)             | 0.88 (4/15/15)                                                         | 0.34(0.04-3.03)      | 0.35                   |
| Cameroon              | 0.87 (5/14/20)           | 0.83 (96/240/240)                                                      | 1.31(0.5-3.47)       | 0.58                   |
| Kenya                 | 0.9 (59/285/266)         | 0.89 (429/1689/1644)                                                   | 1.23(0.92-1.65)      | 0.15                   |
| Tanzania              | 0.88 (4/17/12)           | 0.87 (58/211/182)                                                      | 1.2(0.4-3.62)        | 0.74                   |
| Malawi                | 0.91 (79/370/413)        | 0.88 (298/1105/1159)                                                   | 1.26(0.97-1.64)      | 0.08                   |
| Vietnam               | 1 (0/13/195)             | 1 (0/89/2367)                                                          | n.c. <sup>§</sup>    | n.c.§                  |
| All                   | 0.91 (245/1168/1236)     | 0.87 (1644/5722/5737)                                                  | 1.35(1.17-1.57)      | 3.06 X 10 <sup></sup>  |
| Severe malarial anae  | mia only                 | /                                                                      |                      |                        |
| Gambia                | 0.93 (33/197/219)        | 0.87 (426/1369/1485)                                                   | 1.92(1.32-2.78)      | 2.25 X 10              |
|                       | 0.93 (12/68/95)          | 0.92 (25/141/156)                                                      | 1.14(0.55-2.38)      | 0.73                   |
| Burkina Faso          | 0.89 (4/1//16)           | 0.91 (63/292/365)                                                      | 0./9(0.27-2.32)      | 0.68                   |
| Ghana (Navrongo)      | 0.95 (11/92/122)         | 0.97 (5/74/86)                                                         | 0.53(0.16-1.69)      | 0.27                   |
| Ghana (Kumasi)        | 0.88 (45/189/155)        | 0.81 (240/586/405)                                                     | 1.94(1.31-2.86)      | 4.81 X 10              |
| Nigeria               | 0.5 (4/3/1)              | 0.88 (4/15/15)                                                         | 0.12(0.02-0.74)      | 0.02                   |
| Cameroon              | 0.85 (12/33/34)          | 0.83 (96/240/240)                                                      | 1.11(0.56-2.22)      | 0.76                   |
| Kenya                 | 0.92 (12/75/68)          | 0.89 (429/1689/1644)                                                   | 1.67(0.9-3.13)       | 0.08                   |
| l'anzania             | 0.92 (15/84/81)          | 0.87 (58/211/182)                                                      | 1.46(0.79-2.72)      | 0.22                   |
| Malawi                | 0.91 (11/58/60)          | 0.88 (298/1105/1159)                                                   | 1.36(0.72-2.55)<br>ه | 0.33                   |
| Vietnam               | 1 (0/1/29)               | 1 (0/89/2367)                                                          | n.c. <sup>s</sup>    | n.c.*                  |
| All                   | 0.91 (159/816/851)       | 0.87 (1644/5722/5737)                                                  | 1.53(1.27-1.84)      | 3.68 X 10              |

**Supplementary Table 18: ATP2B4 Males and Females Dominant Model.** Frequency of the derived allele at ATP2B4 (rs10900585) in all cases and controls. Odds ratios (OR), 95% confidence intervals (95% CI) and p-values (*P*) are presented for association of the derived-allele with all severe malaria, cerebral malaria only and severe malarial anaemia only for all individuals at each study site and at all study sites combined. Results are adjusted for sickle-cell trait and ethnicity. Sites at which rs10900585 is monomorphic (Papua New Guinea) were excluded from this analysis. n.c., not calculated. <sup>§</sup> sample size too small for accurate calculation.

| CD40LG                     | Derived H<br>(Derive | omozygote Frequency<br>ed Homozygote/Total) |                      |                         |
|----------------------------|----------------------|---------------------------------------------|----------------------|-------------------------|
| Phenotype<br>Site          | Cases                | Controls                                    | OR (95% CI           | ) P                     |
| Males and Females – Red    | cessive Model        |                                             |                      |                         |
| All severe malaria         |                      |                                             |                      |                         |
| Gambia                     | 0.24 (586/2406)      | 0.36 (1159/3204)                            | 0.54(0.48-0.61)      | 2.30 X 10 <sup>22</sup> |
| Mali                       | 0.25(114/449)        | 0.24 (82/335)                               | 0.99(0.7-1.41)       | 0.96                    |
| Burkina Faso               | 0.24 (205/862)       | 0.22 (156/720)                              | 1.02(0.79-1.31)      | 0.89                    |
| Ghana (Navrongo)           | 0.25 (168/675)       | 0.25 (116/458)                              | 0.93(0.7-1.25)       | 0.63                    |
| Ghana (Kumasi)             | 0.25 (366/1483)      | 0.25 (491/1937)                             | 0.92(0.78-1.1)       | 0.37                    |
| Nigeria                    | 0.21 (16/77)         | 0.31 (12/39)                                | 0.5(0.19-1.35)       | 0.17                    |
| Cameroon                   | 0.2 (120/610)        | 0.21 (120/576)                              | 1.14(0.84-1.55)      | 0.39                    |
| Kenya                      | 0.18 (406/2258)      | 0.13 (521/3927)                             | 1.42(1.22-1.65)      | 7.57 X 10 <sup>06</sup> |
| Tanzania                   | 0.15 (63/426)        | 0.12 (54/444)                               | 1.08(0.71-1.65)      | 0.73                    |
| Malawi                     | 0.15 (206/1372)      | 0.15 (406/2683)                             | 1.01(0.84-1.22)      | 0.91                    |
| Vietnam                    | 0 (0/790)            | 0.03 (80/2525)                              | n.c. <sup>§</sup>    | n.c. <sup>§</sup>       |
| All                        | 0.2 (2250/11408)     | 0.19 (3197/16848)                           | 0.85(0.79-0.91)      | 1.11 X 10 <sup>06</sup> |
| Cerebral malaria only      | - (,,                | ( / /                                       |                      | -                       |
| Gambia                     | 0.26 (200/780)       | 0.36 (1159/3204)                            | 0.6(0.5-0.72)        | 3.54 X 10 <sup>08</sup> |
| Mali                       | 0.29 (25/85)         | 0.24 (82/335)                               | 1.18(0.68-2.05)      | 0.56                    |
| Burkina Faso               | 0.21 (22/107)        | 0.22 (156/720)                              | 0.82(0.48-1.4)       | 0.47                    |
| Ghana (Navrongo)           | 0.18 (4/22)          | 0.25 (116/458)                              | 0.64(0.19-2.12)      | 0.47                    |
| Ghana (Kumasi)             | 0.25 (57/226)        | 0.25 (491/1937)                             | 0.99(0.69-1.42)      | 0.96                    |
| Nigeria                    | 0.33 (2/6)           | 0.31 (12/39)                                | 0.8(0.06-11.21)      | 0.87                    |
| Cameroon                   | 0.11 (4/38)          | 0.21 (120/576)                              | 0.54(0.19-1.59)      | 0.27                    |
| Kenya                      | 0.17 (158/906)       | 0.13 (521/3927)                             | 1.36(1.1-1.68)       | 4.19 X 10 <sup>03</sup> |
| Tanzania                   | 0.18 (6/34)          | 0.12 (54/444)                               | 1.58(0.62-4.05)      | 0.34                    |
| Malawi                     | 0.14 (118/861)       | 0.15 (406/2683)                             | 0.92(0.73-1.15)      | 0.46                    |
| Vietnam                    | 0 (0/209)            | 0.03 (80/2525)                              | n.c. <sup>§</sup>    | n.c. <sup>§</sup>       |
| All                        | 0.18 (596/3274)      | 0.19 (3197/16848)                           | 0.85(0.76-0.94)      | 2.45 X 10 <sup>03</sup> |
| Severe malarial anaemia or | nly                  |                                             |                      |                         |
| Gambia                     | 0.25 (114/457)       | 0.36 (1159/3204)                            | 0.56(0.45-0.71)      | 1.01 X 10 <sup>06</sup> |
| Mali                       | 0.23 (42/183)        | 0.24 (82/335)                               | 0.86(0.55-1.34)      | 0.51                    |
| Burkina Faso               | 0.23 (9/39)          | 0.22 (156/720)                              | 1.06(0.48-2.34)      | 0.89                    |
| Ghana (Navrongo)           | 0.24 (59/245)        | 0.25 (116/458)                              | 0.79(0.54-1.15)      | 0.22                    |
| Ghana (Kumasi)             | 0.22 (122/549)       | 0.25 (491/1937)                             | 0.78(0.6-1.01)       | 0.06                    |
| Nigeria                    | 0.5 (4/8)            | 0.31 (12/39)                                | 2.36(0.24-<br>23.12) | 0.46                    |
| Cameroon                   | 0.14 (11/80)         | 0.21 (120/576)                              | 0.8(0.39-1.62)       | 0.53                    |
| Kenya                      | 0.25 (40/157)        | 0.13 (521/3927)                             | 2.29(1.51-3.46)      | 8.64 X 10 <sup>05</sup> |
| Tanzania                   | 0.14 (26/181)        | 0.12 (54/444)                               | 0.9(0.52-1.56)       | 0.70                    |
| Malawi                     | 0.19 (25/130)        | 0.15 (406/2683)                             | 1.4(0.88-2.22)       | 0.15                    |
| Vietnam                    | 0 (0/31)             | 0.03 (80/2525)                              | n.c. <sup>§</sup>    | n.c. <sup>§</sup>       |
| All                        | 0.22 (452/2060)      | 0.19 (3197/16848)                           | 0.82(0.73-0.94)      | 2.97 X 10 <sup>03</sup> |

**Supplementary Table 19: CD40LG Females Recessive Model.** Frequency of female cases and controls homozygous for the derived allele at CD40LG (rs3092945). Odds ratios (OR), 95% confidence intervals (95% CI) and p-values are presented for association of derived homozygotes with severe malaria, cerebral malaria only and severe malarial anaemia only for females at each study site and at all study sites combined. Results are adjusted for sickle-cell trait and ethnicity. Sites where rs3092945 is not present (Papua New Guinea) were excluded from this analysis. n.c. not calculated. <sup>§</sup> Genotype counts too small for accurate calculation.

| Gene 1 | Gene 2 | SNP 1      | SNP 2      | Best           | Best                  | Phenotype | Sample | Genotype                 | Best Model               |
|--------|--------|------------|------------|----------------|-----------------------|-----------|--------|--------------------------|--------------------------|
|        |        |            |            | Model          | Model                 |           |        | Test of                  | Test of                  |
|        |        |            |            | 1 <sup>a</sup> | <b>2</b> <sup>a</sup> |           |        | Interaction              | Interaction              |
|        |        |            |            |                |                       |           |        | P-value                  | P-value                  |
| ATP2B4 | HbS    | rs1541255  | rs334      | R              | Н                     | SM        | F      | 3.95 X 10 <sup>-02</sup> | 1.01 X 10 <sup>-01</sup> |
| ATP2B4 | HbC    | rs1541255  | rs33930165 | R              | А                     | SM        | Μ      | 3.86 X 10 <sup>-02</sup> | 3.35 X 10 <sup>-03</sup> |
| ATP2B4 | HbC    | rs1541255  | rs33930165 | R              | А                     | SM        | All    | 4.11 X 10 <sup>-03</sup> | 1.34 X 10 <sup>-03</sup> |
| ATP2B4 | G6PD   | rs1541255  | rs1050828  | R              | А                     | SM        | F      | 1.92 X 10 <sup>-01</sup> | 4.23 X 10 <sup>-02</sup> |
| ATP2B4 | ABO    | rs10900585 | rs8176746  | D              | D                     | SM        | All    | 4.61 X 10 <sup>-02</sup> | 6.47 X 10 <sup>-01</sup> |
| ATP2B4 | HbS    | rs10900585 | rs334      | D              | Н                     | SM        | F      | 1.12 X 10 <sup>-02</sup> | 3.07 X 10 <sup>-01</sup> |
| ATP2B4 | HbC    | rs10900585 | rs33930165 | D              | А                     | SM        | Μ      | 6.82 X 10 <sup>-02</sup> | 3.34 X 10 <sup>-03</sup> |
| ATP2B4 | HbC    | rs10900585 | rs33930165 | D              | А                     | SM        | All    | 1.77 X 10 <sup>-02</sup> | 1.27 X 10 <sup>-03</sup> |
| ATP2B4 | G6PD   | rs10900585 | rs1050828  | D              | А                     | SM        | F      | 2.91 X 10 <sup>-01</sup> | 3.20 X 10 <sup>-02</sup> |
| ABO    | CD40LG | rs8176746  | rs3092945  | D              | R                     | SM        | F      | 6.73 X 10 <sup>-02</sup> | 3.26 X 10 <sup>-02</sup> |
| ABO    | G6PD   | rs8176746  | rs1050828  | D              | А                     | SM        | All    | 1.04 X 10 <sup>-01</sup> | 3.28 X 10 <sup>-02</sup> |
| HBB    | CD40LG | rs33930165 | rs3092945  | А              | R                     | SM        | Μ      | 8.07 X 10 <sup>-02</sup> | 2.70 X 10 <sup>-02</sup> |
| HBB    | CD40LG | rs33930165 | rs3092945  | А              | R                     | SM        | All    | 2.21 X 10 <sup>-02</sup> | 3.75 X 10 <sup>-02</sup> |
| CD40LG | G6PD   | rs3092945  | rs1050828  | R              | А                     | SM        | М      | 2.54 X 10 <sup>-02</sup> | 2.17 X 10 <sup>-02</sup> |
| CD40LG | G6PD   | rs3092945  | rs1050828  | R              | А                     | SM        | All    | 2.30 X 10 <sup>-02</sup> | 2.26 X 10 <sup>-03</sup> |
| ATP2B4 | HbS    | rs10900585 | rs334      | D              | Н                     | CM        | F      | 4.48 X 10 <sup>-02</sup> | 1.06 X 10 <sup>-01</sup> |
| ATP2B4 | HbC    | rs10900585 | rs33930165 | D              | А                     | CM        | All    | 3.67 X 10 <sup>-02</sup> | 8.48 X 10 <sup>-02</sup> |
| ABO    | HbS    | rs8176746  | rs334      | D              | Н                     | CM        | Μ      | 4.13 X 10 <sup>-02</sup> | 6.48 X 10 <sup>-01</sup> |
| ABO    | HbS    | rs8176719  | rs334      | R              | Н                     | CM        | Μ      | 4.07 X 10 <sup>-02</sup> | 8.19 X 10 <sup>-01</sup> |
| ATP2B4 | ABO    | rs1541255  | rs8176719  | R              | R                     | SMA       | F      | 3.16 X 10 <sup>-03</sup> | 6.80 X 10 <sup>-01</sup> |
| ATP2B4 | ABO    | rs1541255  | rs8176719  | R              | R                     | SMA       | All    | 2.07 X 10 <sup>-02</sup> | 3.00 X 10 <sup>-01</sup> |
| ATP2B4 | HbS    | rs1541255  | rs334      | R              | Н                     | SMA       | All    | 2.32 X 10 <sup>-01</sup> | 4.82 X 10 <sup>-02</sup> |
| ATP2B4 | HbC    | rs1541255  | rs33930165 | R              | А                     | SMA       | F      | 1.29 X 10 <sup>-01</sup> | 3.23 X 10 <sup>-02</sup> |
| ATP2B4 | ABO    | rs10900585 | rs8176719  | D              | R                     | SMA       | F      | 4.27 X 10 <sup>-03</sup> | 6.25 X 10 <sup>-01</sup> |
| ATP2B4 | ABO    | rs10900585 | rs8176719  | D              | R                     | SMA       | All    | 3.69 X 10 <sup>-03</sup> | 8.60 X 10 <sup>-01</sup> |
| CD40LG | G6PD   | rs3092945  | rs1050828  | R              | А                     | SMA       | All    | 5.52 X 10 <sup>-02</sup> | 4.60 X 10 <sup>-02</sup> |
| ATP2B4 | ABO    | rs1541255  | rs8176719  | R              | R                     | SMA       | F      | 3.16 X 10 <sup>-03</sup> | 6.80 X 10 <sup>-01</sup> |

