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Risk and uncertainty in hydrometeorological hazards

t. l. edwards and p. g. challenor

5.1 Introduction

Extreme weather and ocean hazards are inescapable. Weather is the state of the atmosphere,
to which every part of the earth’s surface is exposed. In coastal regions and at sea there are
equivalent oceanic hazards, such as extreme waves. Every region has a local normal range
for atmospheric and oceanic, or ‘hydrometeorological’, conditions, around which societal
decisions such as habitation and infrastructure are made. But inevitably there are fluctua-
tions outside these bounds that result in hazard events. In general it is too difficult and costly
to be fully prepared for the rare extremes.

This chapter summarises the present-day risks and uncertainties associated with droughts,
heat waves, extreme precipitation, wind storms and extreme ocean waves. How these may
change under future climate change is discussed in Chapter 6. Other meteorological hazards,
such as extreme cold, are not included here for reasons of space. Flooding and storm surge
hazards are described separately in Chapter 7. Section 5.2 outlines the characteristics of the
hazards. Section 5.3 discusses methods of assessing risks for hazards and their impacts.
Section 5.4 describes organisations and tools of risk management and communication.
Section 5.5 summarises.

5.2 Hydrometeorological hazards

This section gives an overview of the hazards (definition, triggers and scale) and their
associated losses (exposure and vulnerability; types and quantification of loss).

5.2.1 Definition

The United Nations International Strategy for Disaster Reduction (http://www.unisdr.org)
gives a general definition for a hydrometeorological hazard as a ‘process or phenomenon of
atmospheric, hydrological or oceanographic nature that may cause loss of life, injury or
other health impacts, property damage, loss of livelihoods and services, social and economic
disruption, or environmental damage’. Most hydrometeorological hazards are true
‘extremes’ in the sense that they are not distinct events but a consequence of entering the
high or low end of local climatic variation (e.g. IPCC, 2011). Exceptions to this are cyclonic
storms (such as hurricanes), which are discrete atmospheric patterns of circulating wind.
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Hydrometeorological hazards thus do not have triggers or inception events, though partic-
ular atmospheric or oceanic states make them more likely (Section 5.2.2). These ‘extremal’
characteristics lead naturally to probabilistic risk assessments, quantified in terms of the
probability of being in a particular region of climate state space (Chapter 6). The term ‘risk’
is defined in Chapter 2.

The definition of a hydrometeorological hazard varies by location and by the type of risk
assessment. Extremes must be defined relative to regional climatology (mean climate) rather
than fixed thresholds, because local acclimatisation and infrastructure affect the seriousness
of the impacts. And for risk assessments, definitions range from simple climate-based
metrics such as daily maxima, which are used for quantifying the probability of occurrence,
to more complex multivariate definitions, for describing impacts on health or infrastructure.

Extreme events are typically defined in terms of threshold exceedance, where thresholds
are defined relative to local climatology (such as the 90th percentile of daily maximum
temperatures at a given location for a particular time period) so as to quantify events of a
fixed rarity. Alternatively, an absolute threshold may be used for all locations so as to
quantify events of a fixed intensity. Duration of hazard is also important, because the
impacts of extreme events are greater when extreme conditions prevail over extended
time periods. The joint CCI/CLIVAR/JCOMM Expert Team on Climate Change
Detection and Indices (ETCCDI) recommended 27 indices of extreme temperature and
precipitation so as to standardise comparisons globally (Alexander et al., 2006). These have
been widely used, in particular for the most recent assessment report by the
Intergovernmental Panel on Climate Change (IPCC, 2007a).

The path into the extreme also affects the hazard. A slow increase in dryness before a
drought may result in a more severe event than a sudden transition, due to the cumulative
(integrated) impacts, while a heat wave at the end of the summer typically results in lower
mortality rates than one at the start due to acclimatisation during the season and the
‘harvesting’ of weak individuals (Baccini et al., 2008). This context is not always consid-
ered in risk assessments, partly because sub-dividing extreme data into categories exacer-
bates any problems of low numbers of observations.

Once a hazard is defined, there are two types of risk assessment: physical model-based
forecasting (Section 5.3.2), which is the prediction of specific hazard events in the near
future, and statistical analysis (Section 5.3.3), which is the estimation of frequency over the
longer term. For the latter, two very commonly used metrics are the ‘return period’, which is
the inverse of the probability of an event with specified magnitude at a given location
occurring during the next year, and equivalently the ‘return level’, the magnitude associated
with a given return period. A more precise characterisation is given in Chapter 2. Return
periods are defined for a particular hazard magnitude and location, but there are other
relevant characteristics such as duration, spatial extent and (in the case of storms) path.
The return period may depend on how these aspects are combined (Della-Marta et al.,
2009). A return period is a statement of probability at a given time, not a projection for the
future; if the data are stationary and independent, the return period can be interpreted as
the expected waiting time until the next event. Return periods are usually estimated from the
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observational record, but are also estimated from re-analysis datasets (observations assimi-
lated into a physical weather model simulation) such as ERA-40 (Uppala et al., 2005) or
from stand-alone simulations (Chapter 6).

Each hydrometeorological hazard has a typical definition, or in some cases several,
according to the event type and the intended use of the information. These definitions are
outlined below.

5.2.1.1 Extreme precipitation

Extreme precipitation events are usually defined simply by their magnitude, as an exceed-
ance of a climatological threshold such as the 99th percentile (e.g. Barnett et al., 2006). The
definition may include a measure of persistence such as a five-day total (Beniston et al.,
2007). Frequency and ratio of extreme precipitation relative to local climatology are also
important due to risk of inundating flood control systems (Chapter 7). Four indices of
precipitation are shown in Figure 5.1.

5.2.1.2 Heat waves

Heat waves are persistent periods of high temperature. The persistence is significant for
human health risk, particularly for individuals that are not usually vulnerable (e.g. Joacim
et al., 2010). Heat wave definitions always vary by region, because humans acclimatise to
their local temperature and humidity. The simplest are expressed in terms of the duration of
the daily maximum temperature, Tmax. One commonly used definition is Tmax exceeding
climatology by 5°C for at least five consecutive days, either any such period (Frich et al.,
2002) or the longest such period in the year (Tebaldi et al., 2006). Amore complex definition

Figure 5.1 R10: number of days with precipitation ≥10mmd–1; SDII: simple daily intensity index:
annual total / number of days with precipitation ≥1mmd–1; R5D: maximum five-day precipitation total;
and R95T: fraction of annual total precipitation due to events exceeding the 1961–1990 95th percentile.
Adapted from Frich et al. (2002) © Inter-Research.
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using a critical threshold (Tc = 25°C for Central Europe) is used by Kyselý (2009): a
continuous period during which mean Tmax exceeds Tc by 5°C in at least three days, the
mean Tmax for the whole period exceeds Tc by 5°C, and Tmax does not fall below Tc.
Temperature variability is much smaller in some regions than others, so fixed-excess
definitions such as these are not appropriate for global studies: instead the excess should
be set relative to local climatology (Alexander et al., 2006).

Duration of high Tmax is generally thought to be insufficient information for assessing
human health risks. Persistently high night-time temperatures prevent core body temper-
atures from cooling, and high humidity levels generally reduce tolerance to heat; Gosling
et al. (2009) discuss these issues in more detail. So warning systems increasingly use
sophisticated metrics more suitable for human health. The Heat Index of the National
Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS)
combines temperature and humidity criteria (Robinson, 2001). This is a measure of ‘how
hot it feels’: for example, an air temperature of 96°F (36°C) and relative humidity of 65%
results in a Heat Index of 121°F (49°C). ‘Synoptic’ definitions of heat waves take into
account the overall type of meteorological conditions and the previous impact of these
conditions on mortality and health. One example used widely in the United States and in
parts of Europe is the Spatial Synoptic Classification (SSC; Sheridan, 2002; Sheridan and
Kalkstein, 2004). This uses several meteorological variables (temperature, dew point, cloud
cover, pressure and wind) to classify weather into one of ten types and quantifies the
persistence, relative timing within the summer season and particular meteorological char-
acteristics of that type. Souch and Grimmond (2004) and Smoyer-Tomic et al. (2003)
describe other heat wave and heat stress indices. Some studies define a heat wave according
to the characteristics of a particular event, such as the 2003 European heat wave, to estimate
the return period (Schär et al., 2004) and changing risk of such events in the future
(Beniston, 2004). However, the number of analogues found is sensitive to the definition
of the event: whether in terms of absolute temperature or threshold exceedance, and whether
individual or consecutive days (Beniston, 2004).

5.2.1.3 Droughts

Droughts are persistent dry periods that last from a few days to several years. There are
various types (IPCC, 2007b; Burke and Brown, 2008), including meteorological drought
(low precipitation), hydrological drought (low water reserves), agricultural drought (low
soil moisture) and environmental drought (a combination of these). Droughts are quantified
using one of various indices. Some are based solely on precipitation, such as the Standard
Precipitation Index (SPI) and the China-Z Index (CZI; Wu et al., 2001), while others take
into account additional factors such as temperature, potential evaporation, runoff and soil
moisture. A commonly used metric of ‘cumulative departure of moisture supply’ from
the normal is the Palmer Drought Severity Index (PDSI: Palmer, 1965). This is based on
precipitation, temperature and soil moisture, though has a number of different formulations
(Robeson, 2008; Dai, 2011). In fact, more than 150 definitions of drought exist
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(Nicolosi et al., 2009). These have different strengths and weaknesses, and the most suitable
choice depends on the problem, context and user (Kallis, 2008).

Drought severity is described using thresholds of an index such as the first (extreme), fifth
(severe) or twentieth (moderate) percentiles of present-day climate. Different thresholds
may be set for each region to account not only for local climatology but also environmental
conditions that increase vulnerability. The PDSI is calibrated for the United States and has
categories −1.0 to −1.9 for mild drought, −2 to −3 for moderate drought, −3 to −4 for severe
drought, and beyond −4 for an extreme drought (Leary et al., 2008).

The rate of onset and cessation of drought are also important. A slow transition to drought
may allowmore time for mitigation, but could also worsen the impacts due to the cumulative
effects before and after the defined drought phase.

5.2.1.4 Wind storms

Wind storms include hurricanes, typhoons, tornados, thunderstorms and extratropical cyclones.
Tropical wind storms are ‘warm core’ cyclones, generated by convection ofwarm air over warm
sea surface waters, while mid-latitude storms are ‘cold core’ and form along weather fronts.
Wind storms are usually defined in terms of wind speed, with an absolute or relative threshold.
A hurricane is a tropical storm with wind speeds of 74mph (33m s−1, Category 1 on the Saffir–
Simpson scale, or about 12 on the Beaufort scale). ‘Storm force’ winds in the UK have mean
speed greater than 55mph (25m s−1, 10 on the Beaufort scale) and gusts greater than 85mph
(38m s−1) affecting most of the country for at least six hours (UK Government Cabinet Office,
‘UK Resilience’: available from http://www.cabinetoffice.gov.uk). Della-Marta et al. (2009)
compare five wind-based indices for stormmagnitude and spatial extent, finding some are more
suitable for quantifying strength relative to climatology and others for absolute strength.

Wind speed is not the only important metric for wind storms. The destruction caused by
Hurricane Katrina in the United States in 2005 (Section 5.2.4.3) was due not to high wind
speed but slow storm transit speed, heavy rainfall and a massive associated storm surge, as
well as the vulnerability of the point at which it struck the coast. Storms are therefore often
characterised with additional quantities such as sea-level pressure, vorticity, precipitation,
lightning, storm surges or accumulated cyclone energy (ACE) (e.g. Beniston et al., 2007).

Mid-latitude wind storms, or extratropical cyclones, in the Northern Hemisphere occur
at a range of spatial scales. They are often studied at ‘synoptic’ (large) scales,
100–1000 km spatially and 6–72 hours in duration. Extreme synoptic storms have rela-
tively moderate wind speeds compared with hurricanes or tornados, but cause great wind
damage and economic loss due to the integrated effects of their large spatial extent.
Smaller-scale structures may also develop within a large-scale storm. ‘Sting-jets’
(Browning, 2004) are characterised by very intense wind gusts and scales of order of
tens of kilometres. ‘Bombs’ are rapidly deepening extratropical cyclones (Sanders and
Gyakum, 1980) that develop in isolation from other vortices and are often characterised by
spatial scales of around 100 km. Activities at these different spatial scales can interact and
develop two-way feedbacks that may lead to explosive intensification and cyclogenesis
(Rivière and Orlanski, 2007; Fink et al., 2009).
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5.2.1.5 Extreme waves and currents

Wind storms over the ocean generate large waves whose height depends on the wind speed,
duration and fetch (distance over which the wind blows), and submarine earthquakes cause
very large (tsunami) waves, but not all large waves are associated with storms and earth-
quakes. ‘Freak waves’ generated by nonlinearities in the wave field itself can be a significant
hazard. Freak waves can also be generated when energy is focused by local currents and sea
bed topography (‘spatial focusing’). The Agulhas current along the east coast of South
Africa, for example, meets swell from the Southern Ocean and creates ‘holes in the sea’ that
cause severe damage to ships and loss of life. Freak waves are also created by nonlinear
wave–wave interactions (‘nonlinear focusing’: Tucker and Pitt, 2001; Dysthe et al., 2008).
A further proposed mechanism is simple linear superposition of waves (‘dispersive focus-
ing’: Kharif and Pelinovsky, 2003).

The wave field is regarded as a stationary random process over short periods of time (of
order 30 minutes). This stochastic process is characterised by a frequency spectrum as a
function of the direction of travel of the waves. Summary statistics are then derived from
these spectra, such as ‘significant wave height’, which is four times the square root of the
area under the spectrum (the total energy of the wave field). Extreme wave conditions are
characterised in terms of the summary statistics: for example, freak waves are often defined
as at least twice the significant wave height, which for linear waves is the expected height of
the highest wave in a three-hour period (Dysthe et al., 2008). An overview is given by
Tucker and Pitt (2001). Although waves are the most important environmental force on
offshore structures such as oil rigs, ocean currents can also be a serious hazard.

5.2.2 Triggers

Hydrometeorological hazards have no distinct trigger, but they can often be linked to certain
states of the climate. Natural variability in the form of fluctuations and oscillations is present
in the climate at all timescales, from hours to centuries and longer (Section 5.3.1), and the
phases of this variability affect the likelihood of extreme events. If these are identified then
particular climate states can be useful indicators of hazard risk in other regions or in the near
future. One is the El Niño Southern Oscillation (ENSO), a measure of sea surface temper-
ature anomalies in the tropical eastern Pacific, which affects the likelihood and location of
extreme warm events, extreme precipitation and tropical cyclones (e.g. Rusticucci and
Vargas, 2002; Camargo et al., 2007). Another is the North Atlantic Oscillation (NAO),
usually defined as the difference in the normalised surface air pressure between Iceland and
the Azores or the Iberian peninsular. The NAO varies on decadal timescales and is a good
proxy for the North Atlantic storm track. It has been linked with Atlantic cyclone intensity
and with winter storms, precipitation and wave conditions in the eastern North Atlantic and
Europe (e.g. Woolf et al., 2002; Elsner, 2003; Mailier et al., 2006; Vitolo et al., 2009).
Another example of a particular climate state is ‘blocking’, where an atmospheric pattern
persists and prevents normal local weather from moving through the area, which results in
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very stable weather. If this happens to occur at a time of high temperature or precipitation, a
period of extremes can last for days or weeks.

There are physical connections between the different hazards. The ‘hot and dry’ hazards
(heat waves, drought) are linked to each other through meteorological processes such as
evapotranspiration and atmospheric convection, while the ‘wet and windy’ hazards (pre-
cipitation, storms) are linked through low atmospheric pressure. The hydrological cycle and
water conservation connect droughts with extreme precipitation (Held and Soden, 2006).
Hydrometeorological hazards also trigger other types of hazard: drought and heat waves
cause wildfires; persistent extreme precipitation causes flooding and landslides; and wind
storms cause storm surges.

5.2.3 Scale

Different parts of the world experience hazards of different scales – i.e. severity and
frequency – due to the dependence of local climatic variability on local atmospheric patterns
(e.g. circulation belts, jet streams, monsoons), topography (elevation and proximity to
mountains and coast) and land and water use (e.g. intensive agriculture, deforestation,
water consumption and redirection).

The scale of ‘wet and windy’ hydrometeorological hazards is mostly determined by
natural factors. Extreme precipitation events are most severe in the mid-latitudes, in
monsoon regions and on the windward side of mountains, while storm events are most
severe in the tropics and in open areas such as coasts. One human factor, aerosol pollution,
affects precipitation by acting as cloud condensation nuclei, but the interactions are
complex: heavy rain events may increase at the expense of light rain events, and the net
suppression or enhancement depends on particle size (Levin and Cotton, 2008; Li et al.,
2011). In an average year, ten tropical storms develop in the Gulf of Mexico, Caribbean
Sea or Atlantic Ocean, of which six develop into hurricanes (Townsend, 2006). Mid-
latitude winter storms are the most frequent natural disaster for Central Europe, while
sting-jets are also believed to be a major cause of wind damage in northern Europe (Fink
et al., 2009). In general the highest storm-related waves are in the North Atlantic in winter
(Holliday et al., 2006). Waves in the Southern Ocean are smaller but with little seasonal
variability, so the Southern Ocean is always rough, whereas the North Atlantic
and North Pacific are relatively calm during the summer months (e.g. Young, 1999;
Woolf et al., 2002).

The scale of ‘hot and dry’ hydrometeorological hazards is influenced by human and
natural factors. Heat waves are most severe in areas of inland desert, semi-desert and with
Mediterranean-type climates (i.e. tropical and subtropical regions), and are often associated
with an unusual location of the jet stream. Urban areas experience higher temperatures than
rural areas due to the heat island effect. Drought hazards are most severe in areas with low
precipitation, strong winds, high temperature, vulnerable soil types (such as high sand
content) and low water reserves. These regions are often subtropical, mid-continental or
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primarily supplied by glacial meltwater. Humans amplify droughts through deforestation,
intensive farming and high population densities (IPCC, 2011), which leave soil exposed,
increase runoff and deplete water reservoirs such as aquifers. An example of this is the
Anglian region in eastern England, where low water availability is exacerbated by very high
demand from agriculture. Areas that have suffered from severe drought include north-
eastern and western Africa, northern and central China, western and mid-continental north
America, the Amazon basin and Australia (e.g. Dai, 2011).

Regional variation in the magnitude of extremes may be illustrated with some examples.
In the UK, the highest recorded daily rainfall during one of the most severe flooding events
in living memory (November 2009) was 316mm (UK Met Office website: http://www.
metoffice.gov.uk). But the current world record for a 24-hour period is nearly six times
greater, 1.825 metres, recorded in January 1966 by the island Réunion, east of Madagascar
(World Meteorological Organization: http://wmo.asu.edu). The most significant UK wind
storms in recent decades were in 1987, with a mean wind speed of 50mph and gusts up to
115mph, and in 1990, with mean wind speed of 69–75mph and gusts up to 104mph (UK
Government Cabinet Office, ‘UK Resilience’: available from http://www.cabinetoffice.gov.
uk). Hurricane Katrina in 2005 was classified as Category 5 (greater than 155mph) but
weakened to Category 3 (111–130mph) before reaching land in Louisiana. The highest
directly measured gust speed is 253mph, during a tropical cyclone in April 1996 on Barrow
Island off the north-west coast of Australia, and the highest recorded speed (inferred using
radar) is 302mph in May 1999 in Oklahoma (World Meteorological Organization: http://
wmo.asu.edu). The highest wave height measurements are around 30m (Kharif et al.,
2009), though such high values are not necessarily classified as ‘freak’ according to the
usual definition of twice the significant wave height (Section 5.2.1.5). During Hurricane
Ivan over the Gulf of Mexico in 2005, for example, the maximum wave height was 26.3m,
while twice the highest significant wave height was 30.8m (Forristall, 2005). During the UK
heat wave of August 1990, temperatures of 32°C or more (a critical threshold:
Section 5.4.1.2) were recorded in virtually all parts of England and some parts of Wales,
11.5°C hotter than the 1971–2000 average for August maximum temperatures (UK Met
Office website: http://www.metoffice.gov.uk); the most persistent UK event was in 1976,
with 32°C exceeded for 15 consecutive days (UK Government Cabinet Office, 2008).
During the 2010 Northern Hemisphere heat wave, a temperature of 38.2°C was recorded
in Moscow (Barriopedro et al., 2011). The number of European extreme drought events
during the twentieth century, with PDSI less than or equal to −4, is shown in Figure 5.2
(Lloyd-Hughes and Saunders, 2002).

5.2.4 Loss

This section gives an overview of the losses caused by hydrometeorological hazards,
outlining the entities that are exposed and vulnerable, the types of loss that may occur and
the quantification of these losses.
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5.2.4.1 Exposure and vulnerability

Meteorological hazards have global reach: they affect everything under the sky.
Hydrological hazards are almost as pervasive, because exposure comes from proximity to
bodies of water (e.g. waves) and from limited water supply (droughts). Some types of hazard
do occur mainly in one region, such as hurricanes in the tropical Atlantic or typhoons in the
Pacific.

The entities exposed to hydrometeorological hazards are therefore wide-ranging:
humans; agriculture (including crops, livestock and irrigation); infrastructure (including
transport, power and housing); and the environment (including forests, surface soil, eco-
systems and habitats) (e.g. Beniston et al., 2007; UK Environment Agency, 2009; UK
Government Cabinet Office, 2008). Vulnerability varies by location: poverty and inefficient
infrastructure reduce the ability to prepare for hazards and to recover (IPCC, 2011); local
architectural styles, construction practices, building regulations and enforcement affect the
vulnerability of buildings (RMS, 2005); and vulnerability is greater if the climate is close to
habitable limits, though prior conditioning to warm climate or recent high temperatures
reduces vulnerability to heat waves.

