
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logics for Action

Citation for published version:
Fourman, MP 2007, Logics for Action. in IICAI. pp. 1223-1237. DOI:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.5576

Digital Object Identifier (DOI):
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.5576

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IICAI

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/29049701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.5576
https://www.research.ed.ac.uk/portal/en/publications/logics-for-action(97728f52-3154-4334-a0bd-8b1478f83ffe).html


Logics for Action

Michael P. Fourman

School of Informatics
The University of Edinburgh, Scotland, UK

michael.fourman@ed.ac.uk

Abstract. Logics of action, for reasoning about the effects of state change, and
logics of belief, accounting for belief revision and update, have much in common.
Furthermore, we may undertake an action because we hold a particular belief,
and revise our beliefs in the light of observed consequences of an action. So
studies of these two aspects are inevitably intertwined. However, we argue, a
clear separation of the two is helpful in understanding their interactions.
We give a semantic presentation of such a separation, introducing a semantic
setting that supports one logic for describing the effects of actions, which are
modeled as changing the values of particular atomic properties, or fluents, and
another for expressing more complex facts or beliefs about the world. We use a
simple state-logic, to account for state change, and show how it can be integrated
with a variety of domain-logics, of fact or belief, for reasoning about the world.
State- and domain-logics are linked, syntactically and semantically; but separate.
The state-logic, our logic for action, is quantified propositional logic. Bounded
existential propositional quantification is used to specify which literals may be
established by a given action. This provides a logically transparent account of
the treatment of updates introduced in [1], which itself provided a treatment of
the frame problem extending the uses in event calculi of the forget operator, oc-
clude and release predicates, all published in 1994 [2–4]. Our, purely classical,
logical setting can be seen as a recasting of the state-transition model of action,
underlying STRIPS [5] and ADL [6].
Our treatment, like ADL, caters for actions with conditional effects, which can
handle ramifications unrepresentable in classic STRIPS; it also includes concur-
rent actions, non-deterministic effects, and domain axioms or integrity constraints,
which are not present in ADL. We introduce an operator, novel in this context, that
computes fixpoints of certain monotone actions, to handle the problem of nested
ramification.
We exploit non-determinacy to provide a decomposition of actions, as composi-
tions of simpler fundamental operations on states. These decompositions provide
a basis for the static analysis of interference, which is applied in our treatment of
iteration, re-ordering and concurrent composition of actions.
Our setting combines operational and inferential aspects. Domain logics are in-
ferential, and can vary, from classical to exotic. The state logic provides an oper-
ational calculus of actions that retains the clarity and simplicity of propositional
reasoning, which underlies STRIPS’ enduring appeal. It also has practical bene-
fits: applications can exploit propositional reasoning tools, such as BDD packages
and SAT solvers to provide a direct route to efficient implementations [7].

keyword action, transition system, logic, semantics, frame problem, representation



1 Introduction

The philosophers have only interpreted the world, in various ways;
the point is to change it. Marx [10]

Beliefs represent our attempts to interpret the world; actions change it.

This paper provides a setting that will allow us to give an account of the following
simple narrative.

Before setting off on a trip, I pack a power adapter for my laptop (because
I will need it and don’t believe I have one packed already). Packing something
ensures, non-deterministically, that it is in either my briefcase or my suitcase.
I pack, place myself, briefcase and suitcase in the car, and drive the car from
here to there. On arrival, I carry briefcase and suitcase from the car to my
hotel room. Unpacking, I find not one, but two adapters, one in the briefcase,
one in the suitcase. I realise that my earlier belief was mistaken: I had already
packed an adapter. I hope my son won’t mind that I have them both and he has
none!

We take a semantics-led approach to logic, and start from a simple platonic model
of a discrete sequence of static states evolving as the result of a sequence of actions.
We use this to provide two different interpretations for two different logics: a dynamic
state-logic, and a static domain-logic. This leads to a setting that allows us to give an
account of actions featuring non-determinacy and nested ramifications.

Starting from this formal model of the world, we provide two different interpreta-
tions for two different logics: state-logic, and a static domain logic.