**Supplementary Table 20: Gene-Gene Interaction.** Summary of gene-gene interaction signals of association at all pairs of SNPs with *P*< 0.05 in either the "Genotype" test of interaction or the "Best Model" test of interaction for association with severe malaria (SM), cerebral malaria (CM) and severe malarial anaemia (SMA) in males, females and all individuals combined. Results are adjusted for gender and ethnicity. Study sites at which a SNP was monomorphic were excluded from the analysis. Best model for each SNP is selected according to its association with SM for all individuals across all sites in a fixed effect model adjusted for ethnicity and gender. <sup>a</sup>Models are A, Additive; D, Dominant; H, Heterozygote Advantage; R ,Recessive.

| Cerebral<br>Malaria (CM) | Severe Malarial<br>Anaemia (SMA) | CM<br>OR<br>SMA <sup>*</sup> | CM<br>AND<br>SMA | CM<br>NOT<br>SMA | SMA<br>NOT<br>CM | NEITHER<br>CM NOR<br>SMA | Not<br>Determined |
|--------------------------|----------------------------------|------------------------------|------------------|------------------|------------------|--------------------------|-------------------|
| 0                        | 0                                | 0                            | 0                | 0                | 0                | 1                        | 0                 |
| 0                        | 1                                | 1                            | 0                | 0                | 1                | 0                        | 0                 |
| 0                        | n.d.                             | n.d.                         | 0                | 0                | n.d.             | n.d.                     | 1                 |
| 1                        | 0                                | 1                            | 0                | 1                | 0                | 0                        | 0                 |
| 1                        | 1                                | 1                            | 1                | 0                | 0                | 0                        | 0                 |
| 1                        | n.d.                             | 1                            | n.d.             | n.d.             | 0                | 0                        | 1                 |
| n.d.                     | 0                                | n.d.                         | 0                | n.d.             | 0                | n.d.                     | 1                 |
| n.d.                     | 1                                | 1                            | n.d.             | 0                | n.d.             | 0                        | 1                 |
| n.d.                     | n.d.                             | n.d.                         | n.d.             | n.d.             | n.d.             | n.d.                     | 1                 |

**Supplementary Table 21: Logic table used to combine the cerebral malaria (CM) and severe malaria anaemia (SMA) phenotypes.** Where sufficient data were available to make a NO/YES classification a 0 or 1 was assigned respectively, otherwise not determined (n.d.) was assigned. The resulting classifications for CM and SMA were then combined according to the logic terms; OR, AND, NOT, NOR. Combinations not resulting in a positive classification from the AND, NOT, NOR operations were then classified as 'Not Determined'. This latter group includes all individuals with other severe malaria subtypes and those who may have cerebral malaria or severe malaria anaemia but lack information to classify them.

| Header         | description                                                       |
|----------------|-------------------------------------------------------------------|
| multiplex_code | multiplex number                                                  |
| Assay type     | sequenom assay type                                               |
| rsnumber       | rsnumber where assigned                                           |
| alternate_name | common name for SNP used in the literature                        |
| SNP sequence   | SNP definition with 15 flanking bases                             |
| gene_symbol    | HGNC gene name                                                    |
| chromosome     | chromosome                                                        |
| position       | chromosomal position                                              |
| stand          | chromosome strand with respect to reference genome                |
| 1st-PCRP       | first round PCR primer sequence                                   |
| 2nd-PCRP       | first round PCR primer sequence                                   |
| AMP_LEN        | amplicon length for first-round PCR                               |
| UEP_DIR        | universal extension primer direction with respect to SNP sequence |
| UEP_SEQ        | universal extension primer sequence                               |
| UEP_MASS       | universal extension primer mass (Da)                              |
| EXT1_SEQ       | allele 1 primer extension product                                 |
| EXT1_CALL      | allele 1 genotype call                                            |
| EXT1_MASS      | allele 1 primer extension product mass (Da)                       |
| EXT2_SEQ       | allele 2 primer extension product                                 |
| EXT2_CALL      | allele 2 genotype call                                            |
| EXT2_MASS      | allele 2 primer extension product mass (Da)                       |
| EXT3_SEQ       | allele 3 primer extension product                                 |
| EXT3_CALL      | allele 3 genotype call                                            |
| EXT3_MASS      | allele 3 primer extension product mass (Da)                       |

Supplementary Table 22: Header Dictionary for Supplementary Tables 23 and 24. These headers describe the column information some of which are typically found in a Sequenom Assay Design File. Further details may be found in the Spectrodesigner<sup>®</sup> assay design software manual (Sequenom<sup>®</sup> [see URLs]).