Densely populated areas are particularly vulnerable, because not only are more people
exposed but the effects are amplified: low water reserves in the case of drought, and
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Figure 5.2 Number of extreme drought events (PDSI less than or equal to −4) by grid cell for Europe
during the period 1901–1999. (Lloyd-Hughes and Saunders, 2002) © Wiley.
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mortality or injury due to damaged or collapsing buildings in the case of extreme
precipitation and wind storms. Nearly 50% of the world’s most populated areas are highly
vulnerable to drought (USDA, 1994). However, rural areas are also vulnerable: for
example, trees in densely wooded areas are felled by strong winds, causing damage and
injury.

Social and cultural practices are also important, particularly for heat waves. The most
vulnerable individuals are those living alone, ill, bedridden, housebound, elderly, over-
weight, lacking nearby social contacts, lacking access to transportation or lacking sufficient
domestic cooling (Klinenberg, 2002). Air pollution also exacerbates the health risk (Souch
and Grimmond, 2004). The European heat wave in 2003 and the two Chicago heat waves
during the 1990s mostly affected elderly people in urban areas (United Nations, 2006).

5.2.4.2 Types of loss

Humans are killed, injured or made ill by every type of hydrometeorological hazard: wind
storms and waves cause physical injury; drought causes dehydration, related diseases and
malnutrition due to famine; heat waves cause dehydration, heat stroke, oedema (swelling),
rashes and cramps (reviewed by Kovats and Hajat, 2008); and extreme precipitation can lead
to waterborne diseases (Curriero et al., 2001) and, in combination with high temperatures, to
malaria (Githeko and Ndegwa, 2001). But the impacts on humans are not limited to
mortality and morbidity: sustained drought can cause mass migration, political unrest and
violent conflict over natural resources (Gleick et al., 2006), while heat waves decrease
productivity and increase violent crime (Smoyer-Tomic et al., 2003). Drought, heat waves
and extreme precipitation reduce agricultural yields through high temperature, low water
availability and soil erosion. Extended drought can lead to famine, amplifying problems of
health and social stability (Gleick et al., 2006).

Infrastructure, property and business are also harmed. Energy structures (including power
stations, oil and gas platforms, refineries, pipelines and renewable energy devices) are
damaged and power supplies interrupted or reduced by wind storms and extreme waves
(physical damage), extreme precipitation (flooding), heat waves (overheating) or drought
(overheating; reduced flow through hydroelectric dams). Transport and telecommunication
links are damaged by wind storms, rain and (in the case of ships) extreme waves, and during
heat waves road surfaces are susceptible to melting, vehicle engines to overheating and
railway lines to buckling (De Bono et al., 2004). Water supplies are affected by extreme
precipitation (polluting), drought (decreasing sources) and heat waves (buckling pipes).

Hydrometeorological hazards may be natural, but can severely harm the natural environ-
ment. Drought and extreme precipitation cause habitat damage and soil erosion, and the
latter can lead to desertification and dust storms. Wind storms also harm ecosystems
(particularly forests, e.g. Bründl and Rickli, 2002). Wildfires are caused by drought and
heat waves. Heat waves may affect glaciers, permafrost and rock stability (De Bono et al.,
2004). Water pollution from extreme precipitation has negative impacts on ecosystems as
well as human health.
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5.2.4.3 Quantification of loss

Quantification of loss is more straightforward for some types of harm and damage than
others. The most often used metrics relate to human health and financial cost.

Mortality can be expressed in absolute numbers, though is more usefully expressed as
‘excess death rate’, the difference between reported and typical deaths for a given time
period. But it can be difficult to quantify the effect of ‘harvesting’, the phenomenon by
which the death of vulnerable individuals is hastened but overall mortality is not increased
(e.g. Baccini et al., 2008). Ill health can be quantified with hospital records, but these data
are less available and less easily interpreted than mortality data (Sheridan and Kalkstein,
2004). Mortality rates in the United States are highest from extreme heat and hurricane
hazards (Figure 5.3), though the latter are dominated by Hurricane Katrina, which caused
over 1000 deaths. Negative impacts of heat extremes rose during the period 1995–2004,
especially in Europe (United Nations, 2006), where the 2003 heat wave led to the loss of
more than 70 000 lives (Robine et al., 2008). Waves contributed to one of the most severe
environmental disasters to occur in the UK, when flood defences on the east coast of
England were breached in 1953 by a combination of high tides, storm surge and large
waves: 307 people were killed in the area (UK Government Cabinet Office, 2008).
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Figure 5.3 Mean annual weather fatalities for the United States, Puerto Rico, Guam and the Virgin
Islands. Data from the National Weather Service.
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Financial losses due to physical damage of property and infrastructure or interruption of
services are typically quantified by insurance claims or economic effect. The former is not
comprehensive because insurance coverage is rare in many parts of the world. Both insured
and uninsured losses from natural hazards have risen during the twentieth century due to
increases in exposure (population; habitation of susceptible areas such as coasts) and
vulnerability (asset ownership; changes in social structure, infrastructure and environmental
conditions) (Grossi and Kunreuther, 2005; Dlugolecki et al., 2009). Climatic extremes
caused more than 170 ‘billion-dollar events’ (in insurance terms) globally during the second
half of the twentieth century, compared with 71 due to earthquakes (Beniston et al., 2007).
The most important were tropical cyclones and mid-latitude winter storms (Fink et al.,
2009), followed by floods, droughts and heat waves. Hurricane Katrina is the most destruc-
tive natural disaster in the history of the United States (Townsend, 2006). It caused
destruction or severe damage to around 300 000 homes; at least ten oil spills; an initial
shutdown of more than 91% of oil and 83% of gas production in the Gulf of Mexico region
(RMS, 2005); and estimated damages of US$96 billion (Townsend, 2006). In December
1999, the three storms Anatol, Lothar and Martin caused a total insured loss of more than
€10 billion across Europe (Fink et al., 2009) and in 2007 another, Kyrill, caused €4–7 billion
of insured losses and the loss of electricity for at least two million homes (Fink et al., 2009).
Lawton (2001) reports an estimate that freak waves were responsible for 22 of the 60 losses
of super-carriers (very large aircraft carriers) to sudden flooding between 1969 and 1994
(Kharif and Pelinovsky, 2003).

Harm to ecosystems and environmental services is harder to quantify, though its impor-
tance is increasingly recognised (e.g. the Millennium Ecosystem Assessment; Hassan et al.,
2005). Harm may be expressed in terms such as loss of biodiversity, habitat or natural
resources. Mid-latitude storms have caused significant environmental losses: in 2007, storm
Kyrill uprooted an estimated 62 million trees across Europe (Fink et al., 2009).

5.3 Risk assessment

Risk assessment for hydrometeorological hazards has a very long history. Humans have
attempted to forecast weather from patterns on the earth and in the stars since antiquity,
recorded its extremes in historical documents andmeasured its variations since the invention
of each meteorological instrument (e.g. thermometer, rain gauge, barometer). The longest
instrumental record of temperatures is the Central England Temperature (CET), which
began in 1659 (Parker et al., 1992). The field of numerical weather prediction, proposing
equations to describe the physical behaviour of the atmosphere, has existed since the turn of
the twentieth century, and computers have been used to solve these equations since the
1950s (Lynch, 2008). Despite this long history, hydrometeorological hazards, and their
impacts, are still challenging to predict (Section 5.3.1).

The word ‘risk’ is very often applied in this field, as in many others, only to the likelihood
of a hazard occurring rather than in the full sense incorporating damage and loss; an
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exception to this is catastrophe modelling (Section 5.3.3). There are two types of risk
assessment, based on physical modelling and statistical analysis. Physical models, also
known as ‘dynamical models’ or ‘simulators’, are mathematical equations written in com-
puter code to simulate the behaviour of the atmosphere, ocean and land. They are used to
forecast specific hazard events – their magnitude, extent and timing – in order to issue
warnings or take steps to mitigate the hazard (Section 5.3.2). Statistical analysis of hazard
events (Section 5.3.3) assesses the long-term characteristics of a particular hazard type,
expressed in terms of return period or dependence on other variables. Some risk assessments
include both physical and statistical elements, in particular hurricane forecasts
(Sections 5.3.2, 5.3.3.3).

5.3.1 Challenges in risk assessment

The short length of the observational records limits estimation of return periods for rare
hydrometeorological events. For some variables the record length is 150 years or more, but
in general observations or reliable re-analysis data are only available for a few decades.
Hydrometeorological hazards also have their own particular challenges: the earth system’s
internal variability, and non-stationarity due to the influence of forcings. These are discussed
below.

5.3.1.1 Internal variability

The earth’s atmosphere and oceans are continuously changing due to the influence of natural
and anthropogenic ‘forcings’ that produce a radiative imbalance at the top of the atmosphere
(Section 5.3.1.2). But even if there were no imbalance, and the earth system were at
equilibrium, there would still be fluctuations of unforced ‘internal’ variability. The peaks
and troughs of these fluctuations give rise to extreme events. Internal variability derives
from two sources: chaos and oscillations. These are challenging to simulate (Section 5.3.2)
and must be accounted for in statistical analyses (Section 5.3.3).

Chaos arises from the sensitivity of the atmosphere’s evolution to small changes in the
‘initial conditions’, a consequence of the earth system’s complex and nonlinear nature. The
atmosphere and ocean are turbulent, with nonlinear feedbacks involving exchanges of heat
and water, chemical reactions, and so on, between every part of the air, sea, land, ice and life.
Nonlinearity and complexity lead to chaos, but chaos does not imply randomness. A chaotic
system can be deterministic: in such a system, perfect knowledge of the initial conditions
and response would enable prediction over long timescales. But knowledge of the earth
system cannot be perfect. Observations have finite coverage and are uncertain. Physical
models have finite temporal and spatial resolution and are imperfect, because many pro-
cesses are unknown or difficult to represent, and the observations available to evaluate them
are limited. So chaos, combined with imperfect knowledge, results in ‘limited predictabil-
ity’, where uncertainties in initial conditions are greatly amplified in predictions beyond a
few days. The limit of predictability is thought to be about two weeks (Lorenz, 1965).
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Limited predictability is equivalent, in practice, to a random element, so most forecasting
models have stochastic components (Section 5.3.2).

Oscillations in the state of the atmosphere and ocean move around the earth at all
timescales, from weeks (such the Madden–Julian Oscillation, MJO) to years (such as the
ENSO and NAO; Section 5.2.2) and longer. These oscillations are difficult to simulate
realistically in physical models because they must emerge spontaneously from the smaller-
scale behaviour described by the equations; some physical models are more successful at
this than others (IPCC, 2007a). Oscillations are also a challenge in statistical analysis of
observations, because they are difficult to separate from long-term trends. But these longer-
term changes do bring an important advantage: recent improvements in understanding and
measuring their persistent influence on atmospheric conditions allow forecasts to be made of
spatial and temporal averages (such as the number of hurricanes in the coming year) with
much longer lead times than Lorenz’s fortnight, albeit with larger uncertainties
(Sections 5.3.2, 5.3.3.3).

5.3.1.2 Non-stationarity

The atmosphere and oceans are continuously ‘pushed’ towards warmer or cooler states by a
radiative imbalance at the top of the atmosphere. This imbalance is the net result of
‘forcings’, both natural and anthropogenic in origin, which affect the amount of solar
radiation that warms the planet or escapes to space. During the instrumental record (the
past 150 years or so), the most important forcings are: greenhouse gases and tropospheric
ozone that warm the planet (increasing due to industrial emissions and release from natural
reservoirs such as forests and wetlands, and varying due to natural cycles); incoming solar
radiation (varying in regular cycles and long-term trends); and sulphate aerosols that have a
cooling effect (varying due to industrial emissions and volcanic eruptions). More details are
given in Chapter 6. Over the twentieth century, the net forcing has resulted in an increase of
about 0.7°C in global mean temperature (IPCC, 2007a), with larger changes over land and in
regions with strong positive feedbacks such as the Arctic. The twentieth-century response is
relatively small compared with internal variability such as ENSO, but reflects an increase in
energy in the system that is thought to have shifted the statistical distribution of several
aspects of weather (IPCC, 2011). The impacts of hazard events are also non-stationary, due
to changing social and cultural factors: for example, mortality due to heat waves is
decreasing in the United States due to increased use of air conditioning, improved healthcare
and improved public awareness of impacts (Souch and Grimmond, 2004). As well as
interannual non-stationarity, hydrometeorological hazards and their impacts vary with the
seasonal cycle. The influence of these oscillations, like those of internal variability in the
previous section, aids forecasting on seasonal timescales.

Non-stationarity should therefore be accounted for, where present, in statistical analysis
of observational records. Furthermore, warming is expected to continue over the next
few decades and longer, due to the slow response of the oceans to past forcing, the long
lifetime of greenhouse gases, the cumulative effect of a (likely) slow rate of reducing
greenhouse gas emissions, and a (likely) reduction in sulphate aerosols from pollution.
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Hydrometeorological hazards are part of the climatic spectrum and likely to be affected by
this warming: estimates of return periods, which inherently assume stationarity, have limited
applicability for these hazards in the future. Estimating risk of hydrometeorological hazards
under future climate change is discussed in Chapter 6.

5.3.1.3 Hazard- and impact-specific challenges

Some hydrometeorological hazards, or aspects of hazards, are more challenging to simulate
or analyse than others. Temperature is the most straightforward to simulate because the
dominant drivers of regional temperature patterns are latitudinal insolation patterns and the
distribution of land around the globe, which are well known (IPCC, 2007a). Precipitation
patterns are influenced by these and also by small-scale processes such as atmospheric
instabilities, the flow of air over local topography and very small-scale processes such as
formation of cloud condensation nuclei (IPCC, 2007a); these are difficult to simulate
(Stephens et al., 2010) and in general must be represented in a simplified form
(Section 5.3.2). Precipitation also responds nonlinearly to forcings, which complicates
statistical analysis. Forecasting hurricane tracks is improving over time, but forecasting
their intensities and landfall is much less successful (Camargo et al., 2007). Droughts and
heat waves are very influenced by soil moisture, but a global observational network is
currently at an early stage (Dorigo et al., 2011), so this important driver must be inferred
from precipitation deficits for hazard assessments (Hirschi et al., 2011). However, the global
extent of hydrometeorological hazards may be of some advantage: research techniques of
developed nations can be transferred to regions with fewer resources, and larger datasets can
aid statistical analysis.

Assessing impacts and loss is also more challenging for some vulnerable entities than
others: human mortality and health impacts, for example, depend on complex interactions
between many factors that are hard to predict, such as societal decisions (CCSP, 2008), and
are quantified differently depending on the relative importance of individual behaviour
(sociology and environmental psychology), financial security (economics) and national
capability and decision-making (political science) (Alcamo et al., 2008).

5.3.2 Physical modelling

This section describes physical modelling of hydrometeorological hazards and impacts and
quantification of uncertainty in their predictions. Physically based, dynamical models –
simulators that attempt to represent real-world processes – are essential tools in forecasting
the specific evolution of a state through time. They can also, if run multiple times simulta-
neously (described below) or for a long time period (Chapter 6), be used to assess the
probability distribution of a future hazard or impact. The advantage of using a physically
based model to assess event probabilities, rather than a statistical analysis based on the
historical record, is that it can account for non-stationarity, because the boundary conditions
that drive its evolution (discussed below) can be varied in time and space. The disadvantage
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is that it is hugely expensive, infeasibly so for events that have return periods of several
years. Therefore assigning probabilities to low-probability, high-magnitude hazards tends to
be done using statistical analysis (Section 5.3.3). Statistical models are also used for
forecasting if there are temporally persistent states (such as ENSO) that influence the hazard
(such as hurricane intensity), by assessing the future probability distribution given the
specific present conditions.

5.3.2.1 Types of physical model

Numerical weather prediction (NWP) models are complex, computationally expensive
simulators of the atmosphere and ocean that are used to forecast day-to-day weather. A
large number of variables are simulated, including temperature, pressure, precipitation and
wind. Extreme weather hazards and modes of internal variability are not explicitly coded but
are emergent properties of the individual processes. Physical modelling of large waves has
much in common with atmosphere–ocean modelling: one example is described by Tolman
(2009), and an overview can be found in Kharif et al. (2009). Forecasting of tropical
cyclones and of weather-related impacts is discussed at the end of the section.

NWP models are initialised with ‘today’s weather’ using current observations of the
atmosphere and ocean, then run forward for a specific time. This produces a single
prediction, or realisation, of weather, which can be converted to a binary forecast for a
hazard event: for example, whether the forecast period includes a storm of a given magni-
tude at a given location. To generate many realisations and approximate an event probability,
random elements are introduced and the simulator is run several times simultaneously
(Section 5.3.2.2).

Forecast lead times range from a few hours or days (short-range), to a fortnight (medium-
range), to 6–12 months (seasonal). The evolution of physical quantities, such as the transfer
of heat, is calculated in discrete timesteps represented with a three-dimensional grid or
spherical harmonics, with spatial domain and resolution chosen according to the lead time of
the forecast, timescale of the physical processes and available computing resources. Short-
range forecasts are often performed for a sub-continental region, at a horizontal resolution of
around 5–25 km; vertical resolution ranging from tens of metres near the surface to several
hundred metres in the stratosphere; and temporal resolution of a few minutes. Seasonal
forecasts are made over a global domain with climate models (Chapter 6), with a reduced
resolution (around 140 km horizontally in the mid-latitudes) to reduce computational
expense. Physical processes that occur on smaller spatio-temporal scales than the simulator
resolution, such as convective cloud formation, are represented in parameterised form
(Chapter 6). Forecasts have improved since the addition of stochastic elements in the
form of randomly varying parameters or processes (Section 5.3.2.2).

Forecasting models require both initial conditions to prescribe the initial state, derived
from observations and previous forecasts, and ‘boundary conditions’ to control the system
evolution, supplied by global model simulations (Chapter 6) and ‘analysis’ datasets (e.g. sea
surface temperatures from combining satellite and in situ measurements). Because the
atmosphere is chaotic (Section 5.3.1.1), forecast success is heavily dependent on the
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accuracy of model initialisation. NWP model simulations are therefore updated, or
‘nudged’, frequently by current observations in a process known as ‘data assimilation’
(Evensen, 2009), which takes into account the relative uncertainties of the observations and
simulations. Data assimilation is an inverse method founded in Bayes theorem (Wikle and
Berliner, 2007) in which NWP model predictions (samples from the prior distribution) are
updated with observations to estimate the most likely atmospheric state (mode of the
posterior distribution). The dimension of this state is extremely high so there are various
simplifications, such as estimation of means or modes and variances rather than full
probability distributions, and assumptions, such as linearity or Gaussian uncertainties, to
make the problem tractable. ‘Variational’ methods of data assimilation (e.g. Rabier et al.,
2000) are gradient-based optimisation schemes, which minimise a cost function (the
simplest being least squares) to find the mode of the posterior distribution; this requires an
‘adjoint’ model, constructed by differentiating the model equations by hand or with auto-
matic software, which is very challenging for such complex models. ‘Ensemble’ methods
(e.g. Evensen, 1994) use a set of about 100 simulations, each starting from slightly different
initial states to approximate the mean and covariance of the prior distribution, but these are
not yet used much in operational forecasting (e.g. Houtekamer et al., 2005). Methods with
few or no simplifying assumptions are currently only suitable for very low dimensional
problems, though their efficiency is continuously being improved (van Leeuwen, 2009,
2010, 2011).

Seasonal forecasts for tropical cyclones are currently undergoing a sea change in methods
and capabilities. Predictions were traditionally based on statistical analysis of past relation-
ships with climate indicators such as Atlantic sea surface temperatures and ENSO
(Section 5.3.3.3). Now a small number of forecasts use dynamical methods, applying
criteria to climate model simulations for variables such as sea surface temperature, vertical
shear of horizontal wind and low-level vorticity, to infer the presence of tropical storms
(Vitart and Stockdale, 2001; Barnston et al., 2003; Camargo and Barnston, 2009). A hybrid
‘statistical-dynamical’ method is described by Emanuel et al. (2006) in which synthetic
storms are seeded randomly with tracks derived from statistical modelling of re-analysis
data (Section 5.3.3) and intensities simulated by a high-resolution physical model. Dynamic
modelling has only recently become comparably successful to statistical modelling at
making seasonal predictions of tropical cyclone frequency (e.g. Vitart et al., 2007). As
computational power increases, model resolution can increase and this is likely to further
improve prediction skill (Vitart et al., 2007). Overviews of seasonal tropical cyclone
prediction are given by Camargo et al. (2007) and Klotzbach et al. (2011).

Hazard impacts can be simulated if the important processes are understood. A well-
developed hazard impact model can be chained, or ‘coupled’, to an NWP model to give a
probabilistic assessment of loss, including real-time forecasts if the lead time is sufficiently
long (days or longer), or the hazard onset slow (e.g. drought), or the impacts slow to emerge
(e.g. cumulative impacts of extreme weather on vegetation: Senay and Verdin, 2003;
Chapter 6). If the processes are not well understood, or the timescales short, statistical
modelling of past events is used instead (Section 5.3.3.3): for example, impacts on human
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health and financial loss are too challenging to describe with physically based laws, so they
are forecast with statistical models or expert synthesis of observations and physical under-
standing (e.g. Funk, 2011).

5.3.2.2 Uncertainty assessment in physical modelling

Uncertainty assessment is relatively well-developed in hydrometeorogical hazard risk
analysis due to a long history of weather recording and forecasting. Forecast uncertainty
is a function of the observational and NWP model uncertainties. The former arise from
measurement uncertainty, incomplete coverage and uncertainty in the ‘observation opera-
tors’, which translate measured quantities into simulated (e.g. transformation, interpolation
or integration). The latter are more difficult to estimate and arise from uncertain model
parameters (representing sub-grid-scale processes) and model structure (due to missing or
poorly understood processes and finite resolution). Forecast uncertainty is estimated by
sampling from these uncertain quantities and running different variants of the forecast
simultaneously to produce an ensemble prediction.