We have a set of state variables. On the one hand, these represent states as configura-
tions, or valuations—total functions that assign a value to each variable—a value which
actions may change. On the other hand, we view each configuration in state-space as
encoding a model that provides semantic grounding for our logics of fact and belief,
representing a momentarily static view of the world.

The relationship between state-logic and domain logic can also be viewed syntacti-
cally: state variables are variables of the state-logic, and they correspond syntactically
to (and can, conservatively, be introduced as) constants in the domain-logic.

We conclude this introduction with a brief description of the sections that follow.
In §2 we use quantified propositional logic to provide a setting in which various

“update operators” are exposed as simple logical operations.
In §3 we introduce an abstract mathematical notion of action. Semantically, we

allow any function from states to sets of states as the effect of an action.1 The state logic
provides syntax for building simple component actions. We build actions generalising
those of STRIPS and ADL compositionally, from these primitives.

In §3.4, we extend the conditional effects of ADL by introducing a fixpoint operator,
which allows us to handle nested ramification.

1 We represent these formally by union-preserving total functions on the set of sets of states,
since we find it technically and notationally simpler.



§4 describes the interface between state-logic and domain-logic, and touches on the
issue of domain constraints.

In §5, we return to assess how well our account addresses the issue of modeling our
narrative.

2 State Logic

Our state-logic is just predicate logic with state variables as variables. We show how
standard logical operations can be used to address the frame-problem and represent
state-change.

Let I be a set of state-variables, with each x 2 I ranging over a non-empty set
S

x

of possible values.2 We consider states, or valuations, v that assign a value to each
state-variable. So, valuations are elements of the product state-space, S:

v 2 S =
Y

x2I

S
x

v = hv
x

2 S
x

| x 2 Ii (1)

A condition, C, is a subset of the state space, S. We introduce a logic whose expressions
will denote conditions. For x, y 2 I , we define the (postfix) substitution operations
[y/x] (substitute y for x), on conditions and valuations, semantically, by

C[y/x] = {v | v[y/x] 2 C} where

(
(v[y/x])

x

= v
y

(v[y/x])
z

= v
z

for z different from x

Definition 1 (Syntax). Expressions are built, as usual, from atoms. Each condition C
is an atomic expression.3 If ' and  are expressions, x is a state-variable, and ↵ is an
action, then the following are expressions:

' ^  , ' _  , ¬', '!  , '$  , 9x.', 8x.', ↵.' (2)

We write>,? for the maximal (S) and minimal (;) conditions; x̄ for a set of variables;
x̄, ȳ, for the union of sets of variables; and 9x̄. , and 8x̄. for quantification over
several variables.

2 We also allow ourselves, for convenience, a supply of auxiliary variables. These are innocuous,
once quantified—which will be done wherever they are introduced. We use Greek letters µ, ⌫,

to denote such a variable, which will always be new, in the sense that it occurs only where
explicitly shown.

3 We adopt standard mathematical notations (eg. x = y for {v | v
x

= v
y

}) as shorthand for
common conditions: where x 2 I and a 2 S

x

, we write x = a for {v | v
x

= a}; where b, x, y

are boolean-valued variables, write b for {v | v

b

= true}, and x  y for {v | v
x

 v
y

}
(where booleans have the usual order; ?  >); similarly �.



Definition 2 (Semantics). The interpretation of a static expression ' is the condition
[[']] 4 determined by the following inductive rules:

[[C]] = C [[↵.']] = [[↵]][[']] [[¬']] = S \ [[']] (3)

[[' ^  ]] = [[']] \ [[ ]] [[' _  ]] = [[']] [ [[ ]] (4)
[['!  ]] = [[¬' _  ]] [['$  ]] = [['!  ^  ! ']] (5)

w 2 [[9x.']] iff 9v 2 [[']].8y 6= x.v
y

= w
y

(6)
w 2 [[8x.']] iff 8v. (8y 6= x.v

y

= w
y

) ! v 2 [[']] (7)

For any correct, syntactic definition of substitution, [['[y/x]]] = [[']][y/x].