| nultiplex_code | type  | snum ber      | a itemate_name     | soumbs" at                           | tene_symbol | throm oso me | osition   | tand | et - PC de                         | et av                              | Naj_ten | JEP_DIR | Dis <sup>c</sup> ar          | JEP_MASS         | Das Tur                       |
|----------------|-------|---------------|--------------------|--------------------------------------|-------------|--------------|-----------|------|------------------------------------|------------------------------------|---------|---------|------------------------------|------------------|-------------------------------|
| W1             | iPLEX | rs2227478     | IL22-1394          | GCAAGGTGCCACTGC[A/G]AAGGGTCGGAACCAC  | IL22        | 12           | 68648622  | 1    | ACGTTGGATGTCTGGCCACCTTCACAAATG     | ACGTTGGATGTGAGATGGCACAGACCTAAG     | 104     | R       | GTGGTTCCGACCCTT              | 4534.9           | GTGGTTCCGACCCTTC              |
| W1             | iPLEX | rs361525      | TNF-238            | ACCCCCCTMRGAATC[A/G]GAGCAGGGAGGATGG  | TNF         | 6            | 31543101  | 1    | ACGTTGGATGAAGCATCAAGGATACCCCTC     | ACGTTGGATGCAGGGTCCTACACACAAATC     | 115     | R       | CCCATCCTCCTGCTC              | 4689             | CCCATCCTCCCTGCTCC             |
| W1             | iPLEX | rs5498        | ICAM-1codon469     | GGGGAGGTCACCCGC[A/G]AGGTGACCGTGAATG  | ICAM1       | 19           | 10395683  | 1    | ACGTTGGATGACTCACAGAGCACATTCACG     | ACGTTGGATGTGTCACTCGAGATCTTGAGG     | 115     | R       | ACATTCACGGTCACCT             | 4801.1           | ACATTCACGGTCACCTC             |
| W1             | IPLEX | rs1800890     | IL-10-3533         | TACTGATTITTAAATG[A/T]ATTTTTCCAGTGGGG | IL10        | 1            | 206949365 | 1    | ACGTTGGATGCTGATTTCCCAGTACATCCC     | ACGTTGGATGCAAGCCCAGATGCATAGTAG     | 110     | R       | CCCCCACTGGAAAAAT             | 4819.2           | CCCCCACTGGAAAAATA             |
| W1             | IPLEX | none assigned | amelogenin XY SNP6 |                                      | AMELX       | x            | 11316650  | 1    | ACGTTGGATGGCTTCTCTGGTTGGAGTCAC     |                                    | 103     | F       | GCCAATGGTAAACCTGC            | 5179.4           | GCCAATGGTAAACCTGCC            |
| W1             | iPLEX | rs8386        |                    | TGTGGACACTGAGAA[C/T]ATCCGCCGTGTGTTC  | GNAS        | 20           | 57485812  | 1    | ACGTTGGATGTGCATGCGCTGAATGATGTC     | ACGTTGGATGTCATTTCACCTGCGCTGTGG     | 98      | R       | gTGAACACACGGCGGAT            | 5244.4           | gTGAACACACGGCGGATA            |
| W1             | iPLEX | rs17561       | IL1A G4845T        | ATCAAGCCTAGGTCA[G/T]CACCTTTTAGCTTCC  | IL1A        | 2            | 113537223 | -1   | ACGTTGGATGATCTGCACTTGTGATCATGG     | ACGTTGGATGTTTCACATTGCTCAGGAAGC     | 96      | F       | ATCATCAAGCCTAGGTCA           | 5467.6           | ATCATCAAGCCTAGGTCAG           |
| W1             | iPLEX | rs8176719     |                    | GGATGTCCTCGTGGT[-/G]ACCCCTTGGCTGGCT  | ABO         | 9            | 136132909 | -1   | ACGTTGGATGCATGTGCAGTAGGAAGGATG     | ACGTTGGATGTGTCGATGTTGAATGTGCCC     | 99      | F       | GAAGGATGTCCTCGTGGT           | 5570.6           | GAAGGATGTCCTCGTGGTA           |
| W1             | iPLEX | rs9282799     | NOS2-1173          | AGCAAAGTGTTGGGA[C/T]GGTGAGATCAAGGGT  | NOS2        | 17           | 26128728  | -1   | ACGTTGGATGTTAGGGAGAAGTTGAGAAGC     | ACGTTGGATGTGGACAGTGGTAGCAAAGTG     | 98      | R       | ttTCACCCTTGATCTCACC          | 5649.7           | ttTCACCCTTGATCTCACCA          |
|                | IPLEX | rs1800750     | HDS<br>TNE-376     |                                      | TNE         | - 11         | 31542963  | -1   |                                    |                                    | 106     | R       | GIGGICIGITICCTICIA           | 5723.7           | GIGGICIGITICCTICIAAC          |
| W1             | iPLEX | rs229587      |                    | AGGCGCTGGTTTTCA[C/T]TGAGCCAGGTCTCTC  | SPTB        | 14           | 65263300  | 1    | ACGTTGGATGCAAAGCATGTCCCTCATTAC     | ACGTTGGATGAAGGCCGCAATGAGAGAGAC     | 94      | F       | CACGAGGCGCTGGTTTTCA          | 5819.8           | CACGAGGCGCTGGTTTTCAC          |
| W1             | iPLEX | rs1050829     | G6PD_plus376       | CCAGGTGGRGGGCAT[C/T]CATGTGGCTGTTGAG  | G6PD        | х            | 153763492 | 1    | ACGTTGGATGAGTACGATGATGCAGCCTCC     | ACGTTGGATGTAGAAGAGGCGGTTGGCCTG     | 105     | R       | ccctCCTCAACAGCCACATG         | 5966.9           | CCCTCCAACAGCCACATGA           |
| W1             | iPLEX | rs3024500     |                    | CTCTCTCCTGGGGGT[A/G]GGGGGTAGCTGGCTT  | IL10        | 1            | 206940831 | 1    | ACGTTGGATGGAGTGGGTGAATGAATTCTG     | ACGTTGGATGTCTCTGATCAGGTTTGGAGC     | 111     | R       | CCCTGAAGCCAGCTACCCCC         | 5967.9           | CCCEGAAGCCAGCTACCCCCC         |
| W1             | iPLEX | rs2227485     | IL22-485           | TGATCTNCTATAGTG[A/G]CTGAGTAAGCATTTT  | IL22        | 12           | 68647713  | 1    | ACGTTGGATGCTGGTAGGAAAATGAGTCCG     | ACGTTGGATGGTTTTGTCTTAGTAGAGTTC     | 116     | R       | TGACCAAAATGCTTACTCAG         | 6085             | TGACCAAAATGCTTACTCAGC         |
| W1             | IPLEX | rs909253      | LTA Ncol           | GGGAACAGAGAGGAA[C/T]CATGGCAGAAACAGA  | LTA         | 6            | 31540313  | -1   | ACGTTGGATGTCTCTGTCACACATTCTCTG     | ACGTTGGATGGTCAGAGAAACCCCCAAGGTG    | 115     | R       |                              | 6314.1           | cCATTCTCTGTTTCTGCCATGA        |
| W1             | IPLEX | rs1799969     | ICAM-1codon241     | GTCTGTTCCCTGGACIA/GIGGCTGTTCCCAGTCT  | ICAM1       | 19           | 10394792  | 1    | ACGTTGGATGTCCTAGAGGTGGACACGCAG     | ACGTTGGATGACCTCTGGTCCCCCAGTGC      | 117     | F       | ccaGTGGTCTGTTCCCTGGAC        | 6389.1           | ccaGTGGTCTGTTCCCTGGACA        |
| W1             | iPLEX | rs2227491     | IL22+708           | GACGGCACACGGCCC[C/T]GTTCGTCACAACTGT  | IL22        | 12           | 68646521  | 1    | ACGTTGGATGATCACCACCACCCAAGTAC      | ACGTTGGATGTTCCACGGAGTCAGTGTAAG     | 98      | F       | gggcTGGACGGCACACGGCCC        | 6458.2           | gggcTGGACGGCACACGGCCCC        |
| W1             | iPLEX | rs3093662     | TNF +851           | GGAAGGTGAATACAC[A/G]GATGAATGGAGAGAG  | TNF         | 6            | 31544189  | 1    | ACGTTGGATGGTGTCTGGTTTTCTCTCTCC     | ACGTTGGATGGGAAAGAGCTGTTGAATGCC     | 84      | R       | ttGTTTTCTCTCTCCATTCATC       | 6568.31          | ttGTTTTCTCTCTCCATTCATCC       |
| W1             | iPLEX | rs17047661    | SI (Swain-Lagley)  | GTTGAAAATGCAATT[A/G]GAGTACCAGGAAACA  | CR1         | 1            | 207782889 | 1    | ACGTTGGATGCCCGGGCTGACATCTAAATC     | ACGTTGGATGATGCACAGCTCCAGAAGTTG     | 117     | R       | aaacCTCCTGTTTCCTGGTACTC      | 6925.5           | aaacCTCCTGTTTCCTGGTACTCC      |
| W1             | iPLEX | rs1050828     | G6PD_plus202       | AACGGGCATRGCCCA[C/T]GATGAWGGTGTTTTC  | G6PD        | х            | 153764217 | 1    | ACGTTGGATGATGGCCTTCTGCCCGAAAAC     | ACGTTGGATGTCACTCTGTTTGCGGATGTC     | 102     | R       | ttcgGCCCGAAAACACCTTCATC      | 6928.5           | ttcgGCCCGAAAACACCTTCATCA      |
| W1<br>W1       | IPLEX | rs4986791     | CD36_G1439C        |                                      | CD36        | 9            | 120475602 | 1    |                                    | ACGTIGGATGGGTAATAACACCATTGAAGC     | 88      | F       |                              | 7077.6           |                               |
| W1             | iPLEX | rs1555498     |                    | ACACGGTAATAGATA[C/T]GGGCAAAACATACCA  | IL20RA      | 6            | 137325847 | 1    | ACGTTGGATGGATGGAATAGCCCATCACAG     | ACGTTGGATGCAATCATCAGAGTTCAAGGC     | 113     | F       | AAAAAGAAACACGGTAATAGATA      | 7130.7           | AAAAAGAAACACGGTAATAGATAC      |
| W1             | iPLEX | rs1799964     | TNF-1031           | GAGAAGCTGAGAAGA[C/T]GAAGGAAAAGTCAGG  | TNF         | 6            | 31542308  | 1    | ACGTTGGATGTACATGTGGCCATATCTCCC     | ACGTTGGATGGGGAAGCAAAGGAGAAGCTG     | 112     | R       | CCTCCAGACCCTGACTTTTCCTTC     | 7150.6           | CCTCCAGACCCTGACTTTTCCTTCA     |
| W1             | iPLEX | rs2239704     | LTA +77            | AGGGCAGGACACTGC[G/T]GGGCGGTAGTCCAAA  | LTA         | 6            | 31540141  | -1   | ACGTTGGATGGTGCTTCGTGCTTTGGACTA     | ACGTTGGATGAGGTGCAGGAGGGACCGAG      | 91      | R       | gctgCGTGCTTTGGACTACCGCCC     | 7296.7           | gctgCGTGCTTTGGACTACCGCCCC     |
| W1             | IPLEX | rs2297518     |                    | TTCAGCATGAAGAGC[A/G]ATTTCTTCAGTTTCT  | NOS2        | 17           | 26096597  | 1    | ACGTTGGATGTTGAGAACTCTGTCATTCCC     | ACGTTGGATGTTGTTGTTGAGCTCTTTCAG     | 95      | R       | gCTCTTTCTAGAAACTGAAGAAAT     | 7359.8           | gCTCTTTCTAGAAACTGAAGAAATC     |
| W1             | IPLEX | rs1012356     | IL22+2611          | GACTTCCATTTAACT[A/T]TAATAAATCTCTTAC  | 1L22        | 12           | 68644618  | 1    | ACGTTGGATGGCTTACCAATTCAGACTTCC     | ACGTTGGATGCCCCGATCTCTTTTATACAG     | 107     | F       |                              | 7510.9           | tcCCAATTCAGACTTCCATTTAACTA    |
| W1<br>W1       | IPLEX | rs2230739     |                    |                                      | ADCY9       | 3            | 4033436   | -1   | ACGTTGGATGTCCCAGTCATTCTGCTCCAC     | ACGTIGGATGGAAGGTGGGACTAGCAAACG     | 100     | F       |                              | 7811.1           |                               |
| W1             | iPLEX | rs2814778     | Duffy – FyA/FyB    | GCCTGTGCTTCCAAG[A/G]TAAGAGCCAAGGACT  | DARC        | 1            | 159174683 | -1   | ACGTTGGATGAACCTGATGGCCCTCATTAG     | ACGTTGGATGAGACAGAAGGGCTGGGACG      | 97      | R       | TGGCCCTCATTAGTCCTTGGCTCTTA   | 7879.1           | TGGCCCTCATTAGTCCTTGGCTCTTAC   |
| W1             | iPLEX | rs2535611     |                    | TGTCAGGTACACTTC[C/T]TTTTTTTTTTTTTTT  | ADORA2B     | 17           | 15861332  | 1    | ACGTTGGATGCGACATTGTAGAACCAGGAC     | ACGTTGGATGGAGTGAAACTCTGTCTCAAG     | 92      | F       | ggcCCAGGACCTGTCAGGTACACTTC   | 7932.1           | ggcCCAGGACCTGTCAGGTACACTTCC   |
| W1             | iPLEX | rs4986790     |                    | ACTACTACCTCGATG[A/G]TATTATTGACTTATT  | TLR4        | 9            | 120475302 | 1    | ACGTTGGATGCACCAGGGAAAATGAAGAAAC    | ACGTTGGATGAGCATACTTAGACTACTACC     | 99      | R       | GTCAAACAATTAAATAAGTCAATAATA  | 8291.5           | GTCAAACAATTAAATAAGTCAATAATAC  |
| W1             | iPLEX | rs1805015     |                    | CGCAGCTTCAGCAAC[C/T]CCCTGAGCCAGTCAC  | IL4R        | 16           | 27374180  | 1    | ACGTTGGATGACCTGACTTGCACAGAGACG     | ACGTTGGATGTCTCTGGGACACGGTGACTG     | 114     | F       | CAACCCTGCTTACCGCAGCTTCAGCAAC | 8438.5           | CAACCCTGCTTACCGCAGCTTCAGCAACC |
| W2             | iPLEX | rs1800629     | HBC<br>TNE-308     | GTGCACCTGACTCCT[A/G]WGGAGAAGTCTGCCG  | HBB         | 11           | 5248233   | 1    | ACGTTGGATGTCAAACAGACACCATGGTGC     | ACGTTGGATGGCAGGCAGTCACCTTGC        | 102     | F       | GTGCACCTGACTCCT              | 4503.9           | GTGCACCTGACTCCTA              |
| W2             | iPLEX | rs2075820     | 111 300            | CCAGAGCGGGACCCC[A/G]AGGAGGTGTTTGCCT  | NOD1        | 7            | 30492237  | -1   | ACGTTGGATGACCTGCTCTTCAAGCACTAC     | ACGTTGGATGAAGCGCAGCAGGAAGGCAAAC    | 90      | F       | aCCAGAGCGGGACCCC             | 4861.2           | aCCAGAGCGGGGACCCCA            |
| W2             | iPLEX | rs2242665     |                    | TTTCCATGGACCAAC[A/G]TTACTCCACCGGCGC  | CTL4        | 6            | 31839309  | -1   | ACGTTGGATGTGGTGGTGTCATTGGTGATC     | ACGTTGGATGGGCTCTCCCTTCCAGCTCT      | 107     | R       | AGCGCCGGTGGAGTAA             | 4971.2           | AGCGCCGGTGGAGTAAC             |
| W2             | iPLEX | none assigned | amelogenin_XY_SNP1 | CAAGCTTNCACNCNT[A/G]CCTCCTCTTCCTC    | AMELX       | х            | 11313735  | 1    | ACGTTGGATGCTTGGTTTTGTGGGTGAGAG     | ACGTTGGATGTGATACAACCAGAAGCCAGC     | 89      | R       | AGAGGAAGAGAGGAGG             | 5093.3           | AGAGGAAGAGAGGAGGC             |
| W2             | iPLEX | rs352140      |                    | ATTCACGGAGCTACC[A/G]CGACTGGAGGCCCTG  | TLR9        | 3            | 52231737  | -1   | ACGTTGGATGATAAGCTGGACCTCTACCAC     | ACGTTGGATGTGGCTGTTGTAGCTGAGGTC     | 99      | R       | cCATTCACGGAGCTACC            | 5115.3           | cCATTCACGGAGCTACCA            |
| W2<br>W2       | IPLEX | rs1800482     | NU52-954           |                                      | IL 17RD     | 1/           | 57138419  | -1   |                                    |                                    | 97      | R       | GGAGCAAACTACAGAGA            | 5261.5           | GGAGCAAACTACAGAGAC            |
| W2             | iPLEX | rs542998      |                    | CCACAGTGAAAGTGG[C/T]TTTACCTGATGACCA  | RTN3        | 11           | 63487386  | 1    | ACGTTGGATGCTCTGCCAGTCCATTTCATC     | ACGTTGGATGACTCTTTGGGTTCTGGAGTG     | 99      | R       | GGTGGTCATCAGGTAAA            | 5274.4           | GGTGGTCATCAGGTAAAA            |
| W2             | iPLEX | rs33950507    | HbE                | GATGAAGTTGGTGGT[A/G/T]AGGCCCTGGGCAG  | НВВ         | 11           | 5248173   | -1   | ACGTTGGATGGTCTCCTTAAACCTGTCTTG     | ACGTTGGATGCAAGGTGAACGTGGATGAAG     | 98      | F       | gGGATGAAGTTGGTGGT            | 5361.5           | gGGATGAAGTTGGTGGTA            |
| W2             | iPLEX | rs17047660    | McC (McCoy)        | TGTATTTCTACTAAT[A/G]AATGCACAGCTCCAG  | CR1         | 1            | 207782856 | 1    | ACGTTGGATGGCATTTTCAACTTCTGGAGC     | ACGTTGGATGATCAAGTTGGTGTTTGGAGC     | 99      | R       | cccCTGGAGCTGTGCATT           | 5466.6           | CCCCTGGAGCTGTGCATTC           |
| W2             | iPLEX | rs461645      |                    | CTTCACAAACCTGAA[C/T]GTTCTCCAGAGTGTA  | EMR1        | 19           | 6919753   | -1   | ACGTTGGATGAAAGACGGCTTCTCAGATCC     | ACGTTGGATGGTTCCCAACAGGTAGACAAG     | 115     | R       | ATCTACACTCTGGAGAAC           | 5467.6           | ATCTACACTCTGGAGAACA           |
| W2<br>W2       | IPLEX | rs1803632     | NO52-1659          | GAGGCCCATTGACTG[C/G]AATGCCACC        | GBP7        | 1/           | 26129212  | -1   | ACGTTGGATGGGTGGGGGCCTCTCCCTTGTAAAC |                                    | 94      | F       |                              | 5525.6           |                               |
| W2             | iPLEX | rs2243250     | IL-4-589           | TTGGGAGAACATTGT[C/T]CCCCAGTGCTGGGGT  | IL4         | 5            | 132009154 | 1    | ACGTTGGATGTGATACGACCTGTCCTTCTC     | ACGTTGGATGTAACAGGCAGACTCTCCTAC     | 102     | F       | gAACTTGGGAGAACATTGT          | 5891.9           | gAACTTGGGAGAACATTGTC          |
| W2             | iPLEX | none assigned | amelogenin_XY_SNP2 | AAAAAGTGAGAGTAA[C/T]AATACTTGCCTCCTA  | AMELX       | x            | 11316106  | 1    | ACGTTGGATGCTTATATGCTAGGAGGCA       | ACGTTGGATGCAGTCAAGTTAATGAATCTC     | 103     | R       | gTGCTAGGAGGCAAGTATT          | 5907.9           | gTGCTAGGAGGCAAGTATTA          |
| W2             | iPLEX | rs2706384     |                    | AGTGCCCGGGCGATC[A/C]CCTCGCCTGCGTTCG  | IRF1        | 5            | 131826880 | -1   | ACGTTGGATGGAGATTCGGCCCAGTGTTC      | ACGTTGGATGGGTATATCTCCCGAACGCAG     | 99      | F       | attCAAGTGCCCGGGCGATC         | 6118             | attCAAGTGCCCGGGCGATCC         |
| W2             | IPLEX | rs1801033     |                    | GACAGCCATGCACTG[A/C]GCCTCTGGTAGCCTT  | C6          | 5            | 41199959  | -1   | ACGTTGGATGGTTAGATCTGTCTTGCGTCC     | ACGTTGGATGGGAATGCATGGTTGAAAGGC     | 100     | F       | tgtGGGACAGCCATGCACTG         | 6158             | tgtGGGACAGCCATGCACTGC         |
| W2             | IPLEX | rs708567      |                    | GGCTCCTCCACCCCT[A/G]AGTCAGCTGCTCCTC  | IL17RE      | 3            | 9960070   | -1   | ACGTTGGATGGAGGAGAAAAGTTTGGAGGAGC   | ACGTTGGATGGTTCTCCTCACCATTCCTAG     | 83      | R       | aggTGGAGGAGCAGCTGACT         | 6247.1           | aggTGGAGGAGCAGCTGACTC         |
| W2             | IPLEX | rs1143634     | IL1B A2            | AGGACCTATCTTCTTIC/TIGACACATGGGATAAC  | IL1B        | 2            | 113590390 | -1   | ACGTTGGATGGTGCTCCACACTTTCAGAACC    | ACGTTGGATGCAGTTCAGTGATCGTACAGG     | 106     | F       |                              | 6306.1           |                               |
| W2             | iPLEX | rs1126535     | CD40LG +220        | TATCTTCATAGAAGG[C/T]TGGACAAGGTAAGAT  | CD40LG      | ×            | 135730555 | 1    | ACGTTGGATGATCACCCAGATGATTGGGTC     | ACGTTGGATGGGCTTGTGGTTCATCTTACC     | 99      | F       | GCTGTGTATCTTCATAGAAGG        | 6476.2           | GCTGTGTATCTTCATAGAAGGC        |
| W2             | iPLEX | rs8176746     |                    | GGCGATTTCTACTAC[A/C]TGGGGGSGTTCTTCG  | ABO         | 9            | 136131322 | -1   | ACGTTGGATGCCCAGTCCCAGGCCTACAT      | ACGTTGGATGTTGCACCGACCCCCCGAAGAA    | 97      | F       | CCACGAGGGCGATTTCTACTAC       | 6695.4           | CCACGAGGGCGATTTCTACTACC       |
| W2             | iPLEX | rs17140229    |                    | TTGAGAATAGTGTTA[C/T]TTCAGTGAATCGATG  | CFTR        | 7            | 117230283 | 1    | ACGTTGGATGAAGTGCTACTTCTGCACCAC     | ACGTTGGATGACAATATGGTCACCACATCG     | 88      | F       | ACCACTTTTGAGAATAGTGTTA       | 6748.4           | ACCACTTTTGAGAATAGTGTTAC       |
| W2             | iPLEX | rs1128127     |                    | GGGTCTTCTGCAGGG[A/G]CATCCAGGAGCAGCT  | DERL3       | 22           | 24179132  | 1    | ACGTTGGATGTGTGCTGGCCTGTGCTCAAC     | ACGTTGGATGGGCAGGTAATTGGGGTCTTC     | 103     | R       | aACAGAAAGCTGCTCCTGGATG       | 6768.4           | aACAGAAAGCTGCTCCTGGATGC       |
| W2             | iPLEX | rs373533      | 1177+4500          |                                      | EMR1        | 19           | 6919624   | -1   |                                    | ACGTTGGATGGATGTCCTTTGTGGGCATGGAATC | 99      | F       | ggLAAGGGAGCCTGGTGGTCTT       | 6847.4           | ggCAAGGGAGCCTGGTGGTCTTG       |
| W2             | IPLEX | rs5743810     | 12279303           | GAACTCACCAGAGGT[C/T]CAACCTTACTGAATT  | TLR6        | 4            | 38830350  | -1   | ACGTTGGATGAGGCATTTCCAAGTCGTTTC     | ACGTTGGATGATGATTTTATCAGAACTCACC    | 98      | R       | GAGGGTAAAATTCAGTAAGGTTG      | 7191.7           | GAGGGTAAAATTCAGTAAGGTTGA      |
| W2             | iPLEX | rs20541       | IL-13_46457        | AAGTTTCAGTTGAAC[C/T]GTCCCTCGCGAAAAA  | IL13        | 5            | 131995964 | -1   | ACGTTGGATGTGATGCTTTCGAAGTTTCAG     | ACGTTGGATGCCAGTTTGTAAAGGACCTGC     | 100     | F       | cgGCTTTCGAAGTTTCAGTTGAAC     | 7358.8           | cgGCTTTCGAAGTTTCAGTTGAACC     |
| W2             | iPLEX | rs10775349    |                    | TGCCTGTTCAGCTTT[C/G]TTACACATTTTTCTA  | ADCY9       | 16           | 4079823   | -1   | ACGTTGGATGAAAACCAGACCACTCAGTAG     | ACGTTGGATGGTTGGCTCTTCAGTGAAGTG     | 86      | R       | ACCACTCAGTAGAAAAATGTGTAA     | 7377.8           | ACCACTCAGTAGAAAAATGTGTAAC     |
| W2             | iPLEX | rs3092945     | CD40LG -727        | ACTGTTACAWCAGCA[C/T]CAACAATTATCTAAT  | CD40LG      | х            | 135729609 | 1    | ACGTTGGATGCTGTGTACACTGTTCCAATC     | ACGTTGGATGCAGATCTCTTAACTGCAGCC     | 109     | R       | GTTCCAATCCATTAGATAATTGTTG    | 7646             | GTTCCAATCCATTAGATAATTGTTGA    |
| W2             | iPLEX | rs5743809     |                    |                                      | TLR6        | 4            | 38830514  | -1   | ACGTTGGATGAATGAGACAGAAAGTCTAC      | ACGTTGGATGGCGAATAAACTAGTTGGGTG     | 94      | F       |                              | 7707.1           | gATGAGACAGAAAGTCTACAAATTCC    |
| W2             | IPLEX | rs4833095     |                    |                                      | TIR1        | 4            | 38/99/10  | -1   |                                    |                                    | 100     | F       |                              | //41.1<br>8307 A |                               |
|                |       |               |                    |                                      |             | -            |           | -    |                                    |                                    | 50      | •       |                              | 2002.4           |                               |