Ensembles are generated with several types of perturbation to explore this uncertainty.
Weather forecasts are critically dependent on the accuracy of the initial state, so ‘initial
condition ensembles’ have been used in numerical weather prediction since the 1990s.
Initial state perturbations are either constructed randomly, or by sampling from the obser-
vational uncertainties, or to generate the fastest growing impact on the forecast (e.g. Persson
and Grazzini, 2007). Parameter and structural uncertainty are estimated by perturbing the
model configuration (e.g. Houtekamer et al., 2009): for example, with varying resolution
(Persson and Grazzini, 2007); stochastically varying parameters (Buizza et al., 1999;
Palmer, 2001; brief overview by McFarlane, 2011); or stochastic kinetic energy backscatter
(Shutts, 2005; Berner et al., 2009). These schemes explore both structural and parametric
uncertainty simultaneously: for example, stochastic parameters allow the model to move
into rarer states, such as blocking-type flow in Northern Hemisphere winters (Palmer et al.,
2005). Another approach to estimating structural uncertainty is with a multimodel ensemble
(MME), a group of models from separate research centres (e.g. Palmer et al., 2004;
Hagedorn et al., 2005; Weisheimer et al., 2009). MMEs are mainly used for forecasts
made over global domains (medium-range and longer lead times; see Chapter 6) because
short-range forecasts are often made with regional models so there are fewer opportunities
for comparison. Individual members of an MME are averaged together or considered as a
group; they may be weighted equally or according to their degree of success in matching
observations (discussed below). The mean of an MME is often found to outperform the
individual members (e.g. Hagedorn et al., 2005; Vitart, 2006), increasingly so with ensem-
ble size (e.g. Ferro et al., 2008), though it does not outperform the best member. Model
structural uncertainty can also be estimated with non-ensemble approaches (Hollingsworth
and Lönnberg, 1986; Parrish and Derber, 1992).

The frequency with which a given hazard appears in an ensemble forecast is treated as an
estimate of its probability of occurrence: for example, a heat wave that occurs in 20% of the
ensemble simulations is assigned a probability of 20%. If the NWP model is well-calibrated
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(below), then over the long term such an event will occur in 20% of such forecasts.
Ensemble forecasts tend to be referred to as probabilistic, but they are more accurately
described as frequency distributions due to their low sample size and incomplete represen-
tation of all uncertainties; further discussion can be found in Chapter 6.

Calibration of NWP forecasts is tuning of the ensemble perturbations so that forecast
frequencies match the real world over the long term. Forecasts are repeatedly tested against
observations to calculate skill scores, metrics that quantify the success of the model forecast
relative to a reference such as local climatology or the weather of the previous time period
(e.g. Brier, 1950; Talagrand et al., 1997; Persson and Grazzini, 2007). Forecast verification
is an extensive field with a long history: reference texts are Jolliffe and Stephenson (2003)
and the relevant chapter in Wilks (2011), and a review of recent advances is given by Casati
et al. (2008). Over the past decades, improvements in model structure, resolution, data
assimilation methods and observational datasets have led to continuous improvement in
skill scores: the US National Centers for Environmental Prediction (NCEP) ‘S1’metric, for
example, has been recorded since the mid-1950s and shows a doubling in forecast length for
a given skill score over 1–2 decades (Kalnay, 2003). Ensemble forecasts are generally
underdispersed: over the long term, they are more narrowly spread than the observations.
This bias may be partially corrected with post-processing methods that re-weight the
ensemble members according to their performance during a training period (e.g. Gneiting,
2005; Raftery et al., 2005). Post-processing methods are currently being adapted to allow
spatially varying calibration (Kleiber et al., 2010) and spatio-temporal correlation structure
(e.g. Berrocal et al., 2007), but not yet multivariate correlation.

Forecasts of extreme weather events cannot be verified, of themselves, with the usual skill
scores: not only does their rarity drastically decrease the number of tests and increase the
uncertainty, but the skill scores tend towards trivial limits (such as zero) with increasing
event rarity (Stephenson et al., 2008). Various alternatives have been proposed, either by
constructing new skill scores suitable for extremes (Casati et al., 2008) or by adapting
extreme value theory (Section 5.3.3.1) for verification purposes (Ferro, 2007), but in general
calibration is performed with normal day-to-day weather. Some extreme weather events are
much harder to predict than others (Section 5.3.1.3), which means, in effect, that NWP
models are less well calibrated for these events, and that the assessed probabilities must be
interpreted with caution.

5.3.3 Statistical analysis

The objective of statistical analysis is to assess the probability distribution of a future hazard
or its impact. Statistical methods for assessing future hazard event probabilities are only
valuable to the extent that a defensible relationship can be proposed between historical and
future events. For hydrometeorological events, the biggest challenge is the non-stationarity
of the earth system during the instrumental period. Return periods are interpreted under an
assumption of stationarity, so if the drivers that determine hazard frequency and properties
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do change significantly then the predictions become less reliable. Some hazards are not
significantly affected, but for most there are trade-offs if choosing subsets of the data that are
approximately stationary, and difficulties if building non-stationarity into the statistical
model.

Statistical analysis of hydrometeorological hazards takes many forms, according to the
objectives of the analysis and the characteristics of the available data. The observational
datasets analysed for extreme weather assessments are typically point data from weather
stations. Other types of data include: satellite observations; re-analysis datasets such as
ERA-40 (Uppala et al., 2005), which are continuous gridded data generated by assimilating
observations into NWP model simulations; or model simulations alone, often in relation to
climate change (Chapter 6). Observational datasets of hazard impacts come from a wide
range of sources: in particular, government and hospital records for mortality and morbidity,
and insurance losses for financial impacts. Observational data may only be available as
maxima of a given time period, usually one year, known as ‘block maxima’ (or equivalently
minima). However, block maxima are, by definition, a small subset of the observations.
Other data may contain useful information in the properties of, for example, the second- and
third-largest events in each time period. If all the observational data are available, it can be
preferable to analyse the r-largest maxima (r> 1), or the exceedances over a threshold
(‘peaks-over-threshold’, POT), or the whole time-series. The relative advantages of these
are discussed in the following sections.

Three common objectives for statistical analysis are: estimating return levels, with
extreme value analysis; quantifying the trend or covariates of a hazard, with regression
methods; and generating ‘pseudo-hazard’ (also known as ‘synthetic hazard’) datasets, with
‘weather generation’ and ‘catastrophe modelling’. A brief introduction to the latter two is
given here.

Weather generation is the stochastic simulation of a large number of synthetic long
datasets of ‘pseudo-weather’ (e.g. precipitation), each statistically consistent with the
original observations. The main purposes of this are to analyse their characteristics (e.g.
frequency of rare extremes) and to use them as inputs for impact models (e.g. crop yields), in
order to supplement observational records that are short and spatially or temporally incom-
plete or simulations that are short and have low spatio-temporal resolution.

Catastrophe modelling is stochastic simulation of a large number of synthetic long
datasets of ‘pseudo-events’ (e.g. hurricanes), application of these to an inventory of vulner-
able quantities (usually buildings) and estimation of the damage and associated losses
(usually financial; sometimes also environmental and social). Catastrophe (‘cat’) models
were first developed in the late 1980s by three US firms (AIRWorldwide, EQECATand Risk
Management Solutions) to improve insurance risk management. After several major hurri-
cane and earthquake events worldwide, including Hurricane Hugo in 1989 and Hurricane
Andrew in 1992, these firms made their models more sophisticated and their exposure
databases more comprehensive (Cummins, 2007). Other companies subsequently devel-
oped in-house models, and US federal and state government supported development of two
free open-source models: HAZUS-MH (Vickery et al., 2000a, 2000b, 2006a, 2006b;
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FEMA, 2007) and the Florida Public Hurricane Loss Model (FPHLM) (Powell et al., 2005;
Pinelli et al., 2008). The details and assumptions of the free models are available in the peer-
review literature and technical documents, because they are intended for risk mitigation,
regulation and emergency preparation, but the majority of cat models are proprietary and
intended for pricing insurance or reinsurance policies, so their details are not public.

Cat models are used to make probabilistic estimates of property losses: mostly residential,
commercial and industrial buildings, but also forests and off-shore energy structures such as
oil platforms and pipelines. These may be general assessments, such as expected losses for
the following year, or specific forecasts for a recent hazard event (e.g. insured losses from
Hurricane Katrina: RMS, 2005). Their comprehensive modelling of the entire hazard-to-loss
causal chain – hazards, impacts, exposure, vulnerability, damage and loss – is unique in
hydrometeorological hazard risk assessment. Cat models combine several modules: a
hazard model (statistically based, but where possible physically motivated:
Section 5.3.3.2); extensive databases that map exposure and vulnerability (such as property
location, market value, reconstruction value, age, construction type and number of storeys);
a damage model (structural damage as a function of hazard intensity per building type,
derived from wind tunnel tests, post-event analysis and expert judgement); and a cost model
(including cost of repairs/replacement, cost increases due to demand surge, business
interruption, relocation and insurance policy details). Monte Carlo techniques are used to
simulate tens of thousands of years of hazards, as in weather generation, which are
propagated through the modules to estimate statistical properties of loss. Cat models are
tailored to particular hazard types – the first were constructed for earthquakes, hurricanes
and floods, but other natural hazards are now covered, including mid-latitude wind storms,
winter storms, tornados and wildfires – and particular regions, such as the Gulf and Atlantic
coasts of the United States. The region-specific information is not only the portfolio at risk
but also local environmental conditions such as topography (for modelling precipitation),
surface roughness (for wind dissipation) and location of trees (for tree debris). Cat model
outputs include probability distributions of loss and exceedance probability (EP) curves for
both total and insured losses. A reference text is Grossi and Kunreuther (2005).

The three objectives described above – return levels, covariates and ‘pseudo-hazards’ –
are discussed here according to the characteristics of the data: stationary and independent
(Section 5.3.3.1), correlated (Section 5.3.3.2) and non-stationary (Section 5.3.3.3). A
reference text for extreme value modelling is Coles (2001). An overview of techniques
for correlated or non-stationary hydrometeorological observations is given by Khaliq et al.
(2006).

5.3.3.1 Stationary independent data

If observations can be treated as independent and stationary, estimation of the frequency and
intensity of extremes is greatly simplified. How often this may be possible is discussed at the
end of the section.

Under these assumptions, and if the record is sufficiently long, the extremes of continuous
data may be characterised with the extreme value limit theorem, which is analogous to the
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central limit theorem. This states that the renormalised (explained below) block maxima of
random observations from the same distribution tend asymptotically, if they converge at all,
to one of the generalised extreme value (GEV) family of distributions: Gumbel
(exponential-tailed), Fréchet (heavy-tailed) or negative Weibull (bounded, light-tailed).
Examples of these are shown in Figure 5.4. The r-largest maxima in a block can equivalently
be described with a more general form of the GEV (see Coles, 2001). The extreme value
limit theorem also states that the amounts by which a threshold is exceeded tend asymptoti-
cally to one of the generalised Pareto distribution (GPD) family of power law distributions.
In the case of r-largest and POT, there is a bias–variance trade-off in which larger (typically
longer) samples produce tighter predictions, but may introduce bias through more serious
violations of modelling assumptions. The choice may be aided with a graphical method
(mean residual life plot: Coles, 2001) or sensitivity studies (see below).

The strength of extreme value theory (EVT) is that it provides tools to estimate return
levels without making a-priori assumptions about the probability distribution from which
the observational data or their extremes are sampled. The limit theorem removes the need to
model the full dataset, and the distribution of the extremes can be inferred empirically by
estimating the characteristic parameters from the data. The GEV distribution has parameters
for location, scale and shape, which control the mean, asymmetry and rate of tail decay of the
distribution, respectively: a positive shape parameter corresponds to the Fréchet, zero to
Gumbel and negative to the negative Weibull. Early extreme value analyses did make
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Figure 5.4 Examples of extreme value distributions, with values given for the location (μ), scale (β),
and shape (ψ) parameters.
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a-priori assumptions about which of these applied, constraining the range of the shape
parameter, but this is generally thought unnecessary and undesirable unless there is a strong
physical motivation. Renormalisation is simply subtraction of the location parameter and
division by the scale (Coles, 2001). The GPD has scale and shape parameters: shape equal to
zero corresponds to the exponential distribution.

The GEVand GPD are the dominant model choices, but other distributions are occasion-
ally used, such as the generalised logistic (GLO) distribution (e.g. Kyselý and Picek, 2007)
or the more general kappa family of distributions (e.g. Park and Jung, 2002), of which the
GEV, GPD and GLO are members. Wave heights above a threshold may be fitted with a
modified Rayleigh distribution, one of theWeibull family (Tucker and Pitt, 2001). EVT does
not apply to discrete distributions: count data, such as number of tropical cyclones or
threshold exceedances, are usually modelled with a Poisson distribution or similar (e.g.
Jagger and Elsner, 2006). A parametric model (distribution or family of distributions) is
almost always specified, because it enables extrapolation to rarer extremes than are present
in the data, but non-parametric approaches are available (e.g. Beirlant et al., 2004).

Most approaches are frequentist, treating the parameters as fixed but unknown. One of the
most commonly usedmethods of inference is maximum likelihood (ML) estimation, a broad
range of techniques including the method of least squares for finding single ‘best’ parameter
values with confidence intervals. ML estimation is very often preferred because it is
intuitive, many software tools are available and it is flexible: for example, it is easy to
include covariates (Section 5.3.3.3). For small samples, ML may give a poor estimate
(Engeland et al., 2004) so moment-based approaches such as probability-weighted
moments or L-moments (Storch and Zwiers, 2003) might be more appropriate, though
moments do not always exist for extreme distributions. Model fitting may be repeated for
sensitivity studies: for example, to assess the stability of parameter estimates to the choice of
threshold or r value. Once the parameters are estimated, model ‘goodness-of-fit’ is assessed
with graphical or other tests. If the model is thought to describe the data sufficiently well, it is
used to estimate return levels, usually for more extreme quantiles than are present in the
observations. Uncertainty in the return level estimates is assessed using likelihood or
bootstrapping methods. Parameter and model uncertainty assessment are discussed in
Section 5.3.3.4.

A judgement must be made about whether the data may be considered stationary. Records
of extremes that vary seasonally may be treated as stationary by using the annual maxima,
but long-term, interannual non-stationarity might seem hard to avoid, given the earth’s
climate is never at equilibrium. However, stationarity might be approximated by taking
logarithms of the ratio of successive observations (Coles, 2001), or assumed if the observed
quantities are not closely linked with global atmospheric temperature (e.g. Wimmer et al.,
2006), or the record relatively short (e.g. Baccini et al., 2008), or the spatial domain small
(e.g. Kyselý and Picek, 2007). The trade-off in using a spatial or temporal subset to
approximate stationarity is that it leads to larger statistical parameter uncertainties and
thus less reliable probability assessments, especially for large-magnitude hazards. Another
important point to consider is whether changes in the measurement process – for example in
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spatial coverage, fraction of events recorded or systematic error – have created a false
impression of non-stationarity (e.g. surface temperatures: Brohan et al., 2006; rain gauges:
McGregor and MacDougall, 2009; hurricanes: Vecchi and Knutson, 2011).

Non-stationarity is present to different degrees in different hazard observational records.
The number of warm days (globally) and heat waves (in many regions) are thought to have
increased since 1950, as have the number of heavy precipitation events and drought
intensity and length in some regions (IPCC, 2011). Storm intensity in Europe does not
seem to show a significant trend during the twentieth century (Della-Marta et al., 2009).
Hurricane frequency is thought not to have increased globally during the twentieth century,
but there is disagreement about whether their intensity has increased with global mean
temperature or is varying on natural cycles (Emanuel, 2005; Webster et al., 2005; Pielke,
2005, 2006; Anthes et al., 2006; Landsea et al., 2006; Landsea, 2007; IPCC, 2011). Non-
stationarity of the hurricane measurement process is a contributing factor in this debate.

Economic losses from extreme weather events have increased, largely due to increasing
exposure and assets (IPCC, 2011). Losses due to hurricanes have been concluded to be
stationary after normalising for inflation and increasing population, wealth and (in the case
of the United States) settlement of coastal areas for US losses from 1900–2006 (Pielke et al.,
2008) and global losses from 1950–2005 (Miller et al., 2008), though there may be a trend in
the United States since 1970 due to increased hurricane activity in this region (Miller et al.,
2008; Schmidt et al., 2009). It is difficult to account for all covariates, such as loss reporting
and vulnerability, in these studies (Miller et al., 2008).

A general note of caution on the assumption of stationarity: a failure to reject the null
hypothesis that the historical process is stationary may simply reflect the low power of the
test statistic for identifying a non-stationary process that may behave differently in the
future. If there are underlying physical reasons for believing that the data are stationary, this
may be more robust.

5.3.3.2 Correlated data

Correlations in data may occur in the form of multivariate, spatial or temporal dependencies.
These are common in hydrometeorological hazards due to the teleconnections and feed-
backs that link places and aspects of climate with each other, the large spatial extent of
atmospheric and ocean currents and the temporal persistence of meteorological and environ-
mental phenomena.

There are analogues of EVT for multivariate extremes (such as heat waves, droughts and
storms), including component-wise block maxima and threshold excesses (Coles, 2001).
However, this involves sequential ordering of each dimension: results depend on the
ordering and there may not be an obvious choice for a given problem. An alternative is
the copula approach, in which the joint distribution for continuous random variables is
broken down into the individual, ‘marginal’ distributions and a copula function that models
their dependence structure. A family of copulas is chosen (e.g. Gaussian) and their param-
eters estimated along with those of the marginal distributions. A general reference for
copulas is given by Nelsen (2006), their application to risk management by McNeil et al.
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(2005) and to natural hazards by Salvadori et al. (2007). Schölzel and Friederichs (2008)
give a useful overview and call for copulas to be more widely used in weather and climate
research.

Hydrometeorological observations are very often correlated in space and time because of
spatially extensive or temporally persistent weather systems and modes of natural varia-
bility. In the case of continuous variables, this can lead to a very heavy-tailed distribution for
which the GEVand GPD are no longer valid. Block maxima might be treated as independ-
ent, if the dependence in the full dataset is not too long-range, but threshold exceedances
cannot due to the ‘clustering’ of events that exceed a given threshold. This may be dealt with
by processing the data to approximate temporal independence or by adjusting the assumed
frequency model to account for the dependence.

The simplest approach for approximating temporal independence is to apply a simple
filter. Brown et al. (2008), for example, thin their temperature observations by using only the
maximum threshold exceedance in each consecutive ten-day window. This fixed-window
approach fails if there are some particularly persistent clusters in the data. More often used is
a tailored pre-processing, known as ‘declustering’, which identifies individual clusters in the
data in order to model their maxima. The most common of these is ‘runs declustering’,
which uses interexceedance time (a minimum gap length between clusters; e.g. Della-Marta
et al., 2009). These methods necessitate a bias-variance trade-off between the number of
observations and their independence, an obvious disadvantage for datasets of rare events.
Their design may also be rather subjective. An alternative is decorrelation, or ‘pre-
whitening’, in which dependence is modelled and removed. In general this is only appro-
priate if there are physical motivations for a particular correlation structure, and care must be
taken to avoid removing an underlying trend (Storch, 1995; Khaliq et al., 2006).

A simple approach to incorporating dependence in the model is to inflate the variance: for
example, by replacing a simple Poisson model of count data with one that includes a
dispersion parameter (e.g. negative binomial, or the generalised linear model family),
thereby allowing for overdispersion (e.g. Vitolo et al., 2009). Another commonly used
method is to empirically estimate the ‘extremal index’ and use this to modify the parameters
in the GPD (Coles, 2001). The extremal index is the reciprocal of the ‘limiting mean cluster
size’: for example, an extremal index of 0.2 indicates a mean cluster size of five exceed-
ances, where ‘limiting’ refers to clusters of exceedances of increasingly high thresholds.
Extremal index is sensitive to cluster definition, but fortunately this does not always
propagate to the estimated return levels (Coles, 2001). An alternative is to model the
correlation explicitly and incorporate this in the statistical inference: for example, Baccini
et al. (2008) use generalised estimating equations (GEE) for count data to allow the
inclusion of correlation structure. Wavelet and kernel density estimation methods have
also been proposed for dependent data (Khaliq et al., 2006).

Weather generation has historically focused on precipitation, for which temporal persis-
tence is important. In parametric weather generation, time dependence is described with an
autoregressive or a clustering model (e.g. Jones et al., 2009; Kyselý, 2009; Nicolosi et al.,
2009). Non-parametric methods, which sample from historical observations, must preserve
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temporal structure: for example, by taking multi-day sections of data. Models with spatial
correlation have been developed (Wilks and Wilby, 1999; Mehrotra et al., 2006), but in
general weather generation is location-specific (e.g. Jones et al., 2009).

In contrast, catastrophe modelling of hurricanes attempts to quantify their spatial extent,
direction of movement, evolution through time and spatio-temporal propagation of their
impacts. Spatio-temporal evolution is important for estimating damage: a low-category
hurricane that lingers can be more destructive than a high-category one that moves swiftly
though. This evolution can be difficult to infer from individual wind speed observations, if
they are even available (anenometers often fail in high winds), but is straightforward from
individual hurricane tracks. Cat modelling thus has a different philosophical grounding to
EVT modelling: it attempts to capture the space-time behaviour of entire event systems
(hurricane genesis, landfall and decay) and derive wind speeds from these, rather than
characterising the wind speed point data directly.

Cat modelling of hurricanes, though physically motivated where possible, is fundamen-
tally statistical analysis of historical data. Hall and Jewson (2007, 2008) describe various
methods for stochastically generating synthetic storm data by calibrating with, or sampling
from, historical observations of their location, intensity, direction and speed. Separate
statistical models are used for each aspect of the storm: for example, a spatial Poisson
process for genesis; a random walk for deviation from mean tracks; and, more recently,
regression against time of year and sea surface temperature for evolution of intensity. The
impact of the hurricane is then propagated with a physically motivated statistical model to
generate region-wide wind fields (with wind magnitudes derived from hurricane direction,
circular motion and speed of decay) and downscaled (Chapter 6) to derive winds at point
locations; other quantities such as precipitation are also modelled. Correlation is incorpo-
rated by the sampling or modelling of entire hurricane systems through time and with model
parameters that vary smoothly in space. Cat models typically assume individual hurricane
events are temporally independent, although research methods are being developed to
account for clustering. They also assume stationarity, but tend to be used for very short
time horizons or else observe that the loss uncertainty dominates the hazard uncertainty.