We say, “' is equivalent to  ” ' ⌘  iff [[']] = [[ ]] (8)
“' entails  ” ' ✏  iff [[']] ✓ [[ ]] (9)

Note that, b ⌘ b = true ¬b ⌘ b = false (10)

If every state-variable is boolean-valued, then the fragment of this logic consisting of
expressions without conditions amounts to the standard interpretation of Quantified
Boolean Formulæ (QBF) over the state-variables. If the domain of each state-variable is
finite, the logic is known as Quantified Propositional Logic. This finiteness restriction
is introduced later in this paper, when we come to compute fixpoints of actions.

We remark that our state-logic and semantics can be viewed as a presentation of the
classical (Tarski) satisfaction relation (✏

T

) for many-sorted first-order predicate logic
(FOL) with non-empty sorts and without function symbols: we take as state-variables
just the variables of the logic. To establish this correspondence, we introduce a condi-
tion, [[P (x̄)]], for each atomic formula, P (x̄), of FOL, where (x̄) represents all the free
variables of the atom: [[P (x̄)]] = {v | v ✏

T

P (x̄)} It is then straightforward to verify,
by induction on the structure of formulae, that [[']] = {v | v ✏

T

'}. Thus, in addition
to the classical propositional identities, all the identities and entailments of classical
first-order predicate logic are valid, in particular the following:

9x̄. (' _  ) ⌘ 9x̄.' _ 9x̄. 9x̄. (' ^  ) ✏ 9x̄.' ^ 9x̄. (11)
8x̄.' ^ 8x̄. ⌘ 8x̄. (' ^  ) 8x̄.' _ 8x̄. ✏ 8x̄. (' _  ) (12)

We will apply this setting to the representation of actions by taking fluents as state-
variables, so that a state is an assignment of values to the fluents.

Remark 1 (Dependence and Independence). For any condition, C, and variables, x̄,

C ⌘ 9x̄. C iff C ⌘ 8x̄. C iff 9x̄. C ⌘ 8x̄. C

4 We also say [[']] describes '. In the literature, [[']] is often denoted Mod(').



If x̄ is a set of variables, C a condition, and ' an expression, there is an obvious semantic
notion of independence5:

C ./ x̄ iff C ⌘ 8x̄. C C is independent of x̄ (13)
' ./ x̄ iff [[']] ./ x̄ ' is independent of x̄ (14)
C B x iff not C ./ x Cis dependent on x (15)
' B x iff not ' ./ x ' is dependent on x (16)

Definition 3. We use the usual notion of free variables, FV(') ✓ I , of a formula '.
Free variables are introduced by the atomic cases FV(C) = {x | C B x}; quantifiers
bind variables FV(9x.') = FV(8x.') = FV(') \ {x}; other connectives cumulate
free variables FV(' ^  ) = FV(' _  ) = FV(') [ FV( ).

Remark 2. If x 62 FV(') then ' ./ x.

If ' ./ x̄ then ' ^ 9x̄. ⌘ 9x̄. (' ^  ) and 8x̄. (' _  ) ⌘ ' _ 8x̄. 

Proof. By definition, the first claim holds for atomic formulæ; the general case follows
by induction on the structure of '. For the second, we have to prove the converse of
(11). If v 2 [[' ^ 9x̄. ]] then there is some w 2 [[ ]] that agrees with v except on
x̄—but then w 2 [[9x̄.']] = [[']], so w 2 [[' ^  ]], and thus v 2 [[9x̄. (' ^  )]]. The
argument for the third is similar.

Independence is important in establishing non-interference between actions. We rely on
this, and remark 3 below, to provide syntactic control of interference.

Definition 4. We define ' f l (' is monotone in l), for l a literal:

' is monotone in x, iff 9⌫. (⌫  x ^ '[⌫/x]) ✏ ' (17)
' is monotone in ¬x, iff 9⌫. (⌫ � x ^ '[⌫/x]) ✏ ' (18)

Observe that entailments in the reverse direction are trivial.6

We use l,m for literals, and say ¬x (resp. x) is true in v if v
x

= ? (resp. v
x

= >). We
mildly abuse notation by writing v

l

to stand for v
x

if l is x, and ¬v
x

if l is ¬x.