Supplementary Table 23: Sequenom Assay designs for the SNPs used in this study (Supplementary Tables 5-7). Header descriptions can be found in Supplementary Table 22. The assays are split into 2 multiplexes (assay groups) defined by the field called 'Multiple GRCh37, Ensembl build 73 and dbSNP137. Further details may be found in the Spectrodesigner<sup>®</sup> assay design software manual (Sequenom<sup>®</sup> [see URLs]).

| EXT1_CALL | ext1_mass | ຽງຮັບມາ                       | EXT2_CALL | EXT2_MASS |
|-----------|-----------|-------------------------------|-----------|-----------|
| G         | 4782.1    | GTGGTTCCGACCCTTT              | A         | 4862      |
| G         | 4936.2    | CCCATCCTCCCTGCTCT             | A         | 5016.1    |
| G         | 5048.3    | ACATTCACGGTCACCTT             | A         | 5128.2    |
| т         | 5090.4    | CCCCCACTGGAAAAATT             | А         | 5146.3    |
| с         | 5224.4    | CCTATCCCTACTTCCCCT            | т         | 5304.3    |
| с         | 5426.6    | GCCAATGGTAAACCTGCA            | A         | 5450.6    |
| т         | 5515.6    | gTGAACACACGGCGGATG            | С         | 5531.6    |
| G         | 5754.8    | ATCATCAAGCCTAGGTCAT           | т         | 5794.7    |
| D         | 5841.8    | GAAGGATGTCCTCGTGGTG           | 1         | 5857.8    |
| т         | 5920.9    | ttTCACCCTTGATCTCACCG          | с         | 5936.9    |
| т         | 5994.9    | ctTAACGGCAGACTTCTCCT          | A         | 6050.8    |
| G         | 6022.9    | GTGGTCTGTTTCCTTCTAAT          | А         | 6102.9    |
| с         | 6067      | CACGAGGCGCTGGTTTTCAT          | т         | 6146.9    |
| т         | 6238.1    | ccctCCTCAACAGCCACATGG         | С         | 6254.1    |
| G         | 6215.1    | ccctGAAGCCAGCTACCCCCT         | А         | 6295      |
| G         | 6332.2    | TGACCAAAATGCTTACTCAGT         | А         | 6412.1    |
| т         | 6585.3    | cCATTCTCTGTTTCTGCCATGG        | С         | 6601.3    |
| G         | 6619.3    | gtttCTGATGTCTAGCACACCA        | т         | 6643.4    |
| A         | 6660.3    | ccaGTGGTCTGTTCCCTGGACG        | G         | 6676.4    |
| с         | 6705.4    | gggcTGGACGGCACACGGCCCT        | T         | 6785.3    |
| G         | 6815.5    | ttGTTTTCTCTCTCCATTCATCT       | A         | 6895.4    |
| G         | 7172.7    | aaacCTCCTGTTTCCTGGTACTCT      | A         | 7252.6    |
| т         | 7199.7    | ttcgGCCCGAAAACACCTTCATCG      | C         | 7215.7    |
| С         | 7234.8    | TAACTGGATTCACTTTACAATTTG      | G         | 7274.8    |
| С         | 7324.8    | TTCTCAAAGTGATTTTGGGACAAT      | т         | 7404.7    |
| С         | 7377.9    | AAAAAGAAACACGGTAATAGATAT      | т         | 7457.8    |
| т         | 7421.9    | CCTCCAGACCCTGACTTTTCCTTCG     | C         | 7437.9    |
| G         | 7543.9    | gctgCGTGCTTTGGACTACCGCCCA     | т         | 7567.9    |
| G         | 7607      | gCTCTTTCTAGAAACTGAAGAAATT     | A         | 7686.9    |
| A         | 7782.1    | tcCCAATTCAGACTTCCATTTAACTT    | т         | 7838      |
| С         | 7906.2    | GATGCAGATAAAAGATCACTGCCCTT    | т         | 7986.1    |
| A         | 8082.3    | ctaCACTCCTGCTCCACACAGGTCATG   | G         | 8098.3    |
| G         | 8126.3    | TGGCCCTCATTAGTCCTTGGCTCTTAT   | A         | 8206.2    |
| с         | 8179.3    | ggcCCAGGACCTGTCAGGTACACTTCT   | т         | 8259.2    |
| G         | 8538.7    | GTCAAACAATTAAATAAGTCAATAATAT  | A         | 8618.6    |
| с         | 8685.7    | CAACCCTGCTTACCGCAGCTTCAGCAACT | T         | 8765.6    |
| A         | 4775.1    | GTGCACCTGACTCCTG              | G         | 4791.1    |
| G         | 4761.1    | GGCTGAACCCCGTCCT              | A         | 4841      |
| A         | 5132.4    |                               |           | 5148.4    |
| G         | 5210.4    |                               |           | 5430.5    |
| с<br>т    | 5340.5    |                               | с<br>С    | 5420.4    |
|           | 5380.5    |                               | c         | 5402.5    |
| 6         | 5509.6    | GENECONACTACAGAGAT            | •         | 5485.0    |
| т<br>т    | 5508.0    | GETEGTCATCAGETAAAG            | <u>,</u>  | 5561 7    |
| 4         | 5632.7    |                               | 6         | 5648.7    |
| 6         | 5713.7    |                               | ۵         | 5793.6    |
| T         | 5738.8    | ATCTACACTCTGGAGAACG           | c         | 5754.8    |
| c.        | 5772.8    | acTIGAACAAGGCAGAACT           | т         | 5852.7    |
| c         | 6061      | PCACGAGGCCCATTGACTGG          | G         | 6101      |
| с         | 6139      | gAACTTGGGAGAACATTGTT          | т         | 6218.9    |
| т         | 6179.1    | gTGCTAGGAGGCAAGTATTG          | с         | 6195.1    |
| c         | 6365.2    | attCAAGTGCCCGGGCGATCA         | A         | 6389.2    |
| c         | 6405.2    | tetGGGACAGCCATGCACTGA         | A         | 6429.2    |
| G         | 6494.2    | aggTGGAGGAGCAGCTGACTT         | A         | 6574.2    |
| G         | 6531.3    | cccGCTTCTCAGCCTCTTGATT        | A         | 6611.2    |
| с         | 6553.3    | CATTTCAGAACCTATCTTCTTT        | т         | 6633.2    |
| с         | 6723.4    | GCTGTGTATCTTCATAGAAGGT        | т         | 6803.3    |
| с         | 6942.5    | CCACGAGGGCGATTTCTACTACA       | A         | 6966.6    |
| с         | 6995.6    | ACCACTTTTGAGAATAGTGTTAT       | т         | 7075.5    |
| G         | 7015.6    | aACAGAAAGCTGCTCCTGGATGT       | A         | 7095.5    |
| G         | 7134.6    | ggCAAGGGAGCCTGGTGGTCTTT       | т         | 7174.5    |
| т         | 7324.8    | aCTTATTTTCACAGCTTGGAGAGG      | с         | 7340.8    |
| т         | 7462.9    | GAGGGTAAAATTCAGTAAGGTTGG      | с         | 7478.9    |
| с         | 7606      | cgGCTTTCGAAGTTTCAGTTGAACT     | т         | 7685.9    |
| G         | 7625      | ACCACTCAGTAGAAAAATGTGTAAG     | с         | 7665.1    |
| т         | 7917.2    | GTTCCAATCCATTAGATAATTGTTGG    | с         | 7933.2    |
| с         | 7954.2    | gATGAGACAGAAAGTCTACAAATTCT    | т         | 8034.1    |
| с         | 7988.2    | TGTTTCAATGTTGTTTAAGGTAAGAT    | т         | 8068.2    |
| с         | 8549.6    | TGAGGATTTTGATAATTTCTCATAATAG  | G         | 8589.6    |
|           |           |                               |           |           |

| lex_Code'. The SNF | gene and co-ordinates | are taken from |
|--------------------|-----------------------|----------------|
|--------------------|-----------------------|----------------|

| multiplex_code<br>Assay type<br>rsaumber<br>alternate_name | SVP_sequence                        | gene_symbol<br>chromosome<br>position<br>stand | 181-PC(89                      | 2nd: PC 69                     | AMP_LEN<br>UEP_DIR | UEP_SEQ            | UEP_MASS           | EXTI_SEQ          | EXT1_CALL<br>EXT1_CALL | 985 <sup>-</sup> 2149     | EXT2_CALL<br>EXT2_MASS | D32_SEQ                   | EXT3_CALL<br>EXT3_MASS |
|------------------------------------------------------------|-------------------------------------|------------------------------------------------|--------------------------------|--------------------------------|--------------------|--------------------|--------------------|-------------------|------------------------|---------------------------|------------------------|---------------------------|------------------------|
| N/A iPLEX rs55868763                                       | CTGCCAGACTTCATA[C/G]DGAAGAAAGGATCTA | ATP2B4 1 203652140 1                           | ACGTTGGATGTTCCACTCAGTTCCCCCATC | ACGTTGGATGTAGCCGTCCGAAGTCTAGAT | 101 F CTCGCTGC     | CAGACTTCATA        | 5723.7 CTCGCTGCCAG | GACTTCATAC        | C 5970.9 CT            | CGCTGCCAGACTTCATAG        | G 6010.9               |                           |                        |
| N/A iPLEX rs1541255                                        | TGCYAGACTTCATAS[A/G/T]GAAGAAAGGATCT | ATP2B4 1 203652141 1                           | ACGTTGGATGTTCCACTCAGTTCCCCCATC | ACGTTGGATGTAGCCGTCCGAAGTCTAGAT | 101 R CCGTCCGA     | AGTCTAGATCCTTTCTTC | 7848.1 CCGTCCGAAGT | TCTAGATCCTTTCTTCC | G 8095.3 CC            | GTCCGAAGTCTAGATCCTTTCTTCA | T 8119.3 C             | GTCCGAAGTCTAGATCCTTTCTTCT | A 8175.2               |
| N/A iPLEX rs10900585                                       | AGGAGTCTCACTCTT[G/T]TTGCCCAGGCAGGCT | ATP2B4 1 203654024 1                           | ACGTTGGATGTTTGTTTTGAGAAGGAGTC  | ACGTTGGATGCCAAGATTGCACCATTGCAC | 86 F AGAAGGA       | GTCTCACTCTT        | 5498.6 AGAAGGAGTC  | TCACTCTTG         | G 5785.8 AG            | GAAGGAGTCTCACTCTTT        | T 5825.7               |                           |                        |
| N/A iPLEX rs4951074                                        | CTGTGACCTTRAATC[A/G]ACTGCTTTATCTCTA | ATP2B4 1 203660781 1                           | ACGTTGGATGTTGCTCCCTATCTGCTAGAC | ACGTTGGATGCAAGTTCATCATCCTCTGGC | 100 R CTCCTAGA     | AGATAAAGCAGT       | 5820.8 CTCCTAGAGAT | TAAAGCAGTC        | G 6068 CT              | CCTAGAGATAAAGCAGTT        | A 6147.9               |                           |                        |
| N/A iPLEX rs3753036                                        | AAGCATTTCCTTTGC[A/G]TAGACACTTAGAGTG | ATP2B4 1 203677250 1                           | ACGTTGGATGTTCCAACCACCCACTCTAAG | ACGTTGGATGTGGACCTCATTGTCAATGGC | 120 R aaACCCAC     | TCTAAGTGTCTA       | 6045 aaACCCACTCT   | AAGTGTCTAC        | G 6292.1 aa            | ACCCACTCTAAGTGTCTAT       | A 6372.1               |                           |                        |

Supplementary Table 24: Sequenom Assay designs for the ATP2B4 SNPs used in this study (Supplementary Tables 5-7). Header descriptions can be found in Supplementary Table 22. The assays are split into 2 multiplexes (assay groups) defined by the field called 'Multiplex\_Code'. The SNP, gene and coordinates are taken from GRCh37, Ensembl build 73 and dbSNP137. Further details may be found in the Spectrodesigner<sup>®</sup> assay design software manual (Sequenom<sup>®</sup> [see URLs]).

| MODEL                        | Ancestral<br>Homozygotes | Heterozygotes          | Derived<br>Homozygotes |
|------------------------------|--------------------------|------------------------|------------------------|
|                              | Autosomal                | chromosomes and female | X chromosomes          |
| GENOTYPE                     | AA                       | АВ                     | BB                     |
| General                      | 0                        | 1                      | 2                      |
| Additive or Additive         | 0                        | 1                      | 2                      |
| Dominant                     | 0                        | 1                      | 1                      |
| Recessive                    | 0                        | 0                      | 1                      |
| Heterozygote                 | 0                        | 1                      | 0                      |
| Het vs Ancestral Hom         | 0                        | 1                      | Omitted                |
| Het vs Derived Hom           | Omitted                  | 1                      | 0                      |
| Ancestral Hom vs Derived Hom | 0                        | Omitted                | 1                      |

|                              |      | Males X chromosomes |
|------------------------------|------|---------------------|
| GENOTYPE                     | Α    | В                   |
| Conoral                      | 0    | 2                   |
| Additive or Additive         | 0    | 2                   |
| Dominant                     | 0    | 1                   |
| Recessive                    | 0    | 1                   |
| Heterozygote                 | n.a. | n.a.                |
| Het vs Ancestral Hom         | n.a. | n.a.                |
| Het vs Derived Hom           | n.a. | n.a.                |
| Ancestral Hom vs Derived Hom | 0    | 1                   |

**Supplementary Table 25: Coding of Alleles for logistic regression analysis with respect to the derived allele.** In the general and additive models ancestral-allele homozygotes were coded as 0 for all chromosomes (autosomes and sex chromosomes), heterozygotes were coded as 1 and derived-allele homozygotes were coded as 2 (including the male derived-allele homozygotes so that they are treated equivalent to the female X chromosome derived-allele homozygotes in the analysis). For all other models the genotypes were coded as 0 or 1 depending on the model grouping requirements having 1 with respect to the model and derived allele.

n.a., not applicable to males because heterozygotes are not present.