5.3.3.3 Non-stationary data

Most datasets of hydrometeorological extremes are non-stationary. If a near-stationary
subset cannot be selected, one solution is to build non-stationarity into the statistical
model, but this raises the issue of how to ensure the model holds in the past and continues
to hold in the future under changing forcings. Another solution is to regress the hazard or
impacts onto covariates, but this also requires assumptions about the stability of these
relationships into the future. Statistical modelling approaches to non-stationarity are dis-
cussed in this section; physical modelling approaches are discussed in Chapter 6.

Some kinds of non-stationarity are more difficult to deal with than others. The seasonal
cycle is an important time-varying influence on many hazards, but a relatively predictable
one. The effect of a mode of natural variability on a hazard can be quantified, and if it is long-
range (in time) can be used as a predictor variable for forecasting. However, the long-term
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trends of climate change, and other driving factors such as land use and societal change, are
only somewhat predictable in the near-term and much more uncertain after a few decades.
For the hazards and impacts that are influenced by changing drivers, neither an assumption
of stationarity nor a model of recent non-stationarity are likely to be valid for long.

There are a variety of strategies available to incorporate non-stationarity in a statistical
model of historical observations. Typically these focus on changes in location (the mean of
the data, or the location parameter of the distribution). They may also include the scale or
other parameters, though it is more difficult to estimate the shape parameter when it is
allowed to vary (Coles, 2001). Selection of the extremes may be affected: for example, in
POTanalysis the threshold of exceedance might be varied with time (e.g. Brown et al., 2008;
Della-Marta et al., 2009). The simplest approach is to divide the data into subsets that can be
assumed stationary and estimate the model parameters separately for each. The subsets may
be determined by non-overlapping time windows (e.g. Coles et al., 2003), moving time
windows (e.g. Zhang et al., 2001), an external factor such as ‘high’ or ‘low’ values of an
index of climate variability (e.g. Jagger and Elsner, 2006) or abrupt jumps (‘change points’)
identified with regression, non-parametric (e.g. Li et al., 2005) or Bayesian methods (e.g.
Elsner et al., 2004; Zhao and Chu, 2010). An overview of change point detection is given by
Kundzewicz and Robson (2004). Dividing the data into subsets is also used for assessing
changes in return period and in generating pseudo-weather datasets for the present day and
long-term future (Chapter 6). A more flexible approach to discrete subsets is to model the
dependence of the parameters on time: as a function of the year, the seasonal cycle or a
combination of these (e.g. Ribereau et al., 2008; Kyselý, 2009; Menéndez et al., 2009).

Non-stationarity may be diagnosed using non-parametric tests based on ranking or resam-
pling of the data such as the Kendall’s tau (e.g. Kunkel et al., 1999; Zhang et al., 2001;
Chavez-Demoulin and Davison, 2005). This avoids the need to propose a model for the data,
but does not allow extrapolation outside the data nor identify the shape of the trend.
Kundzewicz and Robson (2004) outline some commonly used non-parametric tests of trends
in hydrological data. A proposed semi-parametric approach is ‘local likelihood’, in which
parameters are estimated separately at each time using the whole dataset and re-weighted so
that nearby points in time assume more importance (e.g. Ramesh and Davison, 2002); this
may be helpful in choosing a suitable parametric form (Khaliq et al., 2006).

It may be desirable to remove non-stationarity to de-trend the data. Eastoe and Tawn
(2009) point out that there can be problems in fitting data if the exceedance threshold is
allowed to vary with time, so they propose a pre-processing approach where the trend is
modelled and removed. Pre-processing, also known as ‘pre-whitening’ (as is decorrelation,
Section 5.3.3.2), is discussed by Chatfield (2004).

A hazard, or parameters of a distribution such as the GEV, may be modelled as a function
of other variables. These regression approaches typically aim to assess the influence of
climatic factors on hazards or the influence of hazards on vulnerable entities. Covariates may
be trends (such as global mean temperature) or oscillations (such as modes of natural
variability), though over short timescales it may be difficult to distinguish between these.
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The parameters of the regression model are estimated with ML or other methods
(Sections 5.3.3.1, 5.3.3.4).

Regression of hazards on preceding climatic conditions can be used for near-term forecast-
ing. This has been particularly important for tropical cyclones on seasonal timescales, for
which physical modelling is challenging due to the small spatio-temporal scales of cyclo-
genesis and the initial condition uncertainties. Counts of hurricanes, for example, have been
modelled using Poisson regression or the more flexible GLM with respect to sea surface
temperatures (AIRWorldwide Corporation, 2006) or metrics such as the ENSO, NAO, SOI
(Southern Oscillation Index), Atlantic Multidecadal Oscillation, and Sahel Rainfall Index
(Elsner, 2003; Elsner and Bossak, 2004; Elsner and Jagger, 2006). Hurricane wind speeds
have been modelled with respect to global mean temperature (Jagger and Elsner, 2006).
Camargo et al. (2007) outline predictor variables for statistical seasonal hurricane forecasts
from different meteorological agencies around the world. Forecasts of hurricane frequency are
increasingly made with dynamical models or statistical-dynamical methods, but forecasts of
their intensity and landfall are currently more successful from statistical methods. Regression
onto modes of internal variability has also been used for mid-latitude storms (e.g. Mailier
et al., 2006; Vitolo et al., 2009) and heat waves (e.g. Rusticucci and Vargas, 2002).

Regression-type approaches are important in impacts modelling, where the physical
mechanisms are often poorly known or difficult to predict. It is used, for example, to
quantify the relationship between extreme temperature or precipitation and human mortality
(Githeko and Ndegwa, 2001; Sheridan and Kalkstein, 2004; Baccini et al., 2008), and
between hurricanes and economic losses (Saunders and Lea, 2005).

Regression onto modes of natural variability is a space-for-time substitution, deducing a
relationship from recent spatial patterns and using it for the future. It can also be viewed as a
device for handling spatial dependence. That is, if a hazard can be seen to depend on a large-
scale feature such as the NAO, spatial structure can be modelled by quantifying the depend-
ence on the NAO in each location, treating each location as conditionally independent, then
inducing spatial dependence through variation in the NAO. For assessments of the far future,
regression approaches do not avoid the problem of non-stationarity. They rely on an assump-
tion of the stability of these relationships (e.g. teleconnections) even though they may be
significantly altered by changing boundary conditions.

Non-stationary spatio-temporal modelling is very challenging, especially for extremes.
This is a relatively new field in statistics, and some of the simpler approaches are rather ad
hoc, so it is important to be cautious in interpreting the results. Ribereau et al. (2008: 1037),
for example, warn that ‘Extrapolating the trend beyond the range of observations is always a
delicate and sometimes dangerous operation (since we assume that the trend will remain the
same in the future), especially when dealing with extremes. Hence high return levels in a
non-stationary context must be interpreted with extreme care.’

5.3.3.4 Uncertainty assessment in statistical analysis

Statistical analysis uncertainty can be divided into those from inputs (measurements), model
parameters and model structure. Measurement uncertainties vary in space and time due to
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the changing coverage and quality of observation networks (e.g. surface temperatures:
Brohan et al., 2006; rain gauges: McGregor and MacDougall, 2009; and hurricanes:
Vecchi and Knutson, 2011). Iman et al. (2005a, 2005b) describe the effects of perturbing
the inputs of a hurricane catastrophe model.

Parameter confidence intervals are commonly estimated with likelihood-based methods
(such as the ‘delta’ method, which relies on asymptotic and regularity assumptions, or
‘profile likelihood’, which is generally more accurate but requires more computation; Coles,
2001) or bootstrapping methods (either non-parametric, by resampling from the original
data, or parametric, by resampling from the fitted distribution; Davison and Hinkley, 1997).
Alternatively, parameter probability density functions can be estimated with Bayesian
methods, which are becoming more popular in extremes analysis because they allow prior
information to be incorporated, estimate the entire distribution (or summary characteristics
such as moments or quantiles), do not require asymptotic and regularity assumptions and are
flexible and transparent, This enables assimilation of disparate information (e.g. Jagger and
Elsner, 2006; Baccini et al., 2008), and makes it easier to ‘keep track’ of all sources of
uncertainty (e.g. Coles et al., 2003). Pang et al. (2001) give an introduction to two of the
simplest computational methods in the context of extreme wind speed analysis. Generalised
maximum likelihood (El Adlouni et al., 2007) has been suggested as a compromise,
reducing computational expense by focusing on the mode of the posterior distribution.

Quantification of uncertainties can be sensitive to the chosen subset of data and method:
for example, confidence intervals may be smaller for r-largest maxima than block maxima
(due to the larger dataset), but care must be taken that the model is still valid with the lower
threshold; confidence interval estimates for some distributions may be very dependent on
the method (e.g. short-tailed distribution for storms: Della-Marta et al., 2009); non-
parametric bootstrapping may underestimate uncertainties relative to parametric boot-
strapping (Kyselý, 2008); and likelihood-based methods may give unphysical parameter
estimates (Pang et al., 2001).

Structural uncertainty in statistical analysis is associated with the choice of distribution or
model and whether the necessary assumptions for that model are valid (e.g. independence,
stationarity and regularity). Models are usually used to extrapolate to rarer extremes than are
in the observations; GEV-based estimates of uncertainty for extrapolated values should be
considered lower bounds (Coles, 2001). Robust testing of model reliability is essential.
Goodness-of-fit, the success of a model in describing observations, is assessed using
graphical methods such as quantile plots (Coles, 2001; Beirlant et al., 2004) or statistical
tests (Coles, 2001); the properties of these tests vary, which can affect the results (e.g.
Lemeshko et al., 2009, 2010).

In extreme value analysis, data selection affects model structural uncertainty: r-largest
and peaks-over-threshold analyses use more of the observations than block maxima, and
therefore provide more information with which to check the model, but if r is too large or the
threshold is too low the model assumptions may no longer be valid. Long record length is
required for the asymptotic limit, but a short record may be required for stationarity.
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5.4 Risk management

Risk management comprises the steps taken to assess, mitigate and cope with risk in the
periods between hazard events (monitoring and planning: Section 5.4.1) and during and
after hazard events (communication, response, recovery and analysis: Section 5.4.2).
Aspects of risk management that are relevant to climate change adaptation are discussed
in Chapter 6.

5.4.1 Hazard monitoring and planning

Monitoring of hazards is the real-time forecasting and early warning systems of hazard
events or their impacts (Section 5.4.1.1). Planning for hazards encompasses developing
tools to enable rapid decision-making, such as event triggers or emergency procedures
(Section 5.4.1.2), and making long-term decisions, such as land-use planning, regulation of
the private sector or hedging financial risk (Section 5.4.1.3).

5.4.1.1 Monitoring and warning systems

The purpose of monitoring systems is primarily to inform decision-making before and
during a hazard event. They provide information that can be translated into event proba-
bilities, and are often assimilated into NWP models that generate warnings and trigger
actions (such as communication or emergency response) when the forecast probability for a
hazard of a given magnitude exceeds a threshold. Monitoring networks are well developed
for most hydrometeorological hazards due to longstanding meteorological services around
the world. Individual agencies such as the UK Met Office (UKMO) issue daily weather
forecasts that include warnings of extreme precipitation, storms, heat waves and severe
marine conditions. They also contribute to regional warning services such as the European
Meteoalarm (http://www.meteoalarm.eu) and offer consulting services for users that require
non-standard forecasts.

Monitoring systems are continuously updated with improved understanding of the under-
lying processes (e.g. for droughts, tropical cyclones) and links with impacts (e.g. for heat
waves). Heat wave monitoring, for example, has traditionally been based on daily maximum
temperatures, but since heat wave disasters such as the 1990s Chicago and 2003 European
events a number of cities have introduced warning systems that take account of other
conditions linked with excess mortality and ill health. The Heat Index of the NOAA NWS
includes both temperature and humidity, and several warning systems use spatial synoptic
classification (Sections 5.2.1.2, 5.4.1.2).

Lead times govern the effectiveness of early warning systems in minimising hazard
impacts. Even if the inception of some hazards cannot be accurately simulated, the con-
ditions under which they might form are known and this can be used to set a threat level.
Tornado lead times are very short, up to 15–20 minutes, and warning systems are only
operational in a few countries, but the atmospheric conditions in which a tornado is formed
can be forecast several hours in advance, which enables people to move nearer to shelters

Risk and uncertainty in hydrometeorological hazards 129



(United Nations, 2006). The number of tornado-related deaths significantly dropped in the
United States during the last century, mainly as a result of the Doppler Radar Network
(United Nations, 2006). Tropical cyclones such as hurricanes are monitored globally by the
WMO Global Tropical Cyclone Warning System, with lead times ranging from 24 hours to
several days (United Nations, 2006). A long lead time is necessary for large-scale evacua-
tions to avoid widespread loss of life, but not sufficient: evacuation orders were given two
days before Hurricane Katrina made landfall in Louisiana, but they were voluntary. This,
along with other failings, led to avoidable deaths (Section 5.4.2.4).

For longer timescales, predictions of the overall severity of the coming tropical storm
season are made with methods from across the spectrum of approaches: statistical, histor-
ically calibrated; the new generation of high-resolution dynamical models; and hybrid
statistical-dynamical methods (Sections 5.3.2, 5.3.3; Camargo et al., 2007). Severity is
measured in terms of, for example, frequency and ACE, and expressed as summaries (e.g.
median, spread and long-term mean) or probabilistic forecasts with uncertainties
(Section 5.4.2.1).

Drought is a multivariate and slow-developing hazard, so warning systems are more
complex and less well-developed. Droughts do not require rapid response, but the contin-
uation of an existing drought can be assessed with an NWP model in seasonal prediction
mode. Droughts are typically monitored by national or regional centres in association with
meteorological agencies, using observations of several quantities including precipitation,
streamflow, groundwater levels and snow pack, together with historical observations and
climate model simulations (United Nations, 2006). These are combined into multi-index
(Section 5.2.1.3) drought monitors that include quantitative and graphical tools. The US
National Drought Mitigation Center (NDMC), for example, together with the NOAA and
the US Department of Agriculture, produces the US Drought Monitor based on the PDSI,
SPI and other metrics. A Global Drought Monitor based on PDSI, SPI and the NDMC
drought categories is produced by the University College London (UCL) Hazard Research
Centre.

Impacts of hazards may also be monitored to aid decision-making and, in the longer term,
policy-making. During summer months, for example, the UK Health Protection Agency
monitors heat wave health impacts using the number of calls to the National Health Service
advice phoneline and the number of consultations with family doctors (‘Heatwave plan for
England 2009’, available from http://www.dh.gov.uk). In the United States, the NDMC
monitors drought impacts with the Drought Impact Reporter, which shows the number of
reported impact events by state and type (agriculture, water and energy, environment, fire
and social). For regions vulnerable to famine, the Famine Early Warning Systems Network
(FEWS NET) monitors a number of driving factors such as rainfall and vegetation to
provide early warning for issues of food security.

Although monitoring and warning systems for hydrometeorological hazards are rela-
tively well developed, a United Nations report commented that collaboration between the
hydrometeorological community and the disaster risk management and response commun-
ities could be improved (United Nations, 2006).
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5.4.1.2 Rapid decision-making

Quantitative thresholds have been defined to aid decision-making during an event for
many of the hydrometeorological hazards. Heat waves, in particular, have clearly defined
procedures. Some are based only on temperature, while others include factors important to
health identified in statistical analysis of past observations. In the United States, for
example, alert procedures are triggered when the NWS Heat Index (Section 5.2.1.2) is
expected to exceed 105–110°F (41–43°C), depending on local climate, for at least two
consecutive days. The UK ‘Heatwave plan for England 2009’ has four levels of decision-
making and action, each a list of responsibilities for government departments and author-
ities. The first is triggered by date (1 June), outlining general preparedness and urban
planning measures; the second is triggered by a UKMO forecast of 60% probability of
temperatures exceeding regional impact thresholds for maximum and minimum temper-
atures on at least two consecutive days; the third when those thresholds are exceeded; and
the fourth when the heat wave is severe and prolonged. Regional maximum and minimum
temperature thresholds range from 28°C and 15°C for the north-east to 32°C and 18°C for
London. This system draws on the World Health Organization’s ‘EuroHEAT’ project
(Michelozzi et al., 2007; Baccini et al., 2008).

Triggers based on synoptic heat wave classification (Section 5.2.1.2) and forecast impacts
are used by the Toronto Heat Health Alert System. If an ‘oppressive air mass’ is forecast
with a probability of excess mortality exceeding 65%, various actions take place, including:
distribution of information through media, government and non-profit organisations; direct
contacting of vulnerable individuals; opening of a Heat Information Line; and daytime
opening of homeless shelters. If the probability of excess mortality is predicted to be greater
than 90%, additional actions occur such as the opening of community ‘Cooling Centres’ and
the extension of swimming pool opening hours.

Risk management for droughts also include quantitative thresholds. In the UK, the
Environment Agency produces drought plans for water companies outlining a range of
trigger levels based on drought status and calendar date, with corresponding actions to
manage supplies and demand (UK Environment Agency, 2009).

Severe events trigger emergency procedures, which may include mandatory orders to
protect public health or services. One example is the Assistance to Shelter Act introduced in
2009 by the Legislative Assembly of British Columbia, which states that a police officer
may transport a person they consider to be at risk to an emergency shelter ‘using reasonable
force if necessary’. In the case of severe drought in the UK, interruptions to domestic water
supply can be authorised by emergency drought order (EDO); these have been used three
times in England and Wales since 1945, most recently in 1976 (UK Government Cabinet
Office, 2008). For some catastrophic hazards such as hurricanes, local and national govern-
ments have the authority to order mandatory evacuation, though in practice this is not, or
cannot be, enforced (Fairchild et al., 2006; Townsend, 2006). Mandatory orders are not only
given by the state or police; in the UK, restrictions on non-essential water use, such as
hosepipe and sprinkler bans, may be imposed during droughts by the private water
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companies without permission from the government or Environment Agency – these may be
sufficient to avoid severe impacts (UK Government Cabinet Office, 2008).

Training exercises are used to inform and develop emergency plans. The US Federal
Emergency Management Agency (FEMA) funded and participated in a five-day hurricane
disaster simulation exercise in the New Orleans area called ‘Hurricane Pam’ about a year
before the real Hurricane Katrina struck the same location. The hurricane category was the
same and the simulated impacts very similar, including large-scale evacuation, breached
levees and extensive destruction (US House of Representatives, 2006). Hurricane Pam was
not a total success in preparing officials for Hurricane Katrina (Section 5.4.2.4), but the
medical contingency plan it yielded, though unfinished, was judged ‘invaluable’ to the
response effort (US House of Representatives, 2006).

5.4.1.3 Long-term planning

Long-term planning for risk management should ideally aim to use ‘low-regrets’ options
(IPCC, 2011) that address a wide range of extreme events and other societal benefits such as
improved livelihoods, sanitation, infrastructure and sustainability. Some examples are: for
heat waves, improved social care networks for vulnerable groups; for droughts, improved
irrigation efficiency and use of drought-resistant crop varieties; and for hurricanes, adoption
and enforcement of building codes (IPCC, 2011).

Planning regulations exist to enforce good risk management in the private and public
sectors and minimise losses for vulnerable entities and infrastructure. An important area of
long-term planning is the setting of design codes. Buildings and other structures must be
constructed to withstand extreme wind, and extreme waves and currents if offshore.
Regional variations in building code levels and their enforcement can significantly affect
vulnerability (RMS, 2005). Design codes are almost always expressed in terms of return
values and thus inherently assume stationarity of risks. For safety reasons, the intended
design life of a structure is invariably much shorter than the design value. The most
commonly used design return values are 50 or 100 years. Ship certification agencies such
as Lloyds and Norske Veritas demand that vessels can withstand 50-year return wave
conditions, and limit their certification to those sea areas and seasons where this can be
guaranteed.

Insurers manage risk using the predictions of catastrophe models (Section 5.3.3). A
simple example given by RMS (2008) is summarised here. If a cat model (or the weighted
or unweighted mean of several models) estimates the 99.6th percentile probability of
exceedance at US$40 million insured losses for a given year, but the insurance company
only has capital to cover US$30 million losses, it must reduce the portfolio at risk. Some
options for this are: increasing premiums, refusing coverage or hedging the risk with
reinsurance or catastrophe bonds (insurance-linked securities related to natural catastro-
phes). ‘Cat’ bonds are increasingly seen as more desirable than reinsurance because they
provide access to a very large pool of capital and most investment portfolios have little
correlation with natural catastrophes (RMS, 2008). More details on risk management with
catastrophe models are provided by Grossi and Kunreuther (2005).
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Insurance industry risks are regulated by external public bodies to help protect the public
and public funding from profiteering or collapse. The Florida Commission, for example,
certifies catastrophe models to ensure they give plausible predictions and that insurers have
sufficient capital for the predicted exceedance probabilities. The ‘Solvency II’ regulation
treaty is a recent development in the European insurance industry with global repercussions.
European insurance and reinsurance companies must demonstrate to European Union
regulators their solvency under the risk they retain, and catastrophic risk from hydro-
meteorological hazards is a major contributor. ‘Solvency II’ is driven by the European
Union, but companies with global portfolios must estimate their global risk. There are
similar initiatives in the Japanese and American insurance and reinsurance markets. A
further example of insurance industry regulation is described in Section 5.4.2.4.

5.4.2 Hazard communication, response and recovery

5.4.2.1 Communication

Risk communication for extreme weather hazards might have some advantage over other
hazards because the public are exposed to daily weather forecasts, though familiarity could
breed overconfidence in interpretation. There is evidence that the public infer their own
probabilities from deterministic forecasts based on their past experiences, such as a decrease
in forecast skill with increasing lead time, or a reduced skill for rainfall relative to temperature
(Morss et al., 2008; Joslyn and Savelli, 2010), but this blurs the distinctions between
forecaster, decision-maker and user. Alternatively, a probabilistic forecast can be provided:
since the 1960s, the NWS (known at the time as the Weather Bureau) has supplied probability
of precipitation (PoP) forecasts. There is evidence to suggest that users make better decisions if
forecast uncertainties are given (Roulston et al., 2006; Roulston and Kaplan, 2009).