Remark 3. A standard inductive argument shows that if x occurs only positively (resp.
negatively) in ', then ' is monotone in x (resp. ¬x). Conversely, if ' is monotone in
l, observe that any occurrence of ¬l in a conjunctive normal form for ' is redundant,
and can be deleted. So ' is monotone in l iff there is a CNF for ' in which ¬l does not
occur. Observe also that, 9⌫  x.'[⌫/x] is monotone in x; dually, 9⌫ � x.'[⌫/x] is
monotone in ¬x; furthermore,

9x' ⌘ 9µ  x.9⌫ � µ.'[⌫/x] ⌘ 9µ � x.9⌫  µ.'[⌫/x] (19)

5 Part of logical folklore: explicit in Lang [11], but already implicit in [4], for example.
6 Hereinafter, we use standard abbreviations, such as 9⌫  x.'[⌫/x], for bounded quantifica-

tion.



Lang and Marquis [12, 11] define a boolean function to be Lit-independent of a lit-
eral l iff it can be expressed in conjunctive normal form without occurrence of l. It is
straightforward (this a direct consequence of remark 3) to see that,

' is monotone in l iff ' is Lit-independent of ¬l

If ' describes a set of states, then 9x.' represents the set of states that are like some
state in [[']] except that they may have a different value for the fluent x:

[[9x.']] = {w | for some v 2 [[']]. for all y, other than x, v
y

= w
y

}

The bounded quantifier gives finer control—it allows the value of a fluent to change in
one direction only. For example, upwards:

[[9⌫  x.'[⌫/x]]] = {w | 9v 2 [[']].v
x

 w
x

, and, for all y other than x, v
y

= w
y

}

3 Actions

Definition 5. An action is a union-preserving7 total function on the powerset of S.

↵ : }(S) ! }(S)

Each action, ↵, is determined by its values on singletons. We will often abuse notation
by writing ↵(v) for ↵({v}).

We choose to work with total functions on sets of states, rather than relations, or
partial functions, since these sets of states are the semantic counterparts of logical ex-
pressions, and we reason about actions, plans and beliefs, by manipulating such sets.
Applications can exploit technologies for propositional reasoning, such as BDD pack-
ages and SAT solvers to implement these manipulations (cf. [7, 13, 14]). This presenta-
tion also makes sequential composition of actions simply composition of functions.

3.1 Primitive Actions

We introduce notation,8 in the style (keyword parameters), for some primitive ac-
tions.9 The reader is invited to observe that these are indeed actions—that the property
of preserving unions obtains.

(require )(C) = [[ ]] \ C null = require> (20)

The action (require ) is the identity, null, restricted to states for which  holds.

(allowx)(C) = [[9⌫  x. C[⌫/x]]] (allow¬x)(C) = [[9⌫ � x. ^ C[⌫/x]]] (21)

7 Note that, in particular, ↵(;) = ;, for any action, ↵.
8 In these examples,  is a fixed expression, x is a state-variable, and l a literal.
9 Many of these occur in the literature; for example, (allow l)' corresponds to

ForgetLit(',¬l) in [12, 11], and (changex)' to ForgetVar(', x).



We write changex for (allowx ; allowx), so (changex)(C) = [[9x. C]]. The
actions changex and allow l are crucial to our account. We use them as the mecha-
nism for state-change, and this is how we address the frame problem.

The action (when  ↵) (where  is an expression and ↵ an action) is defined by its
action on singletons: (when  ↵)(v) = if v 2 [[ ]] then ↵(v) else {v}. Extending
(when  ↵) to general conditions, C, gives:

(when  ↵)(C) = (C \ [[¬ ]]) [ (↵)(C \ [[ ]]) (22)

Definition 6. An action ↵ is deterministic iff 8C. |↵(C)|  |C|; equivalently, iff ↵ is at
most single-valued on singletons: 8v. |↵(v)|  1. A deterministic action corresponds
to a partial function on S.