# **Supplementary Note:**

# **MalariaGEN Sample Handling Procedures**

# **Sample Archiving:**

# Sample Collection:

Blood was collected from individuals typically by venupuncture into a non-heparin anti-coagulant (typically EDTA); volumes varied between <1ml to 10ml depending on clinical circumstances and ethical permissions.

# DNA extraction:

The blood was processed locally to extract DNA using the local method of choice; either Nucleon<sup>TM</sup> BACC Genomic DNA Extraction Kits (Gen-Probe Life Sciences Ltd, Tepnel Research Products & Services, Manchester, UK [see URLs]), or Qiagen DNeasy Blood kits (Qiagen, Crawley, UK [see URLs]). Extractions were carried out according manufacturers' instructions although some local changes may have been made to the protocols to suit local conditions.

# Sample Processing:

DNA was shipped frozen to Oxford. After arrival, the sample manifest was confirmed and all samples were relabeled and recoded with new sample\_codes according to a standard format bearing no relationship to the original coding. Sample volumes were recorded and the DNA concentrations were measured using the PicoGreen<sup>®</sup> reagent (Invitrogen, Paisley, UK [see URLs]). An aliquot from each sample was diluted to 20ng/ul where possible to provide a 'working' sample allowing the remaining stock sample to be stored with little disturbance; an aliquot from samples below 20ng/ul was taken and used 'as is'. All DNAs were stored at -80°C in screw-cap tubes with rubber 'O' ring seals (Greiner Bio-One, Stonehouse, UK; 0.5ml skirted tubes #693201-1, lids #366380-1 and 9x9 format boxes #TR81N [see URLs]).

# **Primer-extension Amplification (PEP):**

# **PEP reaction:**

Samples underwent a whole-genome amplification step using Primer-Extension Pre-Amplification as previously described<sup>121</sup>. gDNA was diluted to 1ng/ul in 96-well plates (Thermo-Fast<sup>®</sup> 96-skirted, Thermo Fisher Scientific, UK), leaving 2 to 3 empty wells for water controls.

A PCR reagent mixture of 45ul comprising;

2.2ul of 1:10 diluted N15 primers (Genetix Ltd, UK [see URLs]),
1.25ul 8mM pooled dNTP's (Sigma-Aldrich,UK [see URLs]),
2.5ul 50mM MgCl<sub>2</sub> (Bioline, UK [see URLs]),
5ul of 10X BioTaq buffer (Bioline, UK [see URLs]),
0.5ul 5U/ul Biotaq polymerase (Bioline [see URLs]),
33.55ul MilliQ water (Sigma-Aldrich,UK [see URLs]).

were added to each well of a 96-well skirted PCR plate (Thermo Fisher Scientific). Five microlitres of gDNA (1ng/ul) was added to the PEP PCR mixture and the plates were sealed with Flat-Cap Strips (Thermo fisher Scientific) before thermocycling using a MJ Tetrad (Bio-Rad, UK) with the following programme:

94°C for 3 min; 50 cycles of: 94 °C for 1min, 37 °C for 2 min Ramp to 55°C at 0.1/sec 55 °C for 4 min

and a final extension of 72°C for 5 min, maintain at  $4^{\circ}C$ 

PEP DNA was stored neat at -20°C until used.

## **PEP testing:**

Twelve samples were selected at random from the plate of PEP reactions prepared above. PCR reactions were prepared as described below for Sequenom genotyping except that the final reaction volume was 20ul; 1ul of neat PEP was used and a single primer pair designed from an existing iPLEX assay design was used:

forward primer: <u>ACGTTGGATG</u>TCTGTAGTGATGGAGGGATG reverse primer: ACGTTGGATGGTGTCCTCTCCCTTGTAAAC

Samples were run on 2% Agarose gels to check band intensity and fidelity.

# **Genotyping:**

# **Platform:**

The genotyping methodology chosen was SEQUENOM<sup>®</sup> iPLEX<sup>®</sup> Gold which allowed up to 40 SNPs to be designed into a single reaction (multiplex) and for up to 384 samples to be processed on one chip (see URLs). All reagents specific for this process were purchased from SEQUENOM<sup>®</sup>. Other reagents used were purchased as described below.

#### SNP sets:

Genotyping was undertaken for all samples upon receipt in Oxford for a set of SNPs designed as part of the QC process or with relevance to malaria.

Our primary SNP set is shown in Supplementary Tables 5, 6 and 7. These were identified from literature searches in publications showing associations of SNPs with malaria infection/disease severity. To these were added assays designed to determine gender by comparing the Amelogenin gene between the X and Y chromosomes<sup>122</sup>. Other SNPs from research being undertaken in the laboratory at the time were added to complete the multiplex design process.

#### iPLEX design:

Polymorphism sequence information was downloaded from Ensembl (see URLs) and reformatted for the SEQUENOM<sup>®</sup> assay design process (see URLs). The SEQUENOM<sup>®</sup> RealSNP<sup>TM</sup> Assay Database (see URLs) tools ProxSNP and PreEXTEND were used to identify proximal SNPs in the region of the target SNPs and to mask and design first–round PCR primers (Amplicon Design). Multiplex design for the iPLEX methodology was then

undertaken using the MassARRAY<sup>®</sup> Assay Design v3.1 Software. Common settings for assay design included the addition of a universal 10 base 5' sequences and then at least 20 bases of sequence-specific bases. All first round reactions were designed for an average of amplicon of 100-bases pairs and ranging between 80 and 120 bases. Universal extension primers were designed with a mass range of 4500Da to 10,000Da (~15-mer to ~29-mer oligos).

For reasons of economy and processing time, we decided to focus on 2 multiplexes only. These multiplexes were then tested using a panel of CEPH and YRI HapMap DNAs. Poorly performing assays or poor concordance assays were removed from the multiplex.

Details of the final 2 multiplexes are provided in Supplementary Table 23 and additional markers typed for ATP2B4 are provided in Supplementary Table 24 as these were typed separately from the 2 primary multiplexes.

## Sample preparation:

PEP DNA samples were diluted 1:10 using a phenol red solution (0.01mg/ml) to aid tracking into 384-well plates (yellow/red to purple colour change); 22.5ul of phenol red solution plated into each well of a 384-well plate and 2.5ul of neat PEP was added. An aliquot of diluted PEP was then immediately used for the first-round PCR reactions as described below. Unused diluted PEP was frozen at -20°C. NB: Diluted PEP kept at 4°C for more than 2 days or freeze-thawed more than twice was discarded as this was found too degraded for genotyping .

## iPLEX primers:

All primers were purchased lyophilised from Metabion International AG (Martinsried, Germany [see URLs]).

First-round primers were hydrated at 100 uM and extension primers were hydrated at 300 uM. All primers were stored at  $-20^{\circ}$ C.

### First-Round reaction master-mix:

A master-mix comprising the following was prepared for each 384-well plate allowing some extra volume;

3.3 ul of each first-round primer (100mM),
214.5 ul MgCl<sub>2</sub> (50mM),
66 ul dNTPs (25mM pooled),
412.5 ul 10X HotStar Taq buffer (Qiagen),
132 ul HotStar Taq (5U/ul) (Qiagen) and
milliQ water to make a final volume of 1980ul.

#### First-Round Reaction:

PCR master mix (4.5 ul per well) was plated into a 384-well PCR plate (Thermo Fisher Scientific) and 3 ul of 1:10 diluted PEP DNA were added per well. Plates were sealed with Microseal 'A' lids (Bio-Rad) and cycled on an MJ Tetrad with the following conditions:

94 °C for 15 min, 44 cycles of; 94 °C for 20 sec, 56 °C for 30 sec, 72 °C for 1 min, and 72°C for 3 min maintain at 4°C

A 1ul sample from each well of a single row was run on a 2% agarose gel to confirm the PCR had worked prior to further processing.

#### Shrimp-alkaline Phosphatase treatment:

Unincorporated dNTP's were destroyed by adding 2ul of iPLEX shrimp-alkaline phosphatase (SAP) mixture to 5ul of first-round PCR reaction mixture and incubating at 37 °C for 40 min followed by a denaturation step at 85 °C for 5 min and then cooling to 15 °C for 15 min.

#### **Primer-Extension Reaction:**

Extension-primer final reaction concentrations were dependent on their molecular mass based on SEQUENOM<sup>®</sup> protocol guidelines;

< 5800Da 0.84 uM, 5800 to 7000Da 1.04 uM, 7000 to 10,000 Da 1.25 uM, >10,000Da 1.5uM.

Primer extension was carried out in the sample plate by adding 2 ul per well of a mixture containing;

0.2ul iPLEX termination mixture, 0.041ul extension Taq, 0.2ul extension buffer, Primers (300mM); 0.025ul per primer up to 5800Da, 0.0312 ul per primer 5800 to 7000Da, 0.0375 ul per primer 7000 to 10,000 Da 0.045 ul per primer >10,000 Da and water to 2ul.

The final extension reaction volume was 9 ul (5ul first-round reaction, 2ul SAP and 2ul of extension mixture).

Extension cycling was undertaken on an MJ Tetrad using the following conditions:

94 °C for 30 sec, 40 cycles of; 94°C for 5 sec, 5 cycles of; 52 °C for 5 sec, 80 °C for 5 sec, then 72°C for 3 min and 15°C for 15 min.

Plates were processed by adding 6 mg ion-exchange resin per well and 16ul MilliQ water. Plates were sealed, rotated for 30min and then centrifuged to pellet the resin prior to 'spotting' samples onto SpectroCHIPS and running on the Mass-Spectrometer. Data were inspected and genotypes checked using the SEQUENOM<sup>®</sup> Typer 4.03 software. Data were downloaded and stored in a central database where any further curation was undertaken. All genotype data were maintained according to the sequence strand used for the assay design process.

#### Sequenom Assay details:

Supplementary Tables 22-24 contain information on the primers and assays designs.

# **Genetic Heterogeneity**

To assess evidence for genetic heterogeneity across severe malaria subtypes CM and SMA both within and across populations, we make model comparisons in a Bayesian statistical framework. To facilitate computation, we use Approximate Bayes Factors (ABFs) in place of Bayes factors to estimate the posterior probabilities of each model of association as described in Band et al. <sup>123</sup>. The ABF differs from the Bayes Factor in that it depends on an approximation of the marginal likelihood function (up to a constant) by a multivariate normal density. The ABF for each model is calculated as the ratio of the approximate marginal likelihood of that model to that of the null model where the variant has no effect on any of the subtypes; note that the ABF for the null model is then, of course, equal to 1. Under the assumption that exactly one of the models is correct and all models are equally likely *a priori*, the unweighted posterior probability of a given model is calculated as the ABF for that model divided by the sum of the ABFs for all models under consideration. If any of the models are assumed *a priori* to be more likely, then we need to weigh the ABFs accordingly. For example, if, before seeing data, the null model is given 80% probability and the other nine models are assumed equally probable with each other, then the corresponding posterior probabilities are calculated by weighing the ABFs by 0.8 for the null model and 0.2 / 9=0.022 for any other model. (See Supplementary figure 5)

Calculation of the marginal likelihood requires specification of a prior distribution for the SNP effects on each phenotype at each site as well as maximum likelihood (ML) point estimates of these effects with their asymptotic standard errors. Suppose in general that we have *P* phenotypes and *S* sites. We assume a multivariate prior distribution for the SNP effects with mean zero and a covariance matrix in block form

$$\mathbf{\Sigma} = \sigma^2 \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1S} \\ A_{12} & A_{22} & \cdots & A_{2S} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1S} & \cdots & \cdots & A_{SS} \end{bmatrix}$$

where

- *σ* is the standard deviation;
- for  $s, t = 1, ..., S, t \ge s$ ,  $A_{st}$  are matrices of the form

$$A_{ss} = \begin{bmatrix} 1 & \rho_{12}^{ss} & \cdots & \rho_{1P}^{ss} \\ \rho_{12}^{ss} & 1 & \cdots & \rho_{2P}^{ss} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1P}^{ss} & \rho_{2P}^{ss} & \cdots & 1 \end{bmatrix} \text{ when } s=t \text{ and } A_{st} = \begin{bmatrix} \rho_{11}^{st} & \rho_{12}^{st} & \cdots & \rho_{1P}^{st} \\ \rho_{12}^{st} & \rho_{22}^{st} & \cdots & \rho_{2P}^{st} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1P}^{st} & \rho_{2P}^{st} & \cdots & \rho_{PP}^{st} \end{bmatrix} \text{ when } s\neq t$$

where  $\rho_{pq}^{st}$  denotes the prior correlation between phenotype p at site s and phenotype q at site t. Thus  $A_{ss}$  represents the prior correlation between effects on phenotypes within a site (phenotypic

heterogeneity) and;  $A_{st}$  is the prior correlation between phenotypes across sites (population heterogeneity).