Extreme weather warnings summarise ensemble forecasts (Section 5.3.2.2) with varying
degrees of information content (see Stephens et al., 2012). The ‘probability’ or ‘risk’ of a
hazard essentially corresponds to the fraction of the ensemble that predicts a given event,
though additional processing and interpretation by human forecasters is usually involved. The
fraction may be expressed in categories: the UKMO, for example, issues ‘Severe Weather
Warnings’ using a traffic-light system with colours ranging from green for less than 20%
(‘Very low’) risk to red for greater than or equal to 60% (‘High’) risk. A similar approach is a
spatial map of probability contours, such as the NOAA Storm Prediction Center forecasts for
wind storms, tornados and hail (Figure 5.5); in the wind stormmaps, hatched areas correspond
to 10% or greater probability of wind gusts 65 knots or greater within 25 miles of a point. The
NOAA provides a ‘conversion table’ alongside these probability forecasts, with which users
can convert the numbers to risk categories ‘slight’, ‘medium’ and ‘high’.

For continuous variables (rather than discrete events such as storms), full ensemble
forecasts can be displayed as ‘spaghetti diagrams’. An example of this is provided by the
NOAANWS, though on the NCEP Environmental Modeling Center website rather than the
main NWS forecast site. The ensemble members are shown as individual contours, which
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diverge through time (Figure 5.6). Spaghetti diagrams are analogous to the ‘smiley face’
representations of risk often used in healthcare, because they show ‘multiple possible
futures’ (Edwards et al., 2002).

However, these forecasts of ensemble frequencies generally do not contain estimates of
uncertainty or model skill. Tropical storm forecasts issued by the NOAA are one exception:
their uncertainty is communicated in a variety of graphical representations, of which the
most well-known is the National Hurricane Center (NHC) ‘cone of uncertainty’ for storm
tracks. This includes: present storm location and type, forecast track line, a white-filled cone
representing average forecast error out to three days, a black cone outline representing
forecast error for days four and five, and coastlines under a watch/warning (Figure 5.7). The
cone is constructed from a series of circles, each of which represents a forecast period (e.g.
36 hours), with the size of each circle set to enclose 67% of the previous five years’ official
forecast errors. The cone of uncertainty is intended for real-time decision-making by the
public, government agencies and the private sector, and is widely used and largely success-
ful. However, many users do misinterpret it. Some interpret the central track line as the only
area of impact, while others interpret the cone as the area of impact rather than of storm track
uncertainty (for more detail, see Broad et al., 2007; Stephens et al., 2012). This has serious
implications because (by design) the cone only predicts the central path correctly about
two-thirds of the time. Broad et al. (2007) show that ‘more’ is not always better than ‘less’ in
the case of forecasting, and that uncertainty in one quantity (track location) may be misinter-
preted as certainty in another (impact region). New visualisation options have been suggested
(Figure 5.7), but the cone of uncertainty has not, as yet, substantively changed.

SPC EXP ENH RES TSTM OTLK
ISSUED: 1645Z 10/12/2009
VALID: 122000Z - 130000Z
FORECASTER: GARNER

Norman, Oklahoma
National Weather Service
Storm Prediction Center

10%

10%

10%
40%

40%

10%

Figure 5.5 An example of the NOAA Storm Prediction Center Experimental Enhanced Resolution
Thunderstorm Outlook: each forecast contains 10%, 40% and 70% contours for the probability of
thunderstorms during the forecast period. From the National Weather Service.
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(a)

(b)

Figure 5.6 NCEP spaghetti diagrams of temperature at 850 hPa height, showing model predictions for
contours −5°C and 20°C at 00 hours (a) and 192 hours (b). Adapted from the National Weather
Service.
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Figure 5.7 The forecast of Hurricane Ivan in 2004 displayed as: (a) The NHC cone of uncertainty
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136 T. L. Edwards and P.G. Challenor



Uncertainty estimates are more often provided for seasonal forecasts, reflecting the
inherent challenges of predictability. For North Atlantic tropical storms, the UKMO
includes uncertainty ranges for the number and ACE up to six months ahead. An example is:

Six tropical storms are predicted as the most likely number to occur in the North Atlantic during the
July to November period, with a 70% chance that the number will be in the range three to nine. This
represents below-normal activity relative to the 1990–2005 long-term average of 12.4. An ACE index
of 60 is predicted as the most likely value, with a 70% chance that the index will be in the range 40 to
80 – which is below normal relative to the 1990–2005 average of 131.

Median, spread and long-term mean are also visualised as barcharts. The simultaneous use of
different expressions (language, quantities and graphics) reflects lessons that have been learned
about public understanding of risk: it is clear there is no ‘one size fits all’ to communication or
visualisation of uncertainty (Broad et al., 2007; Morss et al., 2008; Joslyn and Nichols, 2009;
Joslyn et al., 2009; Spiegelhalter et al., 2011; Stephens et al., 2012).

During a hazard event, effective communication of the emergency response is also
essential, to minimise negative impacts (such as lawlessness) that can arise when people
are uncertain about their survival, rescue or prospects for evacuation (US House of
Representatives, 2006).

5.4.2.2 Emergency response

Most extreme weather disaster events require responses on timescales of hours to days
(droughts are an exception). Responses during a hazard event may be proactive (minimising
impacts) or reactive (coping with impacts). The former reflect successful implementation of
well-designed emergency procedures; the latter reflect poor implementation or poor plan-
ning, and may give rise to the need for humanitarian relief (IPCC, 2011). The training
exercise Hurricane Pam, for example, was criticised for its ‘emphasis on managing the
aftermath of the catastrophe and not creating initiatives that would diminish the magnitude’
(US House of Representatives, 2006).

Actions include evacuation, search and rescue, providing shelter and giving medical aid,
many of which require complex operations including logistics (management of the supply,
transport and provision of resources such as blankets and clean water) and effective public
communication (Section 5.4.2.1). Hazard response may include aspects that are not essential
to immediate survival such as care of mental health (e.g. farmers during drought: Hayes et
al., 2004). Police and military personnel may be required to enforce mandatory emergency
orders or, in the case of temporary societal breakdown leading to theft or violence, the basic
rule of law (e.g. Hurricane Katrina: US House of Representatives, 2006). Response efforts
may be hampered as infrastructure can be damaged and services interrupted in unpredictable
ways; this is particularly challenging if a disaster occurs on a large spatial scale. The
emergency post-disaster phase of Hurricane Katrina was unusually long (emergency shel-
tering ended only after 14 weeks), 3.5 times longer than the comparable-scale disaster of the
1906 San Francisco earthquake (Kates et al., 2006).
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5.4.2.3 Post-impact recovery

Post-event recovery includes restoring infrastructure and services, repairing or replacing
damaged buildings and clearing debris. If there are a large number of deaths, the recovery
period may also include dealing with corpses. Environmental recovery may include refor-
estation or reintroduction of wildlife species. Recovery planning should aim to mitigate risk
from future disasters (e.g. discouraging rebuilding in risk-prone areas) and if possible make
other improvements, such as upgrading services or increasing sustainability (IPCC, 2011).
Reddy (2000) examines aspects that make this more or less challenging, such as the level of
involvement of stakeholders, in the context of the 1989 Hurricane Hugo. Most aspects of
post-disaster recovery are similar to those of other natural hazards. One area in which they
differ is that the spatial extent may be very large – an entire country or continent affected by
the same hazard – which can hamper recovery of infrastructure and services.

5.4.2.4 Post-impact analysis and lessons learned

A catastrophic event provides a window of opportunity in which it is easier to make policy
changes due to increased awareness and availability of resources (CCSP, 2008). Post-event
evaluation of the forecasts and decision-making leads to improvements in risk assessment and
management: Weisheimer et al. (2011), for example, find they can successfully ‘hindcast’ the
2003 European heat wave once several model parameterisation changes aremade. New damage
and loss datasets may be used to verify impacts model predictions to improve risk management;
however, disaster-related datasets are generally lacking at the local level (IPCC, 2011).

As a result of the severe European heat wave in 2003, the UK introduced the Heat Health
Watch System, and during the hot weather of July 2006 only 680 excess deaths were
recorded (UK Government Cabinet Office, 2008). Lessons were similarly learned after
the Chicago heat wave of 1995 (Klinenberg, 2002). The city had made disastrous mistakes:
an emergency was not declared until hundreds of fatalities had occurred; the Fire
Department refused paramedic requests for additional staff and ambulances; there was no
system to monitor the hospital bypass situation; and the Police Department did not attend to
elderly residents. Public relations apparatus was even used to deny there was a disaster and
later to define the disaster as natural and unpreventable. When a second heat wave occurred
four years later, the city acted quickly and effectively, issuing warnings and press releases to
the media, opening cooling centres with free bus transportation, contacting elderly residents
and sending police officers and city workers to visit the elderly that lived alone. These
actions are thought to have drastically reduced the death toll in the second heat wave: 110
residents died, compared with an excess mortality of 739 four years earlier.

The US House of Representatives report on Hurricane Katrina described some successes in
risk assessment and management, including the ‘accuracy and timeliness of National Weather
Service and National Hurricane Center forecasts’ that ‘prevented further loss of life’. But it
also described a litany of failures and avoidable negative impacts. These included failures in:

(1) long-term planning: inadequate levees; inadequately trained and experienced staff; lack
of a regional shelter database; an overwhelmed logistics system;

138 T. L. Edwards and P.G. Challenor



(2) development of emergency procedures: lessons not fully learned from the Hurricane
Pam exercise; inadequate planning for massive damage to communications; lack of
preparation to evacuate and provide medical care for vulnerable groups;

(3) implementation of emergency procedures: mandatory evacuation ordered only 19 hours
before landfall, rather than at the time of early warning (56 hours); critical elements of
the National Response Plan executed late, ineffectively or not at all; poor coordination
between federal and state bodies; reactive, rather than proactive, deployment of medical
personnel; subjective evacuation decisions for nursing homes that led to preventable
deaths; collapse of local law enforcement and lack of effective public communication
that led to civil unrest and further delay in relief (US House of Representatives, 2006).

Lessons of risk management may be learned long after the initial recovery period.
Homeowners affected by Hurricane Katrina were typically covered by private insurers for
wind damage and by the federal government’s National Flood Insurance Program (NFIP), or
not at all, for flood damage. This led to large uncertainties in forecasting insured losses for
insurers, due to the difficulty in predicting damage assessments and disputes (RMS, 2005),
and in the extent of coverage for policy-holders due to the cap on NFIP flood claims
(Williams, 2008) or lack of flood insurance. Private insurers that issued NFIP flood
insurance policies (‘write-your-own’, WYO) determined the apportioning damages between
wind and flooding, which led to conflicts-of-interest, claim disputes and litigation
(Williams, 2008). As a result of the flood-related claims of Hurricane Katrina, the NFIP’s
borrowing authority rose 14-fold to about US$20.8 billion (US GAO, 2007). To ensure the
NFIP did not pay too much in future storm events, the US GAO recommended increasing
FEMA’s access to the procedures and claims information from WYO insurers (Williams,
2008). At the time of writing, these provisions (Flood Insurance Reform Priorities Act of
2011; Flood Insurance Reform Act of 2011) are under consideration by the US Congress.

5.5 Summary

Risk assessment for hydrometeorological hazards builds on a long history of weather
forecasting. The definition of these hazards is continuously evolving, from simple univariate
metrics to complex multivariate, impacts-related indices, to improve their relevance and
usefulness. Nonlinear feedbacks in the climate, and between climate and impacts, make their
prediction extremely challenging, and there is a limit of predictability of about a fortnight for
atmospheric phenomena. But physical and statistical modelling are strong, diverse research
areas that complement each other: the former mainly for event forecasting and warning
systems, the latter for longer-term risk management. Both make use of long-term oscillatory
modes of natural variability correlated with extreme weather (such as the ENSO) to extend
the predictability of risk to many months in advance. Impacts modelling is still catching up
with hazard event modelling in terms of comprehensiveness and uncertainty quantification,
which is perhaps inevitable given their later position in the causal chain.
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Physically based models are generally well-resourced and very frequently tested against
observations in operational numerical weather prediction, so their predictive skill is increas-
ing decade-upon-decade: this is due to wider availability and better assimilation of obser-
vations, and improvements in models from the addition of physical processes and increases
in resolution. Statistical modelling has advanced beyond the early extreme value analyses by
incorporating model flexibility, spatial and temporal correlation and non-stationarity, though
progress can still be made in these areas and caution must be used in interpreting estimates
for the far future. Catastrophe modelling is still catching up with other types of modelling in
terms of physical theory and non-stationarity, but leads others in terms of end-to-end
assessment of the cascading risks from hazard to financial loss.

In risk management, hydrometeorological hazards are in the fortunate position of having
extensive observational and forecasting networks, from longstanding national meteorolog-
ical agencies and the regional collaborations between them. These give early warnings for
extreme weather conditions with varying levels of information content and uncertainty
quantification; lessons are still being learned about the most successful approaches.
Quantitative decision-making thresholds are incorporated into emergency planning, and
policy has long existed for risk mitigation in the form of building codes and other regulation.
However, the implementation of risk management strategies has sometimes been lacking,
notably during the catastrophic Hurricane Katrina in 2005. Insurers use catastrophe models
to assess hurricane risk as a fraction of their capital, which is subject to regulation.

Hydrometeorological hazards have the disadvantage, then, of occurring everywhere under the
sun. But longstanding interests in the weather, water availability and ocean conditions have
driven the development of sophisticated computational and statistical techniques, and fairly
comprehensive observational networks, so that a substantial amount of the riskmay bemanaged.
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6

Hydrometeorological hazards under future
climate change

t. l. edwards

6.1 Introduction

The climate is always changing. Natural causes, such as volcano eruptions and variations in
solar output, are continuously nudging the radiation balance of the atmosphere, causing it to
warm or cool, and the oceans, land surface and cryosphere respond. Since the Industrial
Revolution (IPCC, 2007a), perhaps much earlier (Ruddiman, 2003), humans have also been
affecting climate by changing the surface of the land and the composition of the atmosphere.
The net effect of these changes over the twentieth century has been a warming of the climate
(IPCC, 2007a).

Climate change is a change in the statistical properties of weather, usually defined on
timescales of three decades or more: not only in the mean (‘what we expect’, coined by
science fiction writer Robert A. Heinlein in 1973), but the full distribution. Weather hazards
lie in the extreme tails of this distribution. As mean global temperature increases, the
distribution shifts towards some extreme weather hazards such as heat waves, and if it
also changes shape (widens or skews) then the magnitude of these extremes could change
more quickly than the mean. So far the picture appears to be mixed, with maximum
temperatures changing more quickly than the mean since 1950 in some areas and more
slowly in others (Brown et al., 2008). Further increases in global mean temperature are
predicted to occur this century (based on inertia in the climate system, inertia in societal
change and a range of plausible long-term changes), and several studies have predicted that
the intensity of extreme high temperatures and precipitation are likely to increase more
rapidly than the mean in many areas (e.g. Beniston et al., 2007; Kharin et al., 2007).
Predictions for extreme weather events are summarised by the Intergovernmental Panel
on Climate Change (IPCC) in the recent Special Report on Managing the Risks of Extreme
Events and Disasters (IPCC, 2012).

Risk assessment and management for present-day hydrometeorological hazards are
described in the previous chapter; for convenience some of the main points are summarised
here. Extreme weather is often defined (Section 5.2.1) in terms of exceedances of a thresh-
old, often multivariate (i.e. extremes of multiple variables), where the threshold is either
fixed or relative to local climatology. Some alternative definitions are the highest value(s) of
a fixed time period, such as annual maxima, or definitions based on synoptic classifications.
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Extreme weather events have no distinct trigger but may be associated with persistent
atmospheric states, such as blocking, or particular modes of natural variability, such as
the El Niño Southern Oscillation (ENSO: Section 5.2.2). Forecasts are made with both
physically based, computationally expensive computer models (Section 5.3.2) and statis-
tical methods (Section 5.3.3), for lead times ranging from days to seasons. These are
necessarily probabilistic, due to the chaotic nature of the atmosphere. For physically
based models, ensemble forecasts of hazard frequencies are generated by perturbing initial
conditions and other uncertain quantities. In statistical methods, probabilistic forecasts
are generated by inferring a statistical relationship between the hazard and a persistent
atmosphere–ocean state. Long-term return values are also estimated, typically extrapolating
to rarer extremes and mostly under an assumption of stationarity. Both physically based
model ensembles and statistical models are calibrated using historical and recent observa-
tions. Uncertainty assessment relies upon the quality and stationarity of the observational
record, and our ability to quantify the limitations of the physical or statistical model.

Exposure to extreme weather is global, though exposure to particular hazard types
depends on local factors such as topography, proximity to the coast and hydrological
feedbacks; losses occur to all sectors, including human health, infrastructure and business
and ecosystems (Section 5.2.4). Loss modelling is typically statistical, because the physical
mechanisms are often not well understood. Catastrophe modelling (Section 5.3.3),
both proprietary and open, incorporates the full causal chain from hazard to loss using
various statistical modules, though most are limited in their ability to incorporate physical
plausibility constraints. Risk management strategies for extreme weather encompass
hazard-monitoring networks (weather forecasting and observational networks) that trigger
real-time alerts and actions and long-term planning to reduce, for example, vulnerability of
housing or insured assets (Section 5.4.1). Hazard communication and response are chal-
lenging for extreme weather events, because they are multivariate, probabilistic and depend
on interactions at small spatial scales while affecting large regions; lessons are inevitably
learned in post-event recovery and analysis (Section 5.4.2).

Extreme weather hazards have very serious consequences today, so assessment and manage-
ment of the potential future changes in their risks is therefore of great importance to society. This
chapter summarises the risks and uncertainties of droughts, heat waves, extreme precipitation
and wind storms under future climate change. Freak ocean waves (Chapter 5) are not discussed.
Attribution of individual extreme weather events to human causes is a rapidly developing
research area (e.g. Stott et al., 2004; IPCC, 2012; Min et al., 2011; Pall et al., 2011), and not
covered here. Section 6.2 discusses methods of risk assessment for hazards and their impacts;
Section 6.3 describes risk management and communication; and Section 6.4 summarises.

6.2 Risk assessment

This section describes the challenges and current methods of assessing risk for extreme
weather hazards under future climate change. In climate science, the term ‘risk’ has often
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been used in the sense of ‘probability of occurrence’ of, for example, a particular hazard
event. But true risk assessments, which also incorporate hazard impacts, are becoming more
common; this is the sense in which the word ‘risk’ is used in this and the previous chapter
(a more detailed definition is given in Chapter 2). Risk assessment for weather hazards under
future climate change encompasses multiple research areas in a long causal chain. First,
there is consideration of the range of possible future driving factors, both human and natural,
that influence climate. Second, there is prediction of the future response of climate to those
factors, including not only mean climate but the extremes. Third, there is assessment of
the future impacts of these hazards, including changes in exposure and vulnerability.
Uncertainties must be propagated along this causal chain.

The main differences between extreme weather in the present day (Chapter 5) and under
future climate change (this chapter) are: the long timescale on which climate is defined; the
resulting importance of changing boundary conditions; and the unpredictability of long-
term changes in those boundary conditions. Boundary conditions are the external controls of
the system evolution, such as atmospheric composition (e.g. greenhouse gas concentra-
tions), land surface properties (e.g. agricultural use) and configuration of the Earth’s orbit.
The first two of these differences, long timescale and changing boundary conditions, rule out
the use of the historical record for model calibration, which shifts the focus from statistical to
physically based models so as to explore the effect of boundary conditions different to today,
while the third adds a further ‘dimension’ of uncertainty over which risk assessments must
be made. These challenges are described in more detail in the next section.

6.2.1 Challenges in predictability

Prediction is ‘very difficult, especially if it’s about the future’, as the physicist Niels Bohr is
said to have pointed out, and the earth system has many particularly challenging features.
Risk assessment for hydrometeorological hazards under future climate change has all the
difficulties described in Chapter 5 added to those of predicting the distant future. In fact, it
might at first seem faintly ludicrous to assert that statements can be made about the earth
system decades from now, when weather forecasting has a predictability timescale of about a
fortnight and seasonal forecasting is limited to about a year (Chapter 5). But long-term
climate change concerns statistical properties rather than chronological order: it is a forced
(boundary condition) problem, a problem of the ‘second kind’ (Lorenz, 1975), rather than
one of initial conditions. Chaos (Chapter 5) is therefore not one of the principal difficulties,
at least in long-term prediction. Instead, the focus is on predicting, or alternatively defining a
plausible range of, future boundary conditions.

Recently there have been increased efforts to make short-term (‘decadal’) forecasts of
year-to-year changes (such as ENSO: Chapter 5) over the next few years. These are time-
scales of great interest for decision-making and policy-making. But decadal predictions are
extremely challenging, because the timescales are too short to be dominated by boundary
conditions, and too long to be dominated by initial conditions (Hawkins and Sutton, 2009).
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Like seasonal forecasts (Chapter 5), they rely on accurate initialisation to make use of
persistent and oscillatory modes of the climate. This newly emerging research field is
showing much promise (Smith et al., 2007). An overview is given by Hawkins (2011).

Challenges in predicting future boundary conditions (forcings) are described in
Section 6.2.1.1; in the earth system response to these forcings in Section 6.2.1.2; and
some hazard- and impacts-specific challenges in Section 6.2.1.3.

6.2.1.1 Forcings

A climate forcing is something that acts to perturb the radiative equilibrium of the atmos-
phere (with units of watts per square metre): by altering either the amount of incoming solar
radiation (insolation), or the fraction of radiation that is reflected, or the amount of longwave
radiation emitted to space (IPCC, 2007a). These perturbations cause warming or cooling of
the atmosphere and/or surface, which is then propagated throughout the earth system. The
term ‘forcing’ is often used interchangeably with ‘(change in) boundary conditions’ because
the latter induces the former.