Composing Actions Actions can be composed sequentially10 by function composition,
and non-deterministically by set union:

(↵ ; �)(C) = �(↵(C)) (↵ | �)(C) = ↵(C) [ �(C) (23)

Lemma 1 (Easy Identities).

11

allow l;allow l = allow l (24)
allow l ; allowm = allowm ; allow l (25)

require' ; require = require(' ^  ) (26)
allowx ; allow¬x = changex (27)

allow l̄ ; require' ; allow l̄ ; require' = allow l̄ ; require' (28)
require' ; allow l̄ ; require' ; allow l̄ = require' ; allow l̄ (29)

when (when' ↵) = when ( ^ ') ↵ (30)
when (require ;↵) = when (↵) (31)

If ' ./ x, then
allowx ; require' = require' ; allowx

allow¬x ; require' = require' ; allow¬x

(32)

If ' is monotone in l, then

allow l ; require' ; allow l = allow l ; require'
(33)

Definition 7 (Reciprocal Actions). If ↵ is an action, we define the reciprocal action12

h↵i:
h↵i(C) = {v | 9w 2 ↵(v).w 2 C} (34)

10 Note that, for this notion of composition, if either action produces an empty set of results then
so does the composite.

11 We write allow l, m for the composite action (allow l ; allow m), and, similarly, since
order and repetition are irrelevant, change x̄, for permitting changes to a set, x̄, of state-
variables, allow l̄ for allowing a set l̄ of literals to be established.

12 Some do not like to call this an action, as many real-world actions cannot simply be reversed.
However, from a formal point of view, it has the required form. Irreversibility is more a matter
of thermodynamics than logic.



This gives the set of states from which we may reach C by ↵. An agent performing ↵
then observing O can infer that h↵iO must have held before the performance.

Lemma 2 (Reciprocal Actions).

hnulli = null (35)
hchangexi = changex (36)
h(allow l)i = (allow¬l) (37)

h(require )i = (require ) (38)
h(↵ ; �)i = (h�i ; h↵i) (39)

Proof. Recall that each action ↵ corresponds to a relation; the reciprocal action h↵i
corresponds to the reciprocal relation.

Remark 4. The related operation13 [↵], which gives the set of states from which we
must reach C if we perform ↵, preserves unions, and thus is an action, iff ↵ is determin-
istic

[↵](C) = {v | 8w 2 ↵(v).w 2 C}

3.2 STRIPS Actions

Remark 5. In classic STRIPS [5] a state is represented by the set of atoms true in that
state. Actions are presented by giving three sets of atoms: preconditions, pre, that have
to be true for the action to be performed, and effects, delete (contained in pre) and add

(disjoint from pre), that specify changes, wrought by the action, to the set of true atoms.
The action (pre, add, delete) in classic STRIPS corresponds to the action:

�
require

^

p2pre

p ; allow (add [ {¬d | d 2 delete}) ; require
^

a2add

a ^
^

d2delete

¬d

�

Definition 8. The pre-condition, pre

↵

, of an action ↵, is h↵i(S).
The set, changes

↵

, of literals that may be set by ↵ is the smallest14 set l̄, of literals,
such that, for all C ✓ S

↵(C) ✓ (allow l̄)(C). (40)

The post-condition, post

↵

, of ↵, is ↵(S).

In the case of a classic STRIPS action, ↵, these operations simply recover its constituent
parts: ↵ = (require pre

↵

; allow changes

↵

; require post

↵

).

Definition 9. A (generalised) STRIPS action � has the form:

� = (require pre ; allow lits ; require post)

where pre is a formula, lits is a set of literals that may be set by the action, and post is
a formula.
13 This operator, [↵] is the tidy regression operator ([6] definition 5.2) for ↵.
14 Since ↵ preserves unions, it is sufficient to check (40) for singletons C = {v}, where v 2

pre

↵

. For each v, and set l̄ of literals, observe that ↵(v) ✓ (allow l̄){v} iff l̄ contains all
literals, m, true in some state w 2 ↵(v), but not in v.