By selecting different prior correlation values within and across sites, we can formally compare different models of effect heterogeneity. In our analyses, we use  $\rho_{pq}^{st} = 1,0.1$ , or 0.96 to model fixed, independent and correlated effects respectively. For example, for 3 phenotypes and 2 sites:

> A model with effects fixed within site and correlated across sites

| [1                    | - | 1 | 1] |                | [0.96 | 0.96 | 0.96] |
|-----------------------|---|---|----|----------------|-------|------|-------|
| $A_{11} = A_{22} = 1$ | - | 1 | 1  | and $A_{12} =$ | 0.96  | 0.96 | 0.96  |
| L1                    | - | 1 | 1  |                | L0.96 | 0.96 | 0.96  |

> A model with effects correlated within site and independent across sites

|                     | [1]   | 0.96 | 0.96 |                | [0.1 | 0.1 | 0.1] |
|---------------------|-------|------|------|----------------|------|-----|------|
| $A_{11} = A_{22} =$ | 0.96  | 1    | 0.96 | and $A_{12} =$ | 0.1  | 0.1 | 0.1  |
|                     | L0.96 | 0.96 | 1    |                | L0.1 | 0.1 | 0.1  |

Let  $\hat{\beta}_s = (\hat{\beta}_{s1}, \hat{\beta}_{s2}, ..., \hat{\beta}_{sP})^t$  be a  $P \ge 1$  vector of maximum likelihood (ML) estimates, and  $V_{\beta_s}$  the corresponding  $P \ge P$  variance-covariance matrix, for the estimated SNP effects on each phenotype at site s, s = 1, ..., S from a multinomial regression model. We approximate the multinomial likelihood function for site s by the multivariate normal density with mean  $\hat{\beta}_s$  and variance-covariance  $V_{\beta_s}$ . The approximate marginal likelihood is then given (up to a multiplicative constant) by the multivariate normal density evaluated at the ML estimate,

$$f(\hat{\beta}; \mathbf{0}, \boldsymbol{\Sigma} + \boldsymbol{V}_{\boldsymbol{\beta}})$$

where

- $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2, ..., \hat{\beta}_S)^t$  is an  $(S \ge P) \ge 1$  vector comprising the estimated effects at each phenotype at each site:
- **0** is the null vector.
- $V_{\beta}$  is an (*S*x *P*) x (*S*x *P*) matrix with diagonal blocks comprising the variance covariance matrix for the estimated effects at each site

$$V_{\beta} = \begin{bmatrix} V_{\beta_1} & 0 & \cdots & 0\\ 0 & V_{\beta_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & V_{\beta_s} \end{bmatrix}$$

The models examined here are similar to those employed by Bellenguez et al.<sup>124</sup> to look at heterogeneity of effects *within* a single site and by Band et al.<sup>123</sup> to look at heterogeneity of effects *across* a site. Here we are extending the method to allow for examination of effects both within *and* across sites.

# **Contributors to MalariaGEN Consortial Project 1**

Listed below are all contributors to the MalariaGEN Consortial Project 1 (Genetic determinants of resistance to malaria). These are grouped by partner site and contributors are listed alphabetically within each site.

Each partner has also provided a more detailed description of their individual study sites. These can be found on the MalariaGEN website (see URLs). Individual links for each partner site are also included.

#### **<u>RESOURCE CENTRE</u>** (see URLs)

Jacob Almagro Garcia<sup>1</sup>, Sarah Auburn<sup>1</sup>, Gavin Band<sup>1</sup>, David Barnwell<sup>1</sup>, Susan Bull<sup>1,4</sup>, Susana Campino<sup>2</sup>, Taane G. Clark<sup>5</sup>, Geraldine M. Clarke<sup>1,3</sup>, Olivia Cook<sup>2</sup>, Victoria Cornelius<sup>1</sup>, Rachel Craik<sup>1</sup>, Panos Deloukas<sup>2</sup>, Jantina deVries<sup>1,4</sup>, Andrea Diss<sup>1</sup>, Eleanor Drury<sup>2</sup>, Abier Elzein<sup>1</sup>, Julie Evans<sup>1</sup>, Kathryn Fitzpatrick<sup>1</sup>, Angie Green<sup>1</sup>, Lee Hart<sup>1</sup>, Eliza Hilton<sup>1</sup>, Christina Hubbart<sup>1</sup>, Catherine Hughes<sup>1</sup>, Robert Hutton<sup>1</sup>, Anna E. Jeffreys<sup>1</sup>, Kimberly J. Johnson<sup>1</sup>, Dushyanth Jyothi<sup>2</sup>, Angeliki Kerasidou<sup>1,4</sup>, Katja Kivinen<sup>2</sup>, Dominic P. Kwiatkowski<sup>1,2,3</sup>, Si Quang Le<sup>1</sup>, Bronwyn MacInnis<sup>2</sup>, Cinzia Malangone<sup>2</sup>, Magnus Manske<sup>2</sup>, Gareth Maslen<sup>2</sup>, Daniel Mead<sup>2</sup>, Marilyn McCreight<sup>1</sup>, Alieu Mendy<sup>1</sup>, Alistair Miles<sup>1</sup>, Sile Molloy<sup>1</sup>, Catherine Moyes<sup>1</sup>, John O'Brien<sup>1</sup>, Michael Parker<sup>4</sup>, Richard Pearson<sup>1</sup>, Matti Pirinen<sup>1</sup>, Claire Potter<sup>1</sup>, Ioannis Ragoussis<sup>2</sup>, Kirk A. Rockett<sup>1,2,3</sup>, Jane Rogers<sup>4</sup>, Kate Rowlands<sup>1</sup>, Valentín Ruano-Rubio<sup>1</sup>, Miguel SanJoaquin<sup>1</sup>, Nuno Sepúlveda<sup>5</sup>, Shivang Shah<sup>1</sup>, Kerrin S. Small<sup>1</sup>, Elilan Somaskantharajah<sup>2</sup>, Chris C.A. Spencer<sup>1,3</sup>, Jim Stalker<sup>2</sup>, Marryat Stevens<sup>1</sup>, Yik Ying Teo<sup>1</sup>, Aaron Vanderwal<sup>1</sup>, Renee Watson<sup>1</sup>, Rebecca Wrigley<sup>1</sup>

<sup>1</sup>Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.

<sup>2</sup>The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.

<sup>3</sup>MRC Centre for Genomics and Global Health, University of Oxford, Oxford, UK

<sup>4</sup>The Ethox Centre, Department of Public Health and Primary Health CareNuffield Department of Population Health, University of Oxford, Badenoch Rosemary Rue Building, Old Road Campus, Headington, Oxford OX3 7LF, UK. <sup>5</sup>London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.

# BANJUL GAMBIA (see URLs)

Ismaela Abubakar<sup>6</sup>, Mohammed Aiyegbo<sup>7</sup>, Abdou Bah<sup>7</sup>, Kalifa A. Bojang<sup>6</sup>, Landing Camara<sup>7</sup>, Abdoulie Camara<sup>6</sup>, Climent Casals-Pascual<sup>6,8</sup>, Pa Lamin Ceesay<sup>7</sup>, Ndey Ceesay<sup>7</sup>, Ramou Cole-Ceesay<sup>9</sup>, David J. Conway<sup>6,10</sup>, Simon Correa<sup>6</sup>, Bakary Danso<sup>6</sup>, Yaya Dibba<sup>6,7</sup>, Augustine Ebonyi<sup>7</sup>, Pamela Esangbedo<sup>7</sup>, Janet Fullah<sup>7</sup>, Jula Jaiteh<sup>7</sup>, Mariatou Jallow<sup>7</sup>, Muminatou Jallow<sup>6,7</sup>, Kebba Jammeh<sup>7</sup>, Momodou Jasseh<sup>6</sup>, Amie Jobarteh<sup>7</sup>, Haddy Kanyi<sup>6</sup>, Momodou Lamin Keita<sup>7</sup>, Aja Abie Khan<sup>9</sup>, Lamin Manneh<sup>6</sup>, Anthony Mendy<sup>6</sup>, Jalimory Njie<sup>7</sup>, Madi Njie<sup>6</sup>, Sophie Njie<sup>7</sup>, Malick Njie<sup>7</sup>, Haddy Njie<sup>7</sup>, Herbert Obu<sup>7</sup>, Rasaq Olaosebikan<sup>7</sup>, Emmanuel Onykwelu<sup>7</sup>, Margaret Pinder<sup>6</sup>, Oba Rasheed<sup>7</sup>, Kumba Sabally-Ceesay<sup>9</sup>, Abubacar Sadiq<sup>6</sup>, Momodou Saidy-Khan<sup>6</sup>, Horeja Saine<sup>7</sup>, Idrissa Sambou<sup>6</sup>, Giorgio Sirugo<sup>6</sup>, Fatoumatta Sisay-Joof<sup>6</sup>, Bintou Taal<sup>7</sup>, Stanley Usen<sup>6</sup>, Lawrence Yamoah<sup>6</sup>

<sup>6</sup>Medical Research Council Unit, Atlantic Boulevard, Serrekunda, The Gambia.

<sup>7</sup>Royal Victoria Teaching Hospital, Independence Drive, Banjul, The Gambia.

<sup>8</sup>Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.

<sup>9</sup>Department of State for Health and Social Welfare, The Quadrangle, Banjul, The Gambia.

<sup>10</sup>Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.

#### BAMAKO MALI (see URLs)

Amadou Abathina<sup>11</sup>, Kariatou Bamba<sup>11</sup>, Abdoulaye Barry<sup>11</sup>, Awa Dembele<sup>11</sup>, Elizabeth Diarra<sup>11</sup>, Ogobara Doumbo<sup>11</sup>, Salimata Konate<sup>11</sup>, Amadou Niangaly<sup>11</sup>, Belco Poudiougou<sup>11</sup>, Abdourahmane H. Sall<sup>11</sup>, Sibiry Sissoko<sup>11</sup>, Mahamadou A. Thera<sup>11</sup>, Ousmane Toure<sup>11</sup>

<sup>11</sup>Malaria Research and Training Centre, Faculty of Medicine University of Bamako Bamako Mali.

#### **OUAGADOUGOU BURKINA FASO** (see URLs)

Germana Bancone<sup>12</sup>, Edith C. Bougouma<sup>13</sup>, Amadou T. Konate<sup>12</sup>, Valentina D. Mangano<sup>12</sup>, David Modiano<sup>12</sup>, Issa N. Ouedraogo<sup>13</sup>, Jaques Simpore<sup>14</sup>, Sodiomon B. Sirima<sup>13</sup>

<sup>12</sup>University of Rome La Sapienza, Italy.

<sup>13</sup>Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso.

<sup>14</sup>Centre Médicale St. Camille, Ouagadougou, Burkina Faso.

## **NAVRONGO GHANA** (see URLs)

Lucas N. Amenga-Etego<sup>15</sup>, Patrick A. Ansah<sup>15</sup>, Nana Akosua Ansah<sup>15</sup>, Thomas Anyorigiya<sup>15</sup>, Victor Asoala<sup>15</sup>, Frank Atuguba<sup>15</sup>, Anita Ghansah<sup>16</sup>, Abraham V. O. Hodgson<sup>15</sup>, Kwadwo A. Koram<sup>16</sup>, Nathan Mensah<sup>15</sup>, Francis Nkrumah<sup>16</sup>, Abraham R. Oduro<sup>15</sup>, William O. Rogers<sup>17</sup>, Michael D. Wilson<sup>16</sup>

<sup>15</sup>Navrongo Health Research Centre, Navrongo, Ghana.

<sup>16</sup>Noguchi Memorial Institute for Medical Research, Accra, Ghana.

<sup>17</sup>Naval Medical Research Unit Three, Cairo, Egypt.

#### KUMASI GHANA (see URLs)

Tsiri Agbenyega<sup>,18,19</sup>, Alex Osei Akoto<sup>,18,19</sup>, Daniel Ansong<sup>,18,19</sup>, Sampson Antwi<sup>19</sup>, Emmanuel Asafo-Agyei<sup>19</sup>, Anthony Enimil<sup>19</sup>, Jennifer Evans<sup>,20,21</sup>, Alex Owusu Ofori<sup>19</sup>, David Sambian<sup>19</sup>, Justice Sylverken<sup>19</sup>

<sup>18</sup>Kwame Nkrumah University of Science and Technology, Ghana.

<sup>19</sup>Komfo Anokye Teaching Hospital, Ghana.

<sup>20</sup>Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Postfach 30 41 2, D-20324 Hamburg, Germany.

<sup>21</sup>Kumasi Centre for Collaborative Research, Kumasi, Ghana.

#### **IBADAN NIGERIA** (see URLs)

Olukemi Amodu<sup>22</sup>, Folakemi Anjol Amodu<sup>22</sup>, Subulade Olaniyan<sup>22</sup>, Olayemi O. Omotade<sup>22</sup>, Olajumoke Oni<sup>22</sup>, Adebola E. Orimadegun<sup>22</sup>

<sup>22</sup>University of Ibadan, Nigeria.

## **BUEA CAMEROON** (see URLs)

Eric Achidi<sup>23</sup>, Judith Anchang-Kimbi<sup>24</sup>, Tobias Apinjoh<sup>25</sup>, Richard Besingi<sup>23</sup>, Eric Mbunwe<sup>23</sup>, Regina Mugri<sup>23</sup>, Andre Ndi<sup>23</sup>, Vincent Titanji<sup>25</sup>, Clarisse Yafi<sup>25</sup>

<sup>23</sup>Department of Medical Laboratory Sciences, University of Buea, Buea, South West Region, Cameroon.
 <sup>24</sup>Department of Zoology & Animal Physiology, University of Buea, Buea, South West Region, Cameroon.
 <sup>25</sup>Department of Biochemistry & Molecular Biology, University of Buea, Buea, South West Region, Cameroon.

## KILIFI KENYA (see URLs)

Evasius Bauni<sup>26</sup>, Dorcas Kamuya<sup>26</sup>, Alexander Macharia<sup>26</sup>, Kevin Marsh<sup>26</sup>, Vicki Marsh<sup>26</sup>, Sassy Molyneux<sup>26</sup>, Carolyne M. Ndila<sup>26</sup>, Charles Newton<sup>26</sup>, Daniel H. Opi<sup>26</sup>, Norbert Peshu<sup>26</sup>, Sophie Uyoga<sup>26</sup>, Thomas N. Williams<sup>,26,27</sup>

<sup>26</sup>KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya.
 <sup>27</sup>Faculty of Medicine, Department of Medicine, Imperial College, Exhibition Road, London SW7 2AZ, UK.

## MOSHI TANZANIA (see URLs)

Chris Drakeley<sup>28,29</sup>, Sarah Joseph<sup>29</sup>, Alphaxard Manjurano<sup>28,29</sup>, Caroline Maxwell<sup>29</sup>, Frank Mtei<sup>28</sup>, George Mtove<sup>30</sup>, Behzad Nadjm<sup>29</sup>, Hugh Reyburn<sup>28,29</sup>, Eleanor Riley<sup>29</sup>, Hannah Wangai<sup>28</sup>

<sup>28</sup>Joint Malaria Programme, Kilimanjaro Christian Medical Centre, PO box 2228, Moshi, Tanzania.
 <sup>29</sup>Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.

<sup>30</sup>National Institute for Medical Research, Amani Centre, Tanga.

#### **BLANTYRE MALAWI** (see URLs)

David Kachala<sup>31</sup>, Malcolm Molyneux<sup>31</sup>, Mike Moore<sup>31</sup>, Annie Munthali<sup>31</sup>, Labes Njiragoma<sup>31</sup>, Neema Ntunthama<sup>31</sup>, Vysaul Nyirongo<sup>31</sup>, Paul Pensulo<sup>31,32</sup>, Ajib Phiri<sup>31</sup>, Terrie Taylor<sup>32</sup>

<sup>31</sup>Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, PO Box 30096, Blantyre, Malawi.