Natural forcings are always acting on the earth system. The amount and distribution of
solar radiation reaching the earth varies continuously, in periodic cycles and longer-term
changes. Volcanic eruptions occur randomly, emitting sulphur dioxide gas which combines
with water in the atmosphere to make sulphate aerosol particles that reflect solar radiation
and change the reflectivity (albedo) and lifetime of clouds. Some of these natural forcings
are predictable – in particular, the effect of the earth’s orbital cycles and the length (though
not amplitude) of the 11-year sunspot cycle – but others are unpredictable, such as long-term
solar variations and volcanic eruptions.

Anthropogenic (human-caused) forcings arise from large-scale industrial, agricultural
and domestic changes to the earth’s atmosphere and land surface. Some important forcings
are: greenhouses gases (GHGs: including carbon dioxide, methane, nitrous oxide and
ozone), which decrease the amount of longwave radiation emitted by the earth to space
and have a warming effect at the surface; industrial sulphate aerosol particles, which act
similarly to those from volcanoes; and replacement of forests with crops, which increases
the reflectivity of the surface and increases the GHG concentrations in the atmosphere,
notably if the deforestation involves burning.

Future changes in anthropogenic forcings depend on population, policy, economics and
growth, technology and efficiency, mitigation (Section 6.3.1.1) and geoengineering
(Section 6.3.1.2). Geoengineering is intentional alteration of the earth system, particularly
to counter anthropogenic climate change, with measures that reduce positive (warming)
forcings, such as GHG extraction from the atmosphere, or increase negative (cooling)
forcings, such as addition of reflective aerosol particles to the atmosphere (Irvine and
Ridgwell, 2009; Lenton and Vaughan, 2009). In the short-term, GHGs and industrial aerosol
emissions are somewhat predictable, because significant changes in infrastructure, behav-
iour and population growth take years or decades, and some GHGs have mean lifetimes of
several decades. In the longer term, strong mitigation or industrial growth could occur and
this is virtually impossible to predict at the centennial scale.
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Limited predictability of future anthropogenic forcings is addressed by making predic-
tions for a set of ‘possible futures’ (emissions scenarios: Section 6.2.4.1). These predictions,
which are conditional on a given scenario (‘what would happen if’), rather than attempting
to encompass every aspect of the future (‘what will happen’), are better described as
‘projections’, though the distinction is not always made. Forcing scenarios usually attempt
to encompass the range of plausible future human influence on climate, because the
motivation for their use is assessment of risk management strategies. Unpredictable natural
forcings are usually set at present-day levels (solar output) or not included (volcanic
eruptions).

6.2.1.2 Response to forcings

The statistical properties of weather are challenging to simulate in the present day
(Chapter 5), let alone the future. Not only are natural and anthropogenic forcings always
changing, but some parts of the earth system take centuries (the deep oceans), millennia
(the cryosphere) and longer to respond so the earth system is never at equilibrium: in other
words, stationarity can never be assumed except on short temporal and spatial scales. This
means the earth’s future response to forcings cannot be deduced or extrapolated from the
past. Even if forcings were to stay fixed at present-day levels, an assumption of stationarity
would have limited applicability.

Feedbacks (Chapter 5) modulate the climate response to forcings. The distinction between
forcing and feedback may depend on the timescale of the processes under consideration: for
example, on short timescales land vegetation and ice sheets might be treated as (approx-
imately) static boundary conditions, but on long timescales as dynamically responding
components of the earth system. Cloud–climate feedbacks are the main source of uncertainty
in the time dependent response of surface temperature in climate models (Soden and Held,
2006), particularly in the shortwave radiation feedback of low-level clouds (Bony and
Dufresne, 2005; Crucifix, 2006; Webb et al., 2006). Feedbacks between vegetation, climate
and carbon dioxide (CO2) affect surface water runoff, soil moisture and carbon storage, but the
magnitude and sign of the response vary between models (Cox et al., 2000; Betts et al., 2007;
Alo and Wang, 2008). Some known positive feedbacks, such as methane clathrate release
(Maslin et al., 2010), are not routinely, or ever, included in predictions, which may lead to
underestimation of future change (Scheffer et al., 2006; Torn and Harte, 2006).

Modelling of climate extremes and their impacts is either combined (known as ‘coupled’,
‘interactive’ or ‘dynamic’) or separate (‘offline’, ‘prescribed’), so the distinction between
them can be somewhat subjective. The arbitrariness of these boundaries is largely due to the
presence of feedbacks: for example, the two-way interactions between climate and vegeta-
tion are now much more commonly included in climate models, though in other studies the
impacts of climate and weather extremes on vegetation are modelled offline (i.e. the feed-
back loop is cut). Feedbacks between hazards and impacts can either amplify or diminish the
latter. Dlugolecki (2009) gives examples for insured losses from flooding: these may be
diminished (negative feedback) with risk management by reduced habitation of at-risk areas
or improved building structures, or amplified (positive feedback) in large-scale disasters by
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long-term neglect of properties (after evacuation) or political pressure on insurers to pay for
uninsured losses and property improvements. Human-related feedbacks, such as the inter-
actions between climate and the global economy, are represented in integrated assessment
models (e.g. Leimbach et al., 2010), though the climate modules are usually much simpler
than the state-of-the-art.

6.2.1.3 Hazard- and impact-specific challenges

All weather hazard events are challenging to predict because of their rarity (limiting the
number of observations and the ability to understand the relevant processes) and their
position in the extremes of chaotic internal variability (Chapter 5). Some types are partic-
ularly hard to predict. For future changes, extreme temperature is thought the most straight-
forward, because climate models simulate the major driving processes (Chapter 5; IPCC,
2012), though the regional effects of feedbacks and changes in atmospheric and ocean
circulation on temperature extremes are still poorly understood (Clark et al., 2010). Extreme
precipitation and tropical cyclones are far more challenging, because the processes and
weather systems occur on small spatial scales (Knutson et al., 2010; IPCC, 2011): for
example, while warm sea surface temperatures drive the genesis of tropical cyclones, other
factors such as vorticity and wind shear are thought to be important in determining their
frequency (Kim et al., 2010).

Predictions for some hazards do not even agree on the sign of change in many regions of
the world (IPCC, 2012), in particular for multivariate hazards (such as drought) and modes
of variability (such as ENSO). One of the difficulties with multivariate hazards is in their
definition (IPCC, 2012): Burke and Brown (2008), for example, find the magnitude and sign
of predicted drought changes depend on the drought index (Chapter 5) used. Even if
predictions of the main drivers of drought (temperature, precipitation, evaporation and
runoff) agree, predictions of the resulting soil moisture may be wildly different (Dai, 2011).

6.2.2 Physical modelling

The previous chapter described how physical models or ‘simulators’ of the earth system are
used to simulate weather. Ensemble forecasts, generated by perturbing initial conditions and
other uncertain quantities, are used to approximate probability distributions for hazard
events. Ensemble forecasts are repeatedly tested against observations to assess whether
the ensemble is ‘well-calibrated’ (explores all important uncertainties). Statistical modelling
of past observations is also used, for seasonal forecasting and for estimating return periods,
but this is not possible for the longer term: changing boundary conditions place physical
modelling at the heart of predicting changes in extremes.

For long-term risk assessment of extremes, then, physical models are run for future
scenarios (to make predictions) and for the past (to critique the model). This section
describes these models and the difficulties with using them to make multi-decadal simu-
lations of climate: their complexity, computational expense and inevitable limitations in
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representing the earth system. Added to these is the multi-decadal timescale of climate,
meaning predictions cannot be repeatedly tested against observations to ensure a model is
adequate and an ensemble well-calibrated, and the unpredictable future boundary conditions
(Sections 6.2, 6.2.1). There are several approaches to overcoming these difficulties, involv-
ing hierarchies of physical models (described in this section) supplemented with statistical
modelling (described in the next), along with expert judgement and other strategies.
However, many of these methods are still under active development, and a consensus on
approaches is far from emerging.

The most advanced, general circulation models (GCMs), are similar to numerical weather
prediction (NWP) models, but have lower spatial and temporal resolution and include
different processes (more details are given in Chapter 5). A small number of models,
including the UK Met Office Unified Model, are used for both climate prediction and
NWP. Climate models are used for much longer simulations (decades to centuries) than
NWP models, so they incorporate more long-timescale processes such as deep ocean
circulation, atmospheric chemistry and the carbon cycle. Components with very long time-
scale responses, in particular the cryosphere, can also be included, though the coupling is
usually asynchronous to reduce computational expense: for example, one-year simulations
from the atmosphere–ocean model are alternated with ten-year simulations from the ice-
sheet model. The most comprehensive GCMs, particularly those that include chemical and
biological as well as physical processes, are also called ‘Earth System Models’. The
simulation length and complexity of GCMs result in significant computational expense.
Lower resolution helps to mitigate this, though simulation rate may still be as slow as 50
model years per month, even on a supercomputer (Easterbook and Johns, 2009). A reference
text on climate modelling is McGuffie and Henderson-Sellers (2005); an overview of their
current abilities is given by the US Climate Change Science Program (CCSP, 2008); and the
current state-of-the-art, multiple climate model dataset (CMIP5: Section 6.2.4.3) is
described by Taylor et al. (2011).

Recently there has been greater emphasis on making predictions with a continuum of
resolutions and timescales, from three-day weather predictions to decadal and centennial
climate predictions, in order to share their strengths: for example, the climate prediction
configuration of the Unified Model benefits from daily testing of the operational weather
forecasting configuration. This is termed ‘seamless prediction’ (Rodwell and Palmer, 2007;
Palmer et al., 2008).

The low resolution of GCMs, hundreds of kilometres horizontally (Chapter 5), places
great reliance on the parameterisation of small-scale processes (Section 6.2.2.1). A spectrum
of model complexity exists, in which processes are represented in parameterised form to a
greater or lesser extent (Section 6.2.2.2). Simpler, faster models are used for longer
simulations and large ensembles, and complex models for shorter simulations, small
ensembles or reduced domains. Predictions of regions (country to continental scale) suitable
for impacts studies are made with high-resolution, limited-area models similar to those of
operational NWP (regional climate models: RCMs), driven by boundary conditions derived
from climate models. This is known as physical downscaling (Section 6.2.2.3).
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6.2.2.1 Parameterisation

Physical models can never include every process, describe all included processes perfectly or
have infinite resolution, so the behaviour of imperfectly calculated processes is represented
using parameters equivalent to real-world or abstracted quantities. These uncertain parameters
are given fixed standard values determined from calibration with observations, expert knowl-
edge and specific high-resolution physical modelling studies (e.g. Randall et al., 2003). An
important example is convective cloud formation, where the relevant processes occur on
sub-grid spatial scales. The clouds must be represented with bulk formulae: for example,
relating fractional cloud cover in a grid box to relative humidity. Other examples involve
interactions at the earth’s surface, such as energy and moisture fluxes between the boundary
layer, land and sea ice. Important parameterisation schemes in climate models are reviewed by
CCSP (2008) and McFarlane (2011). A reference text is Stensrud (2009).

Model calibration (tuning) aims to find parameter values that bring the model simulation
in closest agreement with the target datasets for a wide range of physical quantities. This is
usually an impossible aspiration because the most successful values of some parameters are
incompatible with those of others, or because improvements in simulating one physical
quantity come at the expense of others. Climate models are tuned to reproduce mean
observations, not extremes, due to the limited number of observations. Another important
requirement of tuning (not necessary for NWP models) is to keep the global energy balance
at the top of the atmosphere stable over long periods of time, to avoid artificial temperature
drift (CCSP, 2008). Parameter uncertainty in climate simulations is explored by ‘detuning’
the model. The resulting ensembles are used directly or re-weighted with comparisons to
observations (Section 6.2.4.2).

An alternative to parameter calibration is the ASK method (Stott and Forest, 2007), rooted
in detection and attribution analysis, in which a model prediction is re-scaled by the error
compared with historical observations; the model response to each type of forcing is separated
out and scaled separately. The ASK method uses an assumption of a linear relationship
between errors in simulating past climate change and predicting future climate change, and
is most reliable if the relative fractions of different forcings remains the same (Stott and Forest,
2007); this is not the case for mitigation or geoengineering scenarios (Section 6.3.1). The ASK
approach has been applied to regional change (Stott and Forest, 2007), but attribution methods
for extremes are in their infancy (e.g. IPCC, 2012; Min et al., 2011; Pall et al., 2011).

Most climate models are deterministic, with fixed parameter values. But physical consis-
tency can fail for deterministic parameterisations: for example, violating conservation of energy
at small spatial scales. It is increasingly recognised that stochastic components, introduced
through randomly varying parameters or processes (Chapter 5) can improve climate model
predictions (Palmer, 2001; Palmer et al., 2005; Palmer andWilliams, 2009; McFarlane, 2011).

6.2.2.2 Spectrum of model complexity

Physical climate models vary from complex, computationally expensive GCMs and RCMs,
to models of intermediate complexity that have even lower resolution and a larger fraction of
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parameterised processes and prescribed components (earth system models of intermediate
complexity: EMICs), to simple conceptual (‘toy’) models. Some of this variation is a
reflection of continuing model development over time, with state-of-the-art model versions
used alongside older, faster versions, and some is due to design, with simpler models used
to improve understanding or for low computational expense. A model is selected and
configured according to the scientific problem and available resources: long-timescale
processes may be neglected if simulations are short; simpler, faster models enable many
replications for statistical analysis. In general, simple and intermediate complexity models
cannot adequately simulate regional climate change and extremes (Stott and Forest, 2007),
but they may be tuned to GCM or RCM simulations to scale their results for other forcing
scenarios (Section 6.2.4.1). Even state-of-the-art models do not simulate some extremes
well (Section 6.2.1.3): precipitation is one example for which models typically under-
estimate the frequency and intensity of extreme events (IPCC, 2007a).

Physical models of the impacts of extreme weather (health, environment and financial:
Chapter 5) also exist for some research areas. Environmental models of varying complexity
exist for the effects of drought, extreme temperature and extreme precipitation on crops
(e.g. Challinor et al., 2004), forests (Allen et al., 2010), terrestrial ecosystems (e.g. Knapp
et al., 2008) and interactive vegetation–climate feedbacks (e.g. JULES: Best et al., 2011;
Clark et al., 2011). Vegetation models can be adapted to simulate the impacts of heat waves
on cities (Masson, 2006), and bio-physical models simulate the impacts of heat waves
on health with human energy balance equations (McGregor, 2011). Physical models of
structures also exist: for example, a model of the impacts of extreme precipitation on urban
drainage systems is described by Wright et al. (2006). The significant advantage of physi-
cally based impacts models is that they do not assume the relationship between hazard and
impact is fixed in the future: for example, the effect of changing carbon dioxide concen-
trations on crops is incorporated in vegetation models. However, physically based models
do not exist for all types of impacts and this is a rapidly progressing field.

6.2.2.3 Dynamical downscaling

‘Downscaling’ means increasing the spatial or temporal resolution of a dataset, usually the
output of a GCM. The term ‘spatial downscaling’ is generally reserved for methods that
incorporate the effects of local topography, coastlines and land use on the signal, rather than
simple linear interpolation to a higher-resolution grid. Downscaling is crucial for hazard
impact assessment, because the hazards and impacts occur on much smaller spatio-temporal
scales than GCM resolutions (e.g. extreme temperature and precipitation: Diffenbaugh
et al., 2005; Gosling et al., 2009; crops: Tsvetsinskaya et al., 2003). There are two very
different approaches, based on statistical (Sections 6.2.3.2, 6.2.3.3) and physical (‘dynamical’)
modelling.

Dynamical downscaling is another name for regional climate modelling (proprietary
versions have also been developed for catastrophe loss modelling: Section 6.2.3.2).
RCMs are very computationally intensive, which restricts the length and number of simu-
lations, but unlike statistical downscaling they generate physically and spatially consistent
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results for a large number of variables and allow changes in boundary conditions to be made.
For predictions of future climate, an RCM is either run offline with boundary conditions
(such as temperature, wind and pressure) at the domain edges (and, if the RCM is used to
simulate only the atmosphere, the ocean surface) from a pre-existing GCM simulation, which
only allows movement of weather systems from the GCM to the RCM (‘one-way nesting’), or
coupled to a GCM, allowing weather systems to move between the domains (‘two-way
nesting’). The former is predominant, being more straightforward technically and computa-
tionally, and useful for comparing RCMs, but the latter is more physically realistic (e.g. Lorenz
and Jacob, 2005). Variable-resolution global models are also used (Fox-Rabinovitz et al.,
2008). Downscaling is reviewed by the CCSP (2008) and Rummukainen (2010).

Tropical cyclones are not resolved by the current generation of RCMs. They are simulated
with tailored high-resolution physical models or statistical models driven by climate model
simulations (Chapter 5).

6.2.2.4 Extremes and anomaly methods in physical modelling

GCMs are a ‘necessary evil’ in estimating the effect of changing boundary conditions on
extremes, because they incorporate causal physical mechanisms that relate global forcing
(e.g. CO2 emissions) to regional climate (e.g. the distribution of European daily temper-
atures). The response of climate to forcing is estimated either with two steady-state
(equilibrium) simulations – for example, one using pre-industrial boundary conditions and
the other using doubled atmospheric CO2 concentrations – or with a time-evolving (tran-
sient) simulation of the historical period and next one or two centuries. Climate simulations
from GCMs are downscaled with regional climate modelling (previous section), weather
generation (Section 6.2.3.2) or statistical spatial downscaling (Section 6.2.3.3) to increase
their temporal and spatial resolution. This is necessary for estimating extremes at a given
location and for providing inputs to impacts models.

The frequency and intensity of extremes in downscaled simulations can be quantified
empirically (e.g. counting threshold exceedances) or, particularly for rarer extremes, mod-
elled statistically (e.g. fitting a GPD model to those threshold exceedances: Section 6.2.3.1).
These methods either use an assumption of stationarity (for equilibrium simulations or short
sections of transient simulations) or quantify the time-evolving change (e.g. by allowing the
parameters of the statistical model to vary with time).

Climate simulators inevitably have systematic biases. When studying the effect of
changing boundary conditions on extremes, some of these may be cancelled out, to first
order, by focusing on the change (‘anomaly’) between the simulations of the present-day
and future scenarios, rather than the absolute values of the latter. Effectively the future
distribution of extremes is inferred from a combination of the present-day observational
record, present-day simulation and future scenario simulation (Ho et al., 2012). There are
two methods, which are exactly equivalent in a special case: if the distributions of extremes
in the three datasets all have the same scale and shape.

The first is ‘bias correction’, in which the future scenario simulation is corrected by the
model discrepancy, which is the difference between the present-day simulation and
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observations. The second is the ‘change factor’ method, in which observations are changed
by the simulated climate anomaly, which is the difference between the present-day and
future simulations. The simplest approach to these is to apply only the mean change (mean
discrepancy or mean anomaly). This is appropriate if the distributions in the three simu-
lations have the same scale (e.g. variance) and shape (e.g. skewness). But typically they do
not, so a better approach is to apply the changes to several quantiles (for empirically
estimated distributions) or to all the parameters (for parametric approaches such as GPD
modelling or statistical downscaling). Unfortunately, even if this is done, bias correction and
change factors can give very different results (Ho et al., 2012). The appropriate choice,
including the underlying assumptions, is not obvious and this is an important area of future
research.

6.2.3 Statistical modelling

Statistical modelling has two supporting roles in estimating future extremes from physical
climate models such as GCMs. The first is to characterise properties of the extremes in a
given simulation: to estimate return periods (extreme value analysis, Section 6.2.3.1) or
generate pseudo-event datasets for impacts studies (weather generation and cat modelling,
Section 6.2.3.2). The second is to supplement and extend a set of simulations, by quantify-
ing relationships between high- and low-resolution information (statistical spatial down-
scaling, Section 6.2.3.3) or model parameters and output (emulation, Section 6.2.3.4).

Many impacts models are statistically based, because the mechanisms are not known
(Chapter 5). These implicitly assume the relationship between hazard and impact
(e.g. mortality) is fixed in the future, because the changing effect of external factors
such as economic growth and infrastructure is impossible to predict. Catastrophe (‘cat’)
models of loss, developed for insurance and reinsurance, incorporate some physical-based
constraints but are principally statistical.

6.2.3.1 Extreme value analysis

Methods of analysing extreme values in observational records are described in the previous
chapter: for example, fitting a generalised extreme value (GEV) distribution to annual
maxima, or a generalised Pareto distribution (GPD) to threshold exceedances. These
methods estimate long-term return periods for extremes of a given magnitude, usually
extrapolating to rarer extremes than are in the observations and using an assumption of
stationarity.

These extreme value theory (EVT) methods are increasingly used for analysing climate
simulations (Naveau et al., 2005; Katz, 2010; references therein). EVT relies on an
asymptotic limit (Chapter 5): in principle, GCMs could be used to generate very long
equilibrium simulations, tens of thousands of years, to approximately satisfy this assump-
tion, but in practice the models are too computationally expensive to allow simulations of
more than 10–20 decades (the problem is worse for the observational record: Chapter 5).
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Extremes are either assessed in two equilibrium simulations, two near-equilibrium parts of a
simulation or continuously through a transient simulation. An example of the second is to
estimate the change in GEV location parameter (Chapter 5) in simulations of the present day
and the end of the twenty-first century. Bias correction or change factor methods
(Section 6.2.2.4) are used to remove some systematic simulator errors, and hypothesis
tests (e.g. goodness-of-fit tests: Chapter 5) are applied to determine the significance of any
change. Examples of the third, analysing extremes in non-stationary data, are described in
Chapter 5: for example, GEV or GPD parameters may be allowed to vary through the
simulation in step-changes (e.g. Min et al., 2009), with a linear trend (e.g. Cooley 2009;
Bjarnadottir et al., 2011) or covarying with global mean temperature or an index of natural
variability (e.g. Hanel et al., 2009; Hanel and Buisand 2011).