Note that, while classic STRIPS actions are deterministic, generalised STRIPS actions
may be non-deterministic. The simple form of our generalised STRIPS actions allows
us to give simple explicit descriptions of reciprocal actions and concurrent composition.

Remark 6. Lemma 2 allows us to give the reciprocal of a STRIPS action explicitly:15

h(require pre ; allow lits ; require post)i
= (require post ; allow ¬ lits ; require pre) (41)

Definition 10. Concurrent Actions We say actions ↵ and � are independent, ↵ ./ �, iff
(↵ ; �) = (� ; ↵), in which case we write (↵ || �) for this concurrent composition.

Some pairs of actions cannot meaningfully be performed concurrently: they may have
conflicting effects, or one may establish—or destroy—the pre-conditions of the other.

Lemma 3 (Concurrent STRIPS Actions). Let ↵ and � be generalised STRIPS actions:

↵ = (require pre

↵

; allow l̄

↵

; require post

↵

)
� = (require pre

�

; allow l̄

�

; require post

�

)

such that the pre-conditions of each are independent of the changes of the other, and the
post-conditions of each are monotone in the changes of the other (non-interference):

pre

�

./ l̄

↵

f post

�

pre

↵

./ l̄

�

f post

↵

then ↵ ./ �, and (↵ ||�) is given by:

(require pre

↵

^ pre

�

;allow l̄

↵

, l̄

�

; require post

↵

^ post

�

) (42)

This form of concurrency has restricted application: the preconditions of both con-
stituent actions must be satisfied as precondition. In the next section we consider con-
ditional effects, which represent a form of opportunistic concurrent cooperation.

3.3 ADL actions

Pednault [6] generalises STRIPS by introducing conditional effects. We introduce gen-
eralised ADL actions, then discuss how Pednault’s actions compare with our treatment.

An archetypical example of the behaviour we want to represent is the briefcase
problem. The action of moving the briefcase from home to work should also move the
contents of the briefcase. So the location of the laptop should change if it is in the
briefcase, but otherwise be inert.

The key idea introduced by Pednault is to allow the set of fluents changed by an
action to be context-dependent. Actions of the form when'(allow l̄;require )
express the conditional effect of allowing changes to l̄ in order to require  , when the
condition ' holds.
15 Here, ¬ lits denotes the result of negating each of the literals.



Lemma 4. Given actions �, � of form

� = when'

�

(change l̄

�

;require 
�

) (43)
� = when'

�

(change l̄

�

;require 
�

) (44)

such that the conditions and effects of each are monotone in changes made by the other
(non-interference):

'

�

f l̄

�

f  

�

'

�

f l̄

�

f  

�

(45)

then � ./ �, so �||� is well-defined.16

Definition 11. A (generalised) ADL action (requireP ; |||i2I



i

) is formed from a
precondition, P followed by the parallel composition of a finite set of conditional ef-
fects, 

i

= (when cond

i

(change lits

i

; require eff

i

)), where the 
i

are mutually
independent.17

Typically, one of the conditions cond

i

is >, and this component is viewed as a standard
STRIPS action, to which the others are joined as conditional effects. Our treatment of
conditional effects is, strictly speaking, incomparable with Pednault’s ADL: his defi-
nition permits interference between conditional effects; ours allows non-deterministic
effects. We have not encountered instances that exploit interfering conditional effects.

Conditional effects were introduced to handle ramification—if the briefcase moves
to the station, and the envelope is in the briefcase, then the envelope should move to the
station. The solution is fine, as far as it goes. But what if a letter is in the envelope, and
the briefcase is in a car, which drives to the station. We want in-ness to be transitive,
but transitive closure cannot be expressed directly in our propositional setting–nor even
in first-order logic. In the following section we introduce a solution to this problem.

3.4 Iterated Actions

In this section we introduce a novel operation that will allow us to cascade conditional
effects.

Definition 12. Let lits be a set of literals. We define the ordering 
lits

on states

v 
lits

w iff w 2 (allow lits){v} (46)

For V,W sets of states, we say

V 
lits