<sup>32</sup>Blantyre Malaria Project, College of Medicine, University of Malawi.

# HO CHI MINH CITY VIET NAM (see URLs)

Tran Thi Hong Chau<sup>33</sup>, Ly Van Chuong<sup>33</sup>, Nicholas Day<sup>34,35</sup>, Sarah J. Dunstan<sup>34,36,37</sup>, Jeremy Farrar<sup>34,36</sup>, Tran Tinh Hien<sup>33,36</sup>, Nguyen T. Hieu<sup>38</sup>, Nguyen Thi Hoang Mai<sup>33</sup>, Sean E. O'Riordan<sup>36</sup>, Nguyen Hoan Phu<sup>33,36</sup>, Nguyen Thi Ngoc Quyen<sup>36</sup>, Cameron P. Simmons<sup>34,36</sup>, Dinh Xuan Sinh<sup>33</sup>, Cao Quang Thai<sup>33,36</sup>

<sup>33</sup>Hospital for Tropical Diseases, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Viet Nam.

<sup>34</sup>Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, OX3 7LJ, UK.

<sup>35</sup>Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.

<sup>36</sup>Oxford University Clinical Research Unit, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Viet Nam.
 <sup>37</sup>Nossal Institute of Global Health, University of Melbourne, Australia.
 <sup>38</sup>Hung Vuong Hospital, District 5, Ho Chi Minh City, Viet Nam.

## MADANG PAPUA NEW GUINEA (see URLs)

Steve Allen<sup>39</sup>, Angela Allen<sup>39,40</sup>, Timothy M. E. Davis<sup>41</sup>, Harin Karunajeewa<sup>42</sup>, Moses Laman<sup>42</sup>, Laurens Manning<sup>41,42</sup>, Pascal Michon<sup>42,43</sup>, Ivo Mueller<sup>42,44,45</sup>, Peter Siba<sup>42</sup>

<sup>39</sup>Swansea University, Swansea, Wales, UK.

<sup>40</sup>Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK.

<sup>41</sup>University of Western Australia, Perth, Australia.

<sup>42</sup>Papua New Guinea Institute of Medical Research, PO BOX 60, Garoka, EHP441, Papua New Guinea.

<sup>43</sup>Faculty of Health Sciences, Divine Word University, Madang, Papua New Guinea.

<sup>44</sup>Walter and Eliza Hall Institute of Medical Research, Australia.

<sup>45</sup>Barcelona Centre for International Health Research (CRESIB), Barcelona, Spain.

## MalariaGEN Programme Management Committee/Governance Committee (see URLs)

Eric Achidi<sup>46</sup>, Tsiri Agbenyega<sup>47,48</sup>, Ogobara Doumbo<sup>49</sup>, Jeremy Farrar<sup>50,51</sup>, Michael Gottleib<sup>52</sup>, Dominic P. Kwiatkowski<sup>53,54,55</sup>, Kevin Marsh<sup>56</sup>, Terrie Taylor<sup>57</sup>

<sup>46</sup>Department of Medical Laboratory Sciences, University of Buea, Buea, South West Region, Cameroon.
 <sup>47</sup>Komfo Anokye Teaching Hospital, Ghana.

<sup>48</sup>Kwame Nkrumah University of Science and Technology, Ghana.

<sup>49</sup>Malaria Research and Training Centre, Faculty of Medicine University of Bamako Bamako Mali.

<sup>50</sup>Oxford University Clinical Research Unit, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Viet Nam.

<sup>51</sup>Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, OX3 7LJ, UK.

<sup>52</sup>Deputy Director, Science Division, Foundation for the National Institutes of Health, 9650 Rockville Pike, Bethesda, MD 20814, USA.

<sup>53</sup>Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.

<sup>54</sup>The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.

<sup>55</sup>MRC Centre for Genomics and Global Health, University of Oxofrd, Oxford, UK

<sup>56</sup>Kemri-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya.<sup>56</sup>Blantyre Malaria Project, College of Medicine, University of Malawi.

# URLs.

MalariaGEN partner site details: <a href="http://www.malariagen.net/projects/cp1">http://www.malariagen.net/projects/cp1</a>; MalariaGEN Resource Centre: http://www.malariagen.net/community/resource-centre; BANJUL GAMBIA: http://www.malariagen.net/community/partner-studies/cp1-gambia; BAMAKO MALI : http://www.malariagen.net/community/partner-studies/cp1-mali; OUAGADOUGOU BURKINA FASO: http://www.malariagen.net/community/partner-studies/cp1-burkinafaso; NAVRONGO GHANA: http://www.malariagen.net/community/partner-studies/cp1-ghana-noguchi; KUMASI GHANA: http://www.malariagen.net/community/partner-studies/cp1-ghana-kumasi; IBADAN NIGERIA: http://www.malariagen.net/community/partner-studies/cp1-nigeria; BUEA CAMEROON: http://www.malariagen.net/community/partner-studies/cp1-cameroon; KILIFI KENYA: http://www.malariagen.net/community/partner-studies/cp1-kenya; MOSHI TANZANIA: http://www.malariagen.net/community/partner-studies/cp1-tanzania; BLANTYRE MALAWI: http://www.malariagen.net/community/partner-studies/cp1-malawi; HO CHI MINH CITY VIET NAM: http://www.malariagen.net/community/partner-studies/cp1-vietnam; MADANG PAPUA NEW GUINEA: http://www.malariagen.net/community/partner-studies/cp1-png MalariaGEN Programme Management Committee/Governance Committee : http://www.malariagen.net/community/ethics-governance/gc

Tepnel BACC DNA extraction kit: http://www.gen-

probe.com/pdfs/downloads/protocol%20BACC%20123%5B1%5D.pdf; Qiagen: http://www.qiagen.com; Invitrogen: http://www.probes.com; Greiner Bio-One: http://www.greinerbioone.com; Genetix Ltd: http://www.genetix.com; Bioline: http://www.bioline.com; Sigma-Aldrich: https://www.sigmaaldrich.com; Sequenom: http://www.sequenom.com; Ensembl: http://www.ensembl.org; RealSNP: http://www.realsnp.com; Metabion: http://www.metabion.com/home/index.php.

# References

- 1. Bedu-Addo, G., Meese, S. & Mockenhaupt, F.P. An ATP2B4 polymorphism protects against malaria in pregnancy. *The Journal of infectious diseases* **207**, 1600-3 (2013).
- 2. Timmann, C. *et al.* Genome-wide association study indicates two novel resistance loci for severe malaria. *Nature* **489**, 443-6 (2012).
- 3. Nagayasu, E. *et al.* CR1 density polymorphism on erythrocytes of falciparum malaria patients in Thailand. *Am J Trop Med Hyg* **64**, 1-5 (2001).
- 4. Zimmerman, P.A. *et al.* CR1 Knops blood group alleles are not associated with severe malaria in the Gambia. *Genes Immun* **4**, 368-73 (2003).
- 5. Cockburn, I.A. *et al.* A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. *Proc Natl Acad Sci U S A* **101**, 272-7 (2004).
- 6. Thathy, V., Moulds, J.M., Guyah, B., Otieno, W. & Stoute, J.A. Complement receptor 1 polymorphisms associated with resistance to severe malaria in Kenya. *Malar J* **4**, 54 (2005).
- 7. Teeranaipong, P. *et al.* A functional single-nucleotide polymorphism in the CR1 promoter region contributes to protection against cerebral malaria. *J Infect Dis* **198**, 1880-91 (2008).
- 8. Sinha, S. *et al.* CR1 levels and gene polymorphisms exhibit differential association with falciparum malaria in regions of varying disease endemicity. *Hum Immunol* **70**, 244-50 (2009).
- 9. Soares, S.C., Abe-Sandes, K., Nascimento Filho, V.B., Nunes, F.M. & Silva, W.A., Jr. Genetic polymorphisms in TLR4, CR1 and Duffy genes are not associated with malaria resistance in patients from Baixo Amazonas region, Brazil. *Genet Mol Res* **7**, 1011-9 (2008).
- 10. Miller, L.H., Mason, S.J., Dvorak, J.A., McGinniss, M.H. & Rothman, I.K. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. *Science* **189**, 561-3 (1975).
- 11. Tournamille, C., Colin, Y., Cartron, J.P. & Le Van Kim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. *Nat Genet* **10**, 224-8 (1995).
- 12. Cavasini, C.E. *et al.* Duffy blood group gene polymorphisms among malaria vivax patients in four areas of the Brazilian Amazon region. *Malar J* **6**, 167 (2007).
- 13. Wilson, J. *et al.* Genetic variation at the IL10 gene locus is associated with severity of respiratory syncytial virus bronchiolitis. *J Infect Dis* **191**, 1705-9 (2005).
- 14. Wilson, J.N. *et al.* Analysis of IL10 haplotypic associations with severe malaria. *Genes Immun* **6**, 462-6 (2005).
- 15. Walley, A.J., Aucan, C., Kwiatkowski, D. & Hill, A.V. Interleukin-1 gene cluster polymorphisms and susceptibility to clinical malaria in a Gambian case-control study. *Eur J Hum Genet* **12**, 132-8 (2004).
- 16. Gyan, B. *et al.* Polymorphisms in interleukin-1beta and interleukin-1 receptor antagonist genes and malaria in Ghanaian children. *Scand J Immunol* **56**, 619-22 (2002).
- 17. Carpenter, D. *et al.* Genetics of susceptibility to malaria related phenotypes. *Infect Genet Evol* **9**, 97-103 (2009).
- 18. Mockenhaupt, F.P. *et al.* Common polymorphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. *J Infect Dis* **194**, 184-8 (2006).
- 19. Greene, J.A. *et al.* Toll-like receptor polymorphisms in malaria-endemic populations. *Malar J* **8**, 50 (2009).
- 20. Campino, S. *et al.* TLR9 polymorphisms in African populations: no association with severe malaria, but evidence of cis-variants acting on gene expression. *Malar J* **8**, 44 (2009).
- 21. Leoratti, F.M. *et al.* Variants in the toll-like receptor signaling pathway and clinical outcomes of malaria. *J Infect Dis* **198**, 772-80 (2008).
- 22. Soejima, M. *et al.* Nucleotide sequence analyses of human complement 6 (C6) gene suggest balancing selection. *Ann Hum Genet* **69**, 239-52 (2005).
- 23. Zhu, Z. *et al.* High prevalence of complement component C6 deficiency among African-Americans in the south-eastern USA. *Clin Exp Immunol* **119**, 305-10 (2000).
- 24. Zhu, Z.B., Totemchokchyakarn, K., Atkinson, T.P. & Volanakis, J.E. Molecular defects leading to human complement component C6 deficiency in an African-American family. *Clin Exp Immunol* **111**, 91-6 (1998).
- 25. Ohashi, J. *et al.* A single-nucleotide substitution from C to T at position -1055 in the IL-13 promoter is associated with protection from severe malaria in Thailand. *Genes Immun* **4**, 528-31 (2003).

- 26. Gyan, B.A. *et al.* Allelic polymorphisms in the repeat and promoter regions of the interleukin-4 gene and malaria severity in Ghanaian children. *Clin Exp Immunol* **138**, 145-50 (2004).
- 27. Verra, F. *et al.* IL4-589C/T polymorphism and IgE levels in severe malaria. *Acta Trop* **90**, 205-9 (2004).
- 28. Mangano, V.D. *et al.* Interferon regulatory factor-1 polymorphisms are associated with the control of Plasmodium falciparum infection. *Genes Immun* **9**, 122-9 (2008).
- 29. Barbier, M., Delahaye, N.F., Fumoux, F. & Rihet, P. Family-based association of a low producing lymphotoxinalpha allele with reduced Plasmodium falciparum parasitemia. *Microbes Infect* **10**, 673-9 (2008).
- 30. Ackerman, H.C. *et al.* Complex haplotypic structure of the central MHC region flanking TNF in a West African population. *Genes Immun* **4**, 476-86 (2003).
- 31. McGuire, W., Hill, A.V., Allsopp, C.E., Greenwood, B.M. & Kwiatkowski, D. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. *Nature* **371**, 508-10 (1994).
- 32. Wattavidanage, J. *et al.* TNFalpha\*2 marks high risk of severe disease during Plasmodium falciparum malaria and other infections in Sri Lankans. *Clin Exp Immunol* **115**, 350-5 (1999).
- 33. Hananantachai, H. *et al.* Significant association between TNF-alpha (TNF) promoter allele (-1031C, -863C, and -857C) and cerebral malaria in Thailand. *Tissue Antigens* **69**, 277-80 (2007).
- 34. Hohjoh, H. *et al.* Significant association of a single nucleotide polymorphism in the tumor necrosis factoralpha (TNF-alpha) gene promoter with human narcolepsy. *Tissue Antigens* **54**, 138-45 (1999).
- 35. Wilson, A.G., Symons, J.A., McDowell, T.L., McDevitt, H.O. & Duff, G.W. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. *Proc Natl Acad Sci U S A* **94**, 3195-9 (1997).
- 36. Cabantous, S. *et al.* Alleles 308A and 238A in the tumor necrosis factor alpha gene promoter do not increase the risk of severe malaria in children with Plasmodium falciparum infection in Mali. *Infect Immun* **74**, 7040-2 (2006).
- 37. Meyer, C.G., May, J., Luty, A.J., Lell, B. & Kremsner, P.G. TNFalpha-308A associated with shorter intervals of Plasmodium falciparum reinfections. *Tissue Antigens* **59**, 287-92 (2002).
- 38. Mombo, L.E. *et al.* Human genetic polymorphisms and asymptomatic Plasmodium falciparum malaria in Gabonese schoolchildren. *Am J Trop Med Hyg* **68**, 186-90 (2003).
- 39. Atkinson, S.H. *et al.* Tumor necrosis factor SNP haplotypes are associated with iron deficiency anemia in West African children. *Blood* **112**, 4276-83 (2008).
- 40. Clark, T.G. *et al.* Tumor necrosis factor and lymphotoxin-alpha polymorphisms and severe malaria in African populations. *J Infect Dis* **199**, 569-75 (2009).
- 41. Diakite, M. *et al.* A genetic association study in the Gambia using tagging polymorphisms in the major histocompatibility complex class III region implicates a HLA-B associated transcript 2 polymorphism in severe malaria susceptibility. *Hum Genet* **125**, 105-9 (2009).
- 42. Stuber, F. *et al.* -308 tumor necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. *J Inflamm* **46**, 42-50 (1995).
- 43. Clark, I.A. *et al.* Increased lymphotoxin in human malarial serum, and the ability of this cytokine to increase plasma interleukin-6 and cause hypoglycaemia in mice: implications for malarial pathology. *Trans R Soc Trop Med Hyg* **86**, 602-7 (1992).
- 44. Kwiatkowski, D. *et al.* TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. *Lancet* **336**, 1201-4 (1990).
- 45. Grau, G.E., Piguet, P.F., Vassalli, P. & Lambert, P.H. Tumor-necrosis factor and other cytokines in cerebral malaria: experimental and clinical data. *Immunol Rev* **112**, 49-70 (1989).
- 46. Kern, P., Hemmer, C.J., Van Damme, J., Gruss, H.-J. & Dietrich, M. Elevated tumour necrosis factor alpha and interleukin-6 serum levels as markers for complicated *Plasmodium falciparum* malaria. *American Journal of Medicine* **87**, 139-143 (1989).
- 47. Butcher, G.A., Garland, T., Adjukiewicz, A.B. & Clark, I.A. Serum TNF associated with malaria in patients in the Solomon Islands. *Trans. R. Soc. Trop. Med. Hyg.* **85**, 658-661 (1990).
- 48. Bayley, J.P., Ottenhoff, T.H. & Verweij, C.L. Is there a future for TNF promoter polymorphisms? *Genes Immun* **5**, 315-29 (2004).
- 49. Randall, L.M. & Engwerda, C.R. TNF family members and malaria: old observations, new insights and future directions. *Exp Parasitol* **126**, 326-31 (2010).