6.2.3.2 Weather generation and catastrophe modelling

Weather generation is statistical modelling of a dataset to create many plausible realisations
of the same time period with the same statistical properties as the original (e.g. Qian et al.,
2004; Kyselý and Dubrovský, 2005; Semenov, 2008; Jones et al., 2009; Kyselý, 2009;
Nicolosi et al., 2009). This is a type of statistical downscaling applied to GCM or RCM
output to increase temporal resolution. In parametric weather generation, the parameters of a
time-series model are calibrated with observations or climate simulations; non-parametric
weather generators use bootstrapping methods (Chapter 5). Each location is usually treated
independently (Chapter 5). The pseudo-hazard datasets are used for risk assessments or as
inputs to impacts models; they may need further processing for this (e.g. thermal simulation
of buildings: Eames et al., 2011). Bias correction or change factor methods (Section 6.2.2.4)
are used to make projections: in the latter, parameters of the weather generator are calibrated
with observations then modified by projected climate anomalies from the GCM (e.g. Jones
et al., 2009). For changes in extreme weather it is important to apply not only mean climate
anomalies but also aspects of variability such as variance, skewness and correlation. An
overview of weather generation is given by Wilks and Wilby (1999), and a more recent
discussion in the context of extreme precipitation is given by Furrer and Katz (2008).

Catastrophe models (or ‘cat models’) of hurricanes and other hazards are statistical
methods for generating pseudo-event datasets that incorporate the whole chain from hazard
to financial loss (Chapter 5). In the past, cat models have been based on sampling or
calibration with historical observations, implicitly assuming stationarity, but recently
RCMs (Schwierz et al., 2010) and proprietary numerical weather models (the ‘US and
Canada Winterstorm’ and ‘European Windstorm’ models developed by Risk Management
Solutions) have been incorporated into loss modelling so as to make risk assessments under
changing boundary conditions.

6.2.3.3 Statistical spatial downscaling

Statistical spatial downscaling, sometimes referred to as statistical bias correction, uses
empirical relationships between information at high spatial resolution (meteorological
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station data, such as precipitation) and low spatial resolution (GCM or mean station data,
such as temperature, humidity and sea-level pressure). These relationships are derived using
statistical modelling techniques such as regression (e.g. Wilby et al., 2002), artificial neural
networks (e.g. Mendes and Marengo, 2009) and synoptic classification schemes. Statistical
temporal downscaling is known as weather generation (Section 6.2.3.2). Techniques for
downscaling mean climate may not be suitable for extremes: for example, extremal indices
(Chapter 5) are often non-Gaussian, so the underlying assumptions of linear regression are
not valid and a more flexible form such as a generalised linear model may be more
appropriate. Benestad et al. (2008) describe strategies and example code for downscaling
extremes and probability distributions.
These methods are easy to implement and, compared with dynamical downscaling
(Section 6.2.2.3), do not require the very significant computational expense, can access finer
scales, are applicable to variables that cannot be directly obtained from RCM outputs and can
be comparably successful (IPCC, 2007a; CCSP, 2008). However, they cannot include feed-
backs, there is no spatial coherence between sites, physical consistency between climate
variables is not ensured and, most importantly, they include an implicit assumption that
these relationships remain unchanged under different boundary conditions (IPCC, 2007a).

If meteorological data with good spatial coverage are available, an alternative is to use
a change factor approach (Section 6.2.2.4), adding GCM climate anomalies to an
observed climatology (e.g. Hewitson, 2003). Using a mean change factor does not
allow for changes in variability and temporal correlation and makes the assumption,
like pattern scaling (Section 6.2.4.1), of an unchanging spatial pattern; for non-Gaussian
variables such as precipitation, care must be taken to avoid unphysical results (Wilby
et al., 2004).

6.2.3.4 Emulation

Statistical representation of complex models, known as ‘emulation’ (or ‘meta-modelling’),
is used to make predictions for areas of parameter space not explored by a physical model
(O’Hagan, 2006). Emulators are usually constructed using regression, with coefficients
calibrated from an ensemble of simulations with different parameter settings (e.g. Murphy
et al., 2004, 2007; Kennedy et al., 2006; Rougier and Sexton, 2007; Rougier et al., 2009;
Sexton et al., 2011), though neural networks have also been used (e.g. Knutti et al., 2003;
Piani et al., 2005; Sanderson et al., 2008). The primary motivation is estimation of simulator
uncertainty for models that are too computationally expensive to allow many replications.
Expert judgement may also be incorporated by requiring that the outputs satisfy physical
principles such as conservation of mass and water. Emulation is conceptually simple, but
requires careful choices to avoid problems such as over-fitting (Rougier et al., 2009; Sexton
et al., 2011). Success of an emulator can be assessed with diagnostic tests, such as leaving
one or more model simulations out of the emulator calibration and predicting their output
(Rougier et al., 2009; Sexton et al., 2011).
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6.2.4 Uncertainty assessment

The previous two sections describe the difficulties with simulating long-term changes in
extreme weather. Computational limitations restrict the spatial and temporal resolution, so
that their realism and relevance is compromised, and this can only partially be addressed by
parameterisation and tuning. Our understanding is incomplete for the physics, chemistry and
biology of some aspects of the earth system, such as the cryosphere or vegetation, that might
well be important for 100-year time intervals under changing boundary conditions. So,
although climate simulators can be run in ensembles to approximate probabilities of extreme
weather events, these approximations are very crude, being based on a small number of runs,
and compromised by the limitations of the code. On top of this, future boundary conditions
are unknown, adding a further uncertainty to be sampled.

The physical and statistical modelling methods described can address some of these
issues of model inadequacy: bias correction or change factors to cancel some systematic
errors; a hierarchy of physical model complexities and statistical emulation for different
research questions (high complexity for improving representation of extremes; low com-
plexity and emulation for increasing simulation length or number); physical and statistical
downscaling to increase resolution; and extreme value analysis to extrapolate to rarer
extremes than can reasonably be simulated. This section further describes these methods,
and other tools, on the topic of quantifying uncertainties, including: ensembles that sample
uncertainties in initial and boundary conditions, model parameters and structure; pattern
scaling and emulation to extend ensemble size; introduction of a ‘discrepancy’ term to
account for structural uncertainty; and approaches to calibration of parameters and discrep-
ancy using the historical record.

The future of the earth system cannot be known exactly, because future forcings are
unpredictable, but it is of paramount importance to assess uncertainties of climate model
projections conditional on these forcings to inform decision-making and policy-making on
potential options for mitigation (Section 6.3.1.1) and adaptation (Section 6.3.2).
Uncertainties for extreme weather hazard projections can be partitioned into two kinds,
associated with physical model predictions and the statistical modelling of those predictions.
The first kind arise from uncertain physical model inputs (Section 6.2.4.1), parameters
(Section 6.2.4.2) and structure (Section 6.2.4.3), and are explored and quantified using
ensembles of predictions using different inputs (boundary and initial conditions), parameter
values and physical models (an overview is given by Foley, 2010). The second kind are from
statistical assessment of simulations and from statistical prediction of physical model output
such as emulation. Uncertainties in statistical model parameters and structure are assessed
with the usual methods, including graphical checks, bootstrapping and hypothesis tests,
described in Chapter 5.

6.2.4.1 Model input uncertainty

Boundary condition uncertainty is sampled with a suite of predictions for different future
‘storylines’ (Section 6.2.1.1), scenarios that describe the effect on anthropogenic emissions
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of plausible future societal and technological changes, including economic growth, energy
sources and efficiency and land use. Forcing scenarios are not predictions, and do not have
relative probabilities assigned, so climate predictions are made conditionally upon each
individual scenario. For the IPCC Fourth Assessment Report (IPCC, 2007a), projections are
made based on the Special Report on Emissions Scenarios (SRES: Nakićenović et al.,
2000), which included storylines that ranged from rapid growth and fossil-intensive energy
sources (‘A1B’) to global sustainability approaches (‘B1’); the storylines are detailed
descriptions of GHGs and sulphur dioxide emissions, which are translated into atmospheric
concentrations using biogeochemical modelling (IPCC, 2007a). For the Fifth Asssessment
Report the focus is ‘representative concentration pathways’ (RCP: Vuuren et al., 2011);
unlike SRES, these include scenarios with explicit climate policy intervention
(Section 6.3.1.1) and are simpler, being expressed in terms of atmospheric concentrations
so they can be used directly in climate models. Forcings due to possible geoengineering
strategies (Section 6.3.1.2), including changes to stratospheric albedo (e.g. Ricke et al.,
2010), land surface albedo (e.g. Ridgwell et al., 2009; Oleson et al., 2010) and carbon
uptake (e.g. Aumont and Bopp, 2006), are considered in separate studies. Future natural
forcings (solar, volcanic) are ‘known unknowns’. An early suite of climate projections
(Hansen et al., 1988) incorporated volcanic eruptions, but these are not usually included and
no attempt is made to assess the effect of changes to solar forcing from the present day.

Climate models are so computationally expensive that simpler models are often used to
approximate their predictions to increase the size of the boundary condition ensemble. This
is known as ‘pattern scaling’: a simple climate model (SCM) simulates global mean temper-
ature as a function of atmospheric forcing (i.e. for a range of scenarios), and GCM results
from one scenario are scaled by the global mean temperature from the SCM. Pattern scaling
relies on the assumption that simulated patterns of climate change scale linearly with global
temperature; this is thought to be less reliable for precipitation than for temperature
(Mitchell, 2003; IPCC, 2007a; Wilby et al., 2009). Harris et al. (2006) estimate pattern
scaling error by comparing the result of a ‘slab’ (simplified ocean) GCM scaled by a simple
model with ‘truth’ from the dynamic ocean version of the GCM.

Initial condition uncertainty – incomplete knowledge of the initial state of the system – is
also sampled with ensembles of simulations (Chapter 5). It is most important in decadal
climate predictions, in which internal variability dominates (e.g. Smith et al., 2007). Long-
term projections focus on trends rather than year-to-year changes, so initial condition
ensembles for these tend to be small and averaged over (e.g. Stainforth et al., 2005;
Meehl et al., 2007) or else not performed at all.

6.2.4.2 Model parameter uncertainty

Uncertainty in climate model parameterisation schemes can be explored using perturbed
parameter ensembles (PPEs), more usually and misleadingly named perturbed physics
ensembles, which are groups of ‘detuned’ model versions created by changing the
values of the control parameters (Section 6.2.2.1). Perturbed parameter ensembles offer
the opportunity to sample uncertainty systematically in a well-defined space. They are often
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supplemented with statistical methods such as emulation (Section 6.2.3.4) to improve
this sampling. A further motivation is to test detuned model versions against past observa-
tions, to avoid the circularity induced by tuning and validating with the same time period
(Section 6.2.4.3). The full, unweighted ensemble of simulations may be analysed, or
if the parameters are sampled from probability distributions (e.g. uniform, Gaussian) with
sufficient sample size they can be integrated out using Monte Carlo methods to assess
the contribution of parametric uncertainty to the predictions. The latter method can
include likelihood weighting of ensemble members in a Bayesian statistical framework
(Chapter 5) by comparing simulations of the recent past with observations (e.g. Sexton
et al., 2011).

The two most extensively studied PPEs use variants of the Hadley Centre climate model,
which is a version of the UK Met Office Unified Model. The first is an ensemble of 17
versions, supplemented by an ensemble of about 300 using a simplified ocean model, used
to generate projections for the UK Climate Impacts Programme (UKCIP: Murphy et al.,
2009; Sexton et al., 2011). The second is a suite of ensembles with different model
complexities, domains and experimental aims, each with hundreds to tens of thousands of
members, generated with distributed (publicly donated) computing for the project
ClimatePrediction.net (Stainforth et al., 2005 and many subsequent studies). PPEs have
also been performed with other models than the Hadley Centre model (e.g. Yang and Arritt,
2002; Lynn et al., 2008; Sterl et al., 2008; Yokohata et al., 2010; Fischer et al., 2010;
Klocke et al., 2011; Sanderson, 2011). PPEs can be performed with RCMs, but their
computational expense limits them to small ensemble size (Murphy et al., 2009;
Buontempo et al., 2009), short simulation length (Yang and Arritt, 2002) or both (Lynn et al.,
2008). PPEs are also generated with simpler, lower-resolution models, such as EMICs, but
these typically focus on global mean temperature rather than regional patterns or extremes. An
overview of PPEs is given by Murphy et al. (2011).

The original motivation for PPEs was quantification of uncertainty in the global mean
temperature response to CO2 forcing (Andronova and Schlesinger, 2001; Murphy et al.,
2004; Stainforth et al., 2005), but they have since been used in risk assessments of future
extreme temperature and precipitation (Barnett et al., 2006; Clark et al., 2006; Sterl et al.,
2008; Fischer et al., 2010; Fowler et al., 2010), drought (Burke and Brown, 2008; Burke
et al., 2010; Hemming et al., 2010) and storms (Kim et al., 2010). The disadvantage of
studying extremes in PPEs is that for a given computational resource have to be made with
simulation length: for example, the UKCIP simulations using a simplified ocean model are
only 20 years long (e.g. Barnett et al., 2006).

Climate model PPEs have not yet been much used in assessments of future hazard
impacts. PPE methods have been used to some extent as inputs to impacts models
(e.g. heat wave mortality: Gosling et al., 2011), but propagation of the cascading parametric
uncertainty in both climate and impacts models – the simplest method being a factorial
experiment, with every combination of parameter values – is still relatively rare (e.g. crops:
Challinor et al., 2005, 2009).
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6.2.4.3 Model structural uncertainty

Structural uncertainty arises from imperfect implementation or knowledge about the rele-
vant physical processes: it may be considered the leftover error, or ‘discrepancy’, at the
model’s best (tuned) parameter values (Rougier, 2007). It is represented with a covariance
matrix that describes the variations and correlations of model discrepancy across locations,
times and variables. There are various methods of estimating this covariance matrix in
numerical weather prediction (Chapter 5), which rely on repeated tests of the model
forecasts against reality. These methods cannot be directly translated to climate model
predictions, because of the multi-decadal definition of climate. Structural uncertainty is
therefore extremely challenging to quantify, but necessary for assessing the success of
climate model predictions and for decision-making under future climate change. A related
problem is the appropriate interpretation of a range of predictions from different climate
models. In the past, model structural uncertainty was considered so difficult to quantify it
was essentially ignored, and all models treated as equally skilful, but the literature has
flourished since the IPCC Fourth Assessment Report (IPCC, 2007a). The main points are
summarised here.

Expert elicitation has been proposed as a method of estimating structural uncertainty
(Kennedy and O’Hagan, 2001; Goldstein and Rougier, 2004). The state space of climate
models is extremely high-dimensional, so many simplifying assumptions about the corre-
lation structure (spatial, temporal and multivariate) would be necessary in order to elicit a
covariance matrix and the complexity of GCMs may be too great for this to be practicable
(Sexton et al., 2011). Instead, structural uncertainty is inferred by comparing model output
with expectations, observations and output from other models.

Simulator discrepancy arises from two sources: imperfect implementation of theoretical
knowledge (e.g. numerical approximations, coding errors), and imperfect theoretical knowl-
edge of the system (missing or imperfectly represented physical processes). The former are
inaccuracies, checked with ‘verification’, while the latter are inadequacies, assessed with
‘validation’ (e.g. Roy and Oberkampf, 2011). Verification of climate models is challenging
due to their complexity, and true verification may be impossible (Oreskes et al., 1994). Both
formal and informal methods are used, including bit-wise comparisons with previous
versions, isolated testing of numerical methods and frequent comparison with observations
and other models, though recommendations have been made to improve and extend these
(Pope and Davies, 2002; Easterbrook and Johns, 2009; Clune and Rood, 2011). The UK
Unified Model is used for operational NWP so it is tested very frequently, albeit under
different configuration and timescales than for climate prediction.

Validation of climate models is even more challenging: the difficulties of their complexity
are compounded by the long timescale of climate and the relative sparsity of observations of
the high-dimensional, multi-decadal state. The model is evaluated with observations, where
available, or with other models. If the model does not agree with observations, after
accounting for observational uncertainty, the remaining discrepancy can inform estimates
of the model structural uncertainty; conversely, model evaluation (e.g. of members of a PPE)

Hydrometeorological hazards under future climate change 167



requires an estimate of the model structural uncertainty to be meaningful (e.g. Sexton and
Murphy, 2011). If a model agrees well with observations, it is not guaranteed to be
successful in prediction; reasons are described below. Validation can therefore only be a
partial assessment of adequacy (Oreskes et al., 1994; Knutti, 2008a). Methods and inter-
pretation are vigorously discussed and debated in the literature (e.g. Räisänen, 2007;
Knutti, 2008a; Reichler and Kim, 2008; Hargreaves, 2010; Fildes and Kourentzes, 2011).
The main challenges and strategies are discussed here briefly.

Climate modelling as a research field is only four or five decades old, not much longer
than the timescale on which climate is defined, so projections of future climate cannot be
repeatedly tested against observations to ensure ensemble predictions are well-calibrated
(as in NWP: Chapter 5). Some out-of-sample climate forecasts exist and these have appeared
to be quite successful (e.g. Smith et al., 2007; Hargreaves, 2010), though these are single
rather than repeated tests. Climate model validation therefore relies on multiple comparisons
of ‘hindcasts’ rather than forecasts. Their skill in reproducing historical observations is held
to be an indicator of their likely success at predicting future climate. There are a number of
difficulties with this approach.

First, the availability of data. The observational record is 100–150 years long for a very
limited number of variables, a few decades for most variables, and limited in spatial
coverage; satellite records are 1–2 decades long. This is partially addressed with ‘space-
for-time’ substitution: repeated model testing is performed across different locations instead
of, or as well as, different times. One example is the recent application to climate model
simulations of the rank histogram, a skill metric used in NWP, by replacing multiple forecast
tests in time with multiple hindcast tests in space (Annan and Hargreaves, 2010). However,
such tests require careful consideration of the spatial correlation structure of the model
discrepancy. Datasets of extremes are, of course, particularly limited; evaluation of climate
model extremes focuses on their magnitude and trend (CCSP, 2008).

A second difficulty is circularity: climate models are both tuned and evaluated with
observations in the historical period. So if a model reproduces the historical observations,
the best that can be said is that it is empirically adequate or consistent (Knutti, 2008a,
2008b). There are various strategies to mitigate this circularity. One is to decrease reliance
on parameterisation by adding physical processes and increasing resolution, but this brings
relatively slow improvements. A second is to consider agreement with observations as
a constraint on the model parameter space (Knutti, 2008b) or, more formally, to detune
climate models and incorporate this uncertainty in future predictions (PPEs:
Section 6.2.4.2). Circularity could also be avoided by validating with independent obser-
vations, but these are not easy to come by: datasets are relatively few (CCSP, 2008), and new
ones slow to appear (due to the global coverage and long timescale required), and model
developers are generally aware of datasets even if they are not formally used in tuning. One
solution is to validate the model with independent information from palaeoclimate recon-
structions. These reconstructions are based on ‘proxies’ such as the response of vegetation
(inferred from, for example, fossilised pollen or tree rings) to climate; they are more uncertain
than observations, but the signal is often large enough to compensate. These datasets have been
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used to test the relative success of different climate models (e.g. Braconnot et al., 2007) and
perturbed parameter ensemble members (e.g. Edwards et al., 2007). Model parameters have
also been tuned to palaeoclimate information (e.g. Gregoire et al., 2010). However, palae-
oclimate reconstructions are usually of annual or seasonal mean climate, not extremes, and are
not always provided with uncertainty estimates, which are required for these methods.

A third difficulty is the assumption that a model that is successful at hindcasting will also
be successful at forecasting. It is proper to assume that the laws of physics are constant, but
successful parameter values may depend on the state of the system. Tuning can also conceal
modelling inadequacies such as compensating errors or boundary conditions (Knutti,
2008b). This point can also be addressed with palaeoclimate information: the more out-
of-sample tests in which a model is found to be ‘empirically adequate’, the more likely it is to
be adequate for the future state. In fact, there are indications from comparisons with
palaeoclimate records that GCMs may be too stable (Valdes, 2011).

Model set-up can be changed to quantify the sensitivity of the results: in particular, the
effect of changing resolution or domain. One example is a ‘Big Brother/Little Brother’
experiment, in which a large-domain RCM simulation is filtered to GCM resolution and
used to drive a small domain, to compare with the original RCM result (Rummukainen,
2010). Changes in climate model set-up can also be propagated to impacts models, to test
their effect on estimated hazard impacts (e.g. Gosling et al., 2011).

But the primary method of comparing model results and exploring model structural
uncertainty is with a multi-model ensemble (MME), a collection of climate models pro-
duced by different research and meteorological institutes around the world. These are
‘ensembles of opportunity’, rather than ensembles of design such as those described
above. However, simulations generated by these MMEs are systematically designed and
analysed: standardised boundary conditions are used and the simulations made publicly
available for the World Climate Research Programme Coupled Model Intercomparison
Projects (CMIP3: Meehl et al., 2007; CMIP5: Taylor et al., 2011), so as to allow model
intercomparisons (e.g. PRUDENCE: Christensen et al., 2002) and multi-model predictions
(IPCC, 2007a). MMEs have been used extensively to assess extreme weather hazards under
future climate change, including: extreme temperature (e.g. Meehl and Tebaldi, 2004;
Weisheimer and Palmer, 2005; Kharin et al., 2007; Fischer and Schär, 2008; Kyselý,
2009), extreme precipitation (e.g. Palmer and Räisänen, 2002; Meehl et al., 2005;
Räisänen, 2005; Tebaldi et al., 2006; Kharin et al., 2007), drought (e.g. Wang, 2005;
Burke and Brown, 2008) and hurricanes (Emanuel et al., 2008; references therein).

MMEs can be used to estimate structural uncertainty, so long as some assertion is made
about their ‘exchangeability’: that is, that each is judged equally plausible by experts
(Sexton et al., 2011). This approach has been used to estimate the structural uncertainty
of the Hadley Centre climate model, with the motivation that models in the MME are likely
to incorporate at least some of the processes that are missing in the Hadley Centre
model: emulation is used to search parameter space for the closest match to each member
of the MME (treating each model in turn as ‘truth’), the remaining discrepancy calculated
and the structural uncertainty covariance matrix estimated from these discrepancies
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across the MME (Sexton et al., 2011; Sexton and Murphy, 2011). The authors acknowledge
this may be an underestimate due to commonmodel inadequacies (described below) and test
the sensitivity of their results to the method.