- 50. Fry, A.E. *et al.* Positive selection of a CD36 nonsense variant in sub-Saharan Africa, but no association with severe malaria phenotypes. *Hum Mol Genet* **18**, 2683-92 (2009).
- 51. Omi, K. *et al.* Polymorphisms of CD36 in Thai malaria patients. *Southeast Asian J Trop Med Public Health* **33 Suppl 3**, 1-4 (2002).
- 52. Omi, K. *et al.* CD36 polymorphism is associated with protection from cerebral malaria. *Am J Hum Genet* **72**, 364-74 (2003).
- 53. Aitman, T.J. et al. Malaria susceptibility and CD36 mutation. *Nature* **405**, 1015-6 (2000).
- 54. Pain, A. *et al.* A non-sense mutation in Cd36 gene is associated with protection from severe malaria. *Lancet* **357**, 1502-3 (2001).
- 55. Fernandez-Reyes, D. *et al.* A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. *Hum Mol Genet* **6**, 1357-60 (1997).
- 56. Amodu, O.K. *et al.* Plasmodium falciparum malaria in south-west Nigerian children: is the polymorphism of ICAM-1 and E-selectin genes contributing to the clinical severity of malaria? *Acta Trop* **95**, 248-55 (2005).
- 57. Athreya, B.H. & Coriell, L.L. Relation of blood groups to infection. I. A survey and review of data suggesting possible relationship between malaria and blood groups. *Am J Epidemiol* **86**, 292-304 (1967).
- 58. Rowe, J.A., Opi, D.H. & Williams, T.N. Blood groups and malaria: fresh insights into pathogenesis and identification of targets for intervention. *Curr Opin Hematol* **16**, 480-7 (2009).
- 59. Fry, A.E. *et al.* Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria. *Hum Mol Genet* **17**, 567-76 (2008).
- 60. Mockenhaupt, F.P. *et al.* Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. *J Commun Dis* **38**, 230-45 (2006).
- 61. Mockenhaupt, F.P. *et al.* Toll-like receptor (TLR) polymorphisms in African children: Common TLR-4 variants predispose to severe malaria. *Proc Natl Acad Sci U S A* **103**, 177-82 (2006).
- 62. Zakeri, S., Pirahmadi, S., Mehrizi, A.A. & Djadid, N.D. Genetic variation of TLR-4, TLR-9 and TIRAP genes in Iranian malaria patients. *Malar J* **10**, 77 (2011).
- 63. Basu, M. *et al.* Genetic association of Toll-like-receptor 4 and tumor necrosis factor-alpha polymorphisms with Plasmodium falciparum blood infection levels. *Infect Genet Evol* **10**, 686-96 (2010).
- 64. May, L. *et al.* Polymorphisms in TLR4 and TLR2 genes, cytokine production and survival in rural Ghana. *Eur J Hum Genet* **18**, 490-5 (2010).
- 65. Flatz, G., Pik, C. & Sundharagiati, B. Malaria And Haemoglobin E In Thailand. Lancet 2, 385-7 (1964).
- 66. Allison, A.C. Genetic factors in resistance to malaria. *Ann N Y Acad Sci* **91**, 710-29 (1961).
- 67. Kruatrachue, M., Na-Nakorn, S., Charoenlarp, P. & Suwanakul, L. Haemoglobin E and malaria in south-east Thailand. *Ann Trop Med Parasitol* **55**, 468-73 (1961).
- 68. Chotivanich, K. *et al.* Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P falciparum malaria. *Blood* **100**, 1172-6 (2002).
- 69. Allison, A.C. Protection afforded by sickle-cell trait against subtertian malarial infection. *Br Med J* **1**, 290-4 (1954).
- 70. Herrick, J.B. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. 1910. *Yale J Biol Med* **74**, 179-84 (2001).
- 71. Savitt, T.L. & Goldberg, M.F. Herrick's 1910 case report of sickle cell anemia. The rest of the story. *Jama* **261**, 266-71 (1989).
- 72. Ingram, V.M. Abnormal human haemoglobins. III. The chemical difference between normal and sickle cell haemoglobins. *Biochim Biophys Acta* **36**, 402-11 (1959).
- 73. Williams, T.N. Human red blood cell polymorphisms and malaria. *Curr Opin Microbiol* **9**, 388-94 (2006).
- 74. Allison, A.C. Sickle-cell anaemia and haemoglobin C. *Trans R Soc Trop Med Hyg* **50**, 185-96; discussion, 197-203 (1956).
- 75. Allison, A.C. The sickle-cell and haemoglobin C genes in some African populations. *Ann Hum Genet* **21**, 67-89 (1956).
- 76. Modiano, D. *et al.* Haemoglobin C protects against clinical Plasmodium falciparum malaria. *Nature* **414**, 305-8 (2001).
- 77. Rihet, P., Flori, L., Tall, F., Traore, A.S. & Fumoux, F. Hemoglobin C is associated with reduced Plasmodium falciparum parasitemia and low risk of mild malaria attack. *Hum Mol Genet* **13**, 1-6 (2004).

- 78. Koch, O. *et al.* Investigation of malaria susceptibility determinants in the IFNG/IL26/IL22 genomic region. *Genes Immun* **6**, 312-8 (2005).
- 79. Facer, C.A. Erythrocytes carrying mutations in spectrin and protein 4.1 show differing sensitivities to invasion by Plasmodium falciparum. *Parasitol Res* **81**, 52-7 (1995).
- 80. Auburn, S. *et al.* Further evidence supporting a role for gs signal transduction in severe malaria pathogenesis. *PLoS One* **5**, e10017 (2010).
- 81. Kun, J.F. *et al.* Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria. *Lancet* **351**, 265-6 (1998).
- 82. Burgner, D. *et al.* Inducible nitric oxide synthase polymorphism and fatal cerebral malaria. *Lancet* **352**, 1193-4 (1998).
- 83. Burgner, D. *et al.* Nucleotide and haplotypic diversity of the NOS2A promoter region and its relationship to cerebral malaria. *Hum Genet* **112**, 379-86 (2003).
- 84. Ohashi, J. *et al.* Significant association of longer forms of CCTTT Microsatellite repeat in the inducible nitric oxide synthase promoter with severe malaria in Thailand. *J Infect Dis* **186**, 578-81 (2002).
- 85. Boutlis, C.S. *et al.* Inducible nitric oxide synthase (NOS2) promoter CCTTT repeat polymorphism: relationship to in vivo nitric oxide production/NOS activity in an asymptomatic malaria-endemic population. *Am J Trop Med Hyg* **69**, 569-73 (2003).
- 86. Hobbs, M.R. *et al.* A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. *Lancet* **360**, 1468-75 (2002).
- 87. Bellamy, R., Kwiatkowski, D. & Hill, A.V. Absence of an association between intercellular adhesion molecule 1, complement receptor 1 and interleukin 1 receptor antagonist gene polymorphisms and severe malaria in a West African population. *Trans R Soc Trop Med Hyg* **92**, 312-6 (1998).
- 88. Ohashi, J. *et al.* Absence of association between the allele coding methionine at position 29 in the N-terminal domain of ICAM-1 (ICAM-1(Kilifi)) and severe malaria in the northwest of Thailand. *Jpn J Infect Dis* **54**, 114-6 (2001).
- 89. Auburn, S. et al. Association of the GNAS locus with severe malaria. Hum Genet **124**, 499-506 (2008).
- 90. Griffiths, M.J. *et al.* Genomewide analysis of the host response to malaria in Kenyan children. *J Infect Dis* **191**, 1599-611 (2005).
- 91. Sabeti, P. *et al.* CD40L association with protection from severe malaria. *Genes Immun* **3**, 286-91 (2002).
- 92. Inoue, S. *et al.* Enhancement of dendritic cell activation via CD40 ligand-expressing gammadelta T cells is responsible for protective immunity to Plasmodium parasites. *Proc Natl Acad Sci U S A* **109**, 12129-34 (2012).
- 93. Piguet, P.F. et al. Role of CD40-CVD40L in mouse severe malaria. Am J Pathol 159, 733-42 (2001).
- 94. Luzzatto, L., Usanga, F.A. & Reddy, S. Glucose-6-phosphate dehydrogenase deficient red cells: resistance to infection by malarial parasites. *Science* **164**, 839-42 (1969).
- 95. Gilles, H.M. *et al.* Glucose-6-phosphate-dehydrogenase deficiency, sickling, and malaria in African children in South Western Nigeria. *Lancet* **1**, 138-40 (1967).
- 96. Bienzle, U., Ayeni, O., Lucas, A.O. & Luzzatto, L. Glucose-6-phosphate dehydrogenase and malaria. Greater resistance of females heterozygous for enzyme deficiency and of males with non-deficient variant. *Lancet* **1**, 107-10 (1972).
- 97. Nkhoma, E.T., Poole, C., Vannappagari, V., Hall, S.A. & Beutler, E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. *Blood Cells Mol Dis* **42**, 267-78 (2009).
- 98. Sirugo, G. *et al.* G6PD A- deficiency and severe malaria in The Gambia: heterozygote advantage and possible homozygote disadvantage. *Am J Trop Med Hyg* **90**, 856-9 (2014).
- 99. Armah, H.B. *et al.* Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. *Malar J* **6**, 147 (2007).
- 100. Sheikh, F. *et al.* Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. *J Immunol* **172**, 2006-10 (2004).
- 101. Kingo, K. *et al.* Association analysis of IL20RA and IL20RB genes in psoriasis. *Genes Immun* **9**, 445-51 (2008).
- 102. Verloo, P. *et al.* Plasmodium falciparum-activated chloride channels are defective in erythrocytes from cystic fibrosis patients. *J Biol Chem* **279**, 10316-22 (2004).
- 103. van de Vosse, E. *et al.* Susceptibility to typhoid fever is associated with a polymorphism in the cystic fibrosis transmembrane conductance regulator (CFTR). *Hum Genet* **118**, 138-40 (2005).

- 104. Finney, C.A., Lu, Z., LeBourhis, L., Philpott, D.J. & Kain, K.C. Disruption of Nod-like receptors alters inflammatory response to infection but does not confer protection in experimental cerebral malaria. *Am J Trop Med Hyg* **80**, 718-22 (2009).
- 105. Hysi, P. et al. NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet 14, 935-41 (2005).
- 106. Johnson, W.E. & Sawyer, S.L. Molecular evolution of the antiretroviral TRIM5 gene. *Immunogenetics* **61**, 163-76 (2009).
- 107. Toyota, T. *et al.* Molecular analysis, mutation screening, and association study of adenylate cyclase type 9 gene (ADCY9) in mood disorders. *Am J Med Genet* **114**, 84-92 (2002).
- 108. Perkmann, T., Winkler, H., Graninger, W., Kremsner, P.G. & Winkler, S. Circulating levels of the interleukin (IL)-4 receptor and of IL-18 in patients with Plasmodium falciparum malaria. *Cytokine* **29**, 153-8 (2005).
- 109. Saeftel, M. *et al.* Mice deficient in interleukin-4 (IL-4) or IL-4 receptor alpha have higher resistance to sporozoite infection with Plasmodium berghei (ANKA) than do naive wild-type mice. *Infect Immun* **72**, 322-31 (2004).
- 110. Baud, V. *et al.* EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments. *Genomics* **26**, 334-44 (1995).
- 111. Ntoumi, F. *et al.* Influence of carriage of hemoglobin AS and the Fc gamma receptor IIa-R131 allele on levels of immunoglobulin G2 antibodies to Plasmodium falciparum merozoite antigens in Gabonese children. *J Infect Dis* **192**, 1975-80 (2005).
- 112. Israelsson, E. *et al.* Differences in Fcgamma receptor IIa genotypes and IgG subclass pattern of anti-malarial antibodies between sympatric ethnic groups in Mali. *Malar J* **7**, 175 (2008).
- 113. Harrison, T. *et al.* Erythrocyte G protein-coupled receptor signaling in malarial infection. *Science* **301**, 1734-6 (2003).
- 114. Simone, O. *et al.* TLRs innate immunereceptors and Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) CIDR1alpha-driven human polyclonal B-cell activation. *Acta Trop* **119**, 144-50 (2011).
- 115. Wautier, J.L. & Wautier, M.P. [Erythrocyte adhesion to the vascular endothelium]. *Transfus Clin Biol* **6**, 397-402 (1999).
- 116. Callaghan, M.J. *et al.* Haplotypic diversity in human CEACAM genes: effects on susceptibility to meningococcal disease. *Genes Immun* **9**, 30-7 (2008).
- 117. Sinnis, P., Willnow, T.E., Briones, M.R., Herz, J. & Nussenzweig, V. Remnant lipoproteins inhibit malaria sporozoite invasion of hepatocytes. *J Exp Med* **184**, 945-54 (1996).
- 118. Aucan, C., Walley, A.J. & Hill, A.V. Common apolipoprotein E polymorphisms and risk of clinical malaria in the Gambia. *J Med Genet* **41**, 21-4 (2004).
- 119. Wozniak, M.A. *et al.* Does apolipoprotein E polymorphism influence susceptibility to malaria? *J Med Genet* **40**, 348-51 (2003).
- 120. Wozniak, M.A., Riley, E.M. & Itzhaki, R.F. Apolipoprotein E polymorphisms and risk of malaria. *J Med Genet* **41**, 145-6 (2004).
- 121. Zhang, L. *et al.* Whole genome amplification from a single cell: implications for genetic analysis. *Proc Natl Acad Sci U S A* **89**, 5847-51 (1992).
- 122. Eng, B., Ainsworth, P. & Waye, J.S. Anomalous migration of PCR products using nondenaturing polyacrylamide gel electrophoresis: the amelogenin sex-typing system. *J Forensic Sci* **39**, 1356-9 (1994).
- 123. Band, G. *et al.* Imputation-based meta-analysis of severe malaria in three African populations. *PLoS Genet* **9**, e1003509 (2013).
- 124. Bellenguez, C. *et al.* Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. *Nature genetics* **44**, 328-33 (2012).