MMEs are not systematic samples of a well-defined space, so it is not straightforward to
integrate over their future predictions in the same way as PPEs (Section 6.2.4.2). Various
methods have been proposed for interpreting their predictions for policy-making (Tebaldi
and Knutti, 2007; Knutti, 2010; Knutti et al., 2010). First, with expert judgement: an early
estimate of the range of climate sensitivity to a doubling of atmospheric CO2, 1.5–4.5°C
(Charney, 1979), was based on the judgement of a small group of experts about the
uncertainty represented by a small number of climate model simulations that spanned the
range 2–3.5°C, and this estimate remained unchallenged until recently (IPCC, 2007a).
Second, as a ‘probabilistic’ distribution, analogous to NWP probabilistic forecasts (e.g.
Räisänen and Palmer, 2001; Palmer and Räisänen, 2002). Third, as an unweighted mean:
this has been found to outperform individual ensemble members (e.g. Lambert and Boer,
2001; Palmer et al., 2004). Fourth, as a weighted mean, based on comparisons with
observations (Giorgi andMearns, 2003; Tebaldi et al., 2005). However, ensemble averaging
tends to produce smooth fields biased towards the climate mean state, so it may not be
suitable for extremes (Palmer and Räisänen, 2002).

There are very many metrics of skill, and no model in the global MME performs best in
all, or even the majority, of these metrics (IPCC, 2007a). But the main difficulty in
combining MME predictions is that they are not independent: model components are
inevitably similar due to the use of the best available theoretical knowledge, and its
representation in code, as well as the movement of model developers and code between
institutes. This results in common biases between models (Collins et al., 2011). The degree
of independence is extremely difficult to quantify, though several recent attempts have been
made (Jun et al., 2008; Pirtle et al., 2010; Collins et al., 2011; Masson and Knutti, 2011;
Pennell and Reichner, 2011). A weighted mean based on skill metrics may be worse
than an unweighted mean, if inter-model correlations are not taken into account (Weigel
et al., 2010).

6.3 Risk Management

Risk management for climate change is an extremely broad topic. Aspects relevant to
changing risks of extreme weather are the main focus here; managing the risks of extreme
weather hazards in the present climate (disaster risk management) is discussed in Chapter 5.
One of the biggest challenges for extreme weather hazards in the medium- to long-term
future is the mismatch in timescales under consideration between decision-makers and
scientists: from the seasonal to multi-annual time frame of political, insurance and business
concerns to the multi-decadal time frame for which climate change can be estimated
(Dlugolecki, 2009; IPCC, 2012).
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Mitigation and geoengineering are strategies that attempt to reduce the severity of climate
change by modifying the projected future forcing (Section 6.3.1). The relative effectiveness
of different strategies is estimated with the methods described in this chapter: for example,
comparing a ‘business-as-usual’ emissions scenario with a mitigation scenario that strongly
reduces emissions, or comparing a ‘constant solar insolation’ scenario with one that reduces
insolation to approximate the effects of possible future geoengineering. Adaptation strat-
egies attempt to reduce the severity of the impacts of climate change by modifying the future
loss (Section 6.3.2). The relative effectiveness of different strategies is estimated with the
methods described in this chapter, comparing ‘no adaptation’ losses with ‘adaptation’
losses. Communication strategies attempt to inform decision-makers and the public of the
projected risks (Section 6.3.3).

6.3.1 Mitigation and geoengineering

The risks of extreme high temperature hazards (heat waves and droughts) increase, of
course, with global temperatures. For extreme precipitation and storm hazards, atmospheric
and ocean temperatures are also important drivers but the relationship is more complex
(Section 6.2.1.3), so increasing temperature may lead to increased risk in some regions and
decreased risk in others (IPCC, 2012). Mitigation and geoengineering strategies address the
risk of anthropogenic climate change, and therefore the risk of hazards driven by temper-
ature increases. A detailed synthesis report is given by the IPCC (2007c).

6.3.1.1 Mitigation

Mitigation strategies aim to reduce anthropogenic climate change by reducing the positive
(warming) anthropogenic forcings. Mitigation is an extensive topic, global in reach (because
GHGs have global effects) and politically charged (for example, developed nations are
largely responsible for past GHG emissions but developing nations are most vulnerable to
impacts). A few of the issues are outlined here; a more detailed discussion is given by the
IPCC (2007c).

Most strategies for mitigating anthropogenic climate change focus on the sources of
anthropogenic GHG emissions, by reducing usage of GHG-emitting processes (e.g.
increased insulation of buildings, reduced air travel or reduced livestock consumption) or
reducing their GHG intensity (e.g. energy efficiency, nuclear or renewable energy and fuel,
carbon capture and storage, or low-methane agriculture). Some strategies focus on the sinks
of GHGs, reducing atmospheric GHG concentrations by increasing uptake to terrestrial (e.g.
trees, soil litter) or ocean reservoirs. Inertia in the climate system (due to long-timescale
processes) and in societal change mean that most mitigation strategies are limited in the
effect they can have on short-term (annual to decadal) climate change.

Some mitigation strategies have been put in place at the global scale. An international
treaty was adopted in 1992 (United Nations Framework Convention on Climate Change,
UNFCCC: http://unfccc.int), with legally binding GHG emissions targets agreed in 1997
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and annual meetings to assess progress (IPCC, 2007c). National strategies of varying
strength have also been put in place; the UK is currently unique in introducing a long-
term legally binding framework, the Climate Change Act of 2008 (details can be found at
http://www.legislation.gov.uk).

One of the controversial aspects of mitigation is the cost of large-scale societal and
economic change motivated by predictions that are (inevitably) uncertain; for example,
regional extreme temperature changes are poorly constrained by global warming targets
(Clark et al., 2010). The UNFCCC explicitly applies the precautionary principle: ‘where
there are threats of serious or irreversible damage, lack of full scientific certainty should not
be used as a reason for postponing such measures’ (IPCC, 2007c: Article 3.3:). However, it
is difficult to ascertain the most effective courses of action, and the best time frame for their
implementation. A well-known attempt at quantifying the relative costs of action and
inaction is the Stern Review on the Economics of Climate Change, an extensive report
prepared by economists for the UK government, which estimated that if no action were
taken the overall costs and risks of climate change would be equivalent to losing 5–20% or
more of global GDP each year and that spending around 1% of global GDP each year to
reduce GHG emissions would avoid the worst impacts (Stern, 2007). The assumptions and
methodology of the Stern Review have been criticised (e.g. Weitzman, 2007): in particular,
the use of a low discount rate (reduction in future costs of taking action).

6.3.1.2 Geoengineering

Geoengineering is deliberately changing the climate (Lenton and Vaughan, 2009; Irvine and
Ridgwell, 2009). It has not yet been undertaken, except in small-scale studies (e.g. Boyd
et al., 2000). Some proposed strategies aim to reduce the positive (warming) forcings, while
others increase the negative (cooling) forcings. These correspond to the two possible
methods of changing the earth’s energy balance: increasing the outgoing (longwave)
radiation, or reducing the incoming solar (shortwave) radiation.

The former methods decrease the forcing due to GHGs by extracting them from
the atmosphere with technological (e.g. artificial trees: Lackner, 2009) or biological
(e.g. fertilisation of ocean phytoplankton: Aumont and Bopp, 2006; afforestation, charcoal
and wood storage) methods. These can also be considered mitigation strategies.

The latter type, known as solar radiation management (SRM), increase planetary reflec-
tivity (albedo). Currently the most discussed method is injection of particles into the air to
increase the reflectivity of the atmosphere or clouds (sulphate aerosols: e.g. Crutzen, 2006;
water droplets: e.g. Ricke et al., 2010); other suggestions include increasing the reflectivity
of urban structures (Oleson et al., 2010) or crops (Ridgwell et al., 2009), or positioning
reflective structures between the earth and sun (Angel, 2006). One advantage of SRM over
GHG reduction is that it could potentially cool the climate much more quickly. Different
SRMmethods have different strengths and weaknesses: for example, structures in space are
thought to be prohibitively expensive, while the reversibility of particle injection methods
(due to their short lifetime in the atmosphere) is an advantage if unforeseen negative impacts
were to occur.
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Risk management with SRM has several disadvantages relative to GHG reduction.
It might allow anthropogenic GHG emissions to continue at their present rate, avoiding
large-scale societal and economic changes, but would need to be maintained indefinitely: if
it were stopped, rapid warming from the underlying GHG forcing would occur. SRM does
not address carbon dioxide dissolution in the ocean, which may have significant negative
impacts on calcifying marine organisms (Turley et al., 2010). Furthermore, SRM does not
exactly cancel GHG forcing, because the earth system responds differently to different
types of forcing (IPCC, 2007a). While global mean temperature could be returned to pre-
industrial levels, this is unlikely to be the case for regional precipitation, drought, and storms
(e.g. Ricke et al., 2010).

The global impacts of geoengineering strategies are explored with climate models. There
are therefore large uncertainties in their effectiveness and the likelihood of negative impacts,
particularly for methods that alter complex, nonlinear parts of the earth system such as the
balance of ocean ecosystems or the hydrological cycle (IPCC, 2007c). A multi-model
intercomparison project to evaluate the effects of stratospheric geoengineering with sulphate
aerosols is currently underway (Kravitz et al., 2011). There are also enormous challenges in
implementation, both practical and legal: for example, potentially setting the climatic needs
and the rights of societies in different parts of the world against each other. It is therefore
currently considered a method of last resort, or at least a method of support of, rather than a
replacement for, mitigation.

6.3.2 Adaptation

Adaptation is management of risk by improving the ability to live with climate change:
increasing resilience to minimise the severity of the impacts. Some categories of adaptation
(Wilby et al., 2009) include resource management (e.g. of reservoirs), new infrastructure
(e.g. flood defences) and behavioural change (e.g. diversification and genetic engineering of
crops: CCSP, 2008; IPCC, 2007b). A detailed synthesis report is given by the IPCC (2007b).

Adapting to the impacts of extreme weather is a continuous process through human
history (Chapter 5; IPCC, 2007b), but in the future these events may move outside the
bounds of past experience in severity, frequency and location, requiring greater action and
perhaps ‘transformational’ changes (IPCC, 2012). Measures to adapt to hazards in a
changing climate are taken either as a consequence of past changes (e.g. increased use of
artificial snow-making by the ski industry: IPCC, 2007b) or projections of future change.
But the latter are uncertain, sometimes contradictory (Wilby and Dessai, 2010), and
adaptation measures expensive, so strategies motivated by projections are generally ‘no-’
or ‘low-regrets’ options (‘climate-influenced’ decisions: Willows and Connell, 2003) that
address multiple types of hazard, present and future risks and societal benefits such as water
resource planning, coastal defence, social welfare, quality of life and livelihoods (IPCC,
2007b; Wilby and Dessai, 2010; IPCC, 2012). This helps to avoid competition for resources
between adaptation, mitigation and disaster risk management (IPCC, 2012). Public pressure
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for adaptation measures might increase with the occurrence of extreme weather events
(IPCC, 2007c), though Hulme et al. (2011) argue that attempts to attribute extreme weather
events to anthropogenic causes (e.g. Stott et al., 2004; Min et al., 2011; Pall et al., 2011) are
likely to ‘increase the political and ethical complexities of these decisions’. Decisions
are inevitably made with multiple objectives, which may be conflicting: ‘maladaptations’
are those that constrain adaptation by increasing exposure or vulnerability (e.g. developing
housing in vulnerable areas: Willows and Connell, 2003; Chapter 5).

Adaptation has the potential to reduce future impacts even if the frequency or severity of
hazards increase: for example, increasing temperatures and amplification of the hydrological
cycle may increase the frequency and severity of droughts, but improvements in managing
water resources mean this does not necessarily lead to more frequent restrictions in supply.
The most successful adaptation strategies are iterative, with continuing dialogue between
scientists and risk managers to improve the transfer, interpretation and usefulness of risk
assessment information. Unfortunately, the cascading chain of uncertainties mean the use of
climate scenarios for adaptation is ‘lagging [their use in impact assessment] by nearly a
decade’ (Wilby et al., 2009); the authors review current uncertainties in climate risk within
an adaptation context.

Many risk management frameworks for climate change have been proposed (e.g. IPCC,
1994; Willows and Connell, 2003; Johnson and Weaver, 2009; IPCC, 2012). The ‘risk,
uncertainty and decision-making framework’ (Figure 6.1; Willows and Connell, 2003) of
the UK Climate Impacts Programme (http://www.ukcip.org.uk) is intended for users with
some knowledge of climate risks that want to fully understand these risks and obtain a good
understanding of adaptation options. The framework is described in a comprehensive
technical document with detailed guidance, methods and options for implementation
(Willows and Connell, 2003). Additional frameworks and tools are provided, based on
the same underlying principles but aimed at different users, including an ‘Adaptation
Wizard’ for users new to adaptation. Detailed case studies are given: for example, identify-
ing the potential increasing risks of extreme weather for a UK container port (e.g. power
supply disruption and damage, crane and pilot stoppages, port closures). The UKCIP
framework has been used extensively by a wide variety of stakeholders to assess impacts
and risk. A qualitative risk analysis with this framework can be followed with a quantitative
analysis using the most recent UK Climate Projections (UKCP09: Murphy et al., 2009),
which contain more information and exploration of uncertainty than the previous projec-
tions (UKCIP02: Hulme et al., 2002) and are expressed in probabilistic terms.

6.3.3 Communication

There are a number of problems in communicating the risks of future climate change and
extreme weather hazards. A broad overview is given by Hulme (2009). The public receive
conflicting messages from the media about whether the climate will change significantly
(in contrast with the broad consensus within the scientific community on the large-scale

174 T. L. Edwards



aspects: IPCC, 2007a) and whether individual extreme weather events are attributable to
human causes (a reflection of this rapidly changing research area: e.g. Min et al., 2011; Pall
et al., 2011). Communication of climate change risks is a wide-ranging and developing area.
Some issues are outlined here.

Many difficulties arise from mental models and cognitive biases, where differences in
framing, level of detail, personal and cultural experiences and narrative affect the interpretation
of risk (Patt and Schrag, 2003; Marx et al., 2007; Mastrandrea et al., 2010; Morgan and
Mellon, 2011; Sterman, 2011; Spiegelhalter et al., 2011). Sterman (2011) describes some of the
difficulties non-experts can have in understanding climate-related risks, including the long
timescales, feedbacks and the complexity of the system, and makes a number of policy
recommendations including a wider use of interactive simulations for learning; simple climate
models with graphical user interfaces (e.g. Price et al., 2009) could be used for this purpose.

Scientific literacy plays a part, but evenwell-informed usersmay be confused by the balance
of consensus and uncertainty in the IPCCAssessment Reports (Socolow, 2011). These reports
have guidelines that standardise and, over the years, refine the communication of uncertainty
with calibrated language to reflect probabilistic predictions. In the Fourth Assessment
Report (IPCC, 2007a) these included categories such as ‘likely’, corresponding to 60–90%
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Figure 6.1 The UKCIP risk, uncertainty and decision-making framework (Willows and Connell, 2003
© UKCIP, 2011).
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probability. In the Special Report on Managing the Risks of Extreme Events and Disasters
(IPCC, 2012) and the Fifth Assessment Report, the calibrated intervals are cumulative rather
than exclusive, so that ‘likely’ corresponds to 66–100% probability, and additional language
has been added to reflect confidence of experts in the validity of a finding (Mastrandrea et al.,
2010, 2011). The associated quantitative intervals for each word or phrase are given at the end
of the IPCC reports and not, in general, repeated throughout or in dissemination of material to
the public. The danger in using calibrated language is that these words are interpreted differ-
ently by different people (Wallsten et al., 1986; Patt and Schrag, 2003;Wardekker et al., 2008;
Morgan and Mellon, 2011). In fact, climate scientists also interpret and use the guidelines in
contradictory ways (Spiegelhalter and Riesch, 2011; Mastrandrea and Mach, 2011).

There is no ‘one size fits all’ approach to communication or visualisation of risk
(Chapter 5; IPCC, 2012). Spiegelhalter et al. (2011) give some helpful guidelines,
including the need for multiple formats and the importance of iteration with user involve-
ment. The most recent projections by the UK Climate Impacts Programme are available
online (http://ukclimateprojections.defra.gov.uk) in the form of pre-prepared maps and
graphs and an interactive tool for customised output. A separate map is provided for
each combination of several weather variables (e.g. annual mean maximum temperature,
winter precipitation), several locations (UK administrative regions), three emissions
scenarios (low, medium, high), five probability thresholds (10%, 33%, 50%, 67%, 90%)
and three future periods (2020s, 2050s, 2080s). Figure 6.2 shows maps for three probability
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Figure 6.2 Maps from the UK Climate Impacts Programme showing 10%, 50% and 90% probability
levels of changes to the temperature of the warmest day of the summer, by the 2080s, under the
medium-emissions scenario (Murphy et al., 2009 © UK Climate Projections, 2009).
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thresholds for the change in temperature of the warmest day of the summer, by the 2080s,
for the medium-emissions scenario. Explanatory phrases such as ‘central estimate’ and
‘very unlikely to be greater than’ are included to clarify the meaning of the probability
levels. The separation of the different variables and scenarios makes large amounts of
forecast information available, even without the customisation tool. These are used
extensively by decision-makers such as local government agencies. However, there is
little empirical evidence on the effectiveness of visualisation methods for climate change
risks (Pidgeon and Fischhoff, 2011; Stephens et al., 2012).

6.4 Summary

Risk assessment and risk management for extreme weather in a changing climate is essential
for global society, but it has many challenges. The limited predictability of future anthro-
pogenic forcings is addressed by making predictions for a set of plausible storylines and
scenarios, but these might not cover the range of possible futures. The effects of feedbacks
are difficult to simulate for some important parts of the earth system, such as clouds and the
carbon cycle, which means long-term projections are subject to substantial uncertainties.
Short-term decadal predictions are highly desirable for policy-making and planning; meth-
ods are being learned from numerical weather prediction, but forecasts are dominated by
internal variability and this remains one of the most challenging research areas. Extremes of
climate are even more difficult to simulate than the mean, because observations are rarer
(for model calibration and validation) and state-of-the-art climate models too expensive to
run multi-centennial simulations. The most difficult weather hazards to simulate are extreme
precipitation and tropical cyclones, because they are driven by processes on small spatial
scales, and drought, which is defined by multiple variables and indices.

Physical modelling is crucial to incorporate the effects of changing boundary conditions.
A spectrum of physical climate models exists, varying from complex, high-resolution
regional models to simpler and lower-resolution global models. There is a trade-off, given
finite computational resources, between climate model complexity (to reduce biases) and the
length and number of simulations (to simulate extremes and quantify uncertainty). Physical
impacts models (e.g. the effect of extreme weather on health and the environment) exist, but
most impacts models are statistical and implicitly assume the hazard–impact relationship
does not change through time.

Quantification of uncertainty incorporates all the challenges described in Chapter 5
and more. In particular, the multi-decadal timescale on which climate is defined rules out
traditional validation methods used in numerical weather prediction. Models are mainly
evaluated with hindcasts rather than forecasts, and repeated tests are made across spatial
locations to partially compensate for the lack of repeated tests in time. Ensembles explore
uncertainty in climate forcing, initial conditions, model parameters, and model structure.
The significant computational expense of climate models usually limits the size of these
ensembles to dozens, but simpler models (e.g. pattern scaling) and statistical models
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(e.g. emulation) can supplement their predictions, and distributed computing has pro-
vided the resources to generate very large numbers of simulations. Not all ensembles are
created equally: parametric and initial condition uncertainty (the former more important
in centennial predictions, the latter in decadal) may be explored systematically and
integrated out for a single model, but a suite of predictions for different scenarios or
with different climate models must be treated individually or at least, in the case of
multiple models, handled with care. It is essential, but very difficult, to estimate model
structural uncertainty, because it represents the degree of realism of a climate model in an
extremely high dimensional and correlated space; expert elicitation and multi-model
ensembles are currently the main contenders. Model validation under uncertainty is
further complicated by the low availability of observations. Reconstructions of past
climates can help with this, though these require estimates of uncertainties to be useful.
The causal chain under consideration is long – from emissions to concentrations, global
climate, regional climate, extremes, impacts and, finally, risk management – and this is
reflected in the relative uptake of methods to quantify and propagate uncertainty at each
stage. It is rare for studies to propagate more than about three of these sources of
uncertainty in any one assessment.

Potential risk management strategies are mitigation and geoengineering (reducing the
human warming impacts on climate, or increasing the cooling impacts), adaptation
(increasing resilience to extreme weather hazards today and in a changing climate)
and communication (increasing awareness of the changing risks). Mitigation and geo-
engineering strategies are global in their effects, so they require international or global
agreement to implement. The relative efficiency of mitigation, geoengineering and
adaptation strategies is assessed with projections for different plausible future scenarios.
However, the complex feedbacks and long causal chains of interactions between parts of
the earth system and driving forces such as humans and the sun introduce many cascad-
ing uncertainties. This can lead to vague or contradictory risk assessments that are
difficult to use in decision-making. To address this, risk management searches for ‘no
regrets’ options that are flexible and/or yield additional benefits such as reduced costs
(e.g. increased energy efficiency) or societal benefits (e.g. increased food security).
Communication of risk is extremely challenging, given the long timescale, complex
and statistical nature of climate and uncertainty in predictions. There have been improve-
ments in the use of calibrated language, but little evaluation of the success of different
visualisation methods.

The earth’s climate is at once familiar and mysterious, and the weather hazards that occur
in its extremes are among the most formidable aspects and the most challenging to predict.
This chapter has outlined current methods and challenges of simulating the effect of
changing boundary conditions on extreme weather, the statistical modelling that supports
it and the types of risk management under consideration. The area cannot be done justice
here, and is changing very rapidly, so the reader is encouraged to explore the literature
further.
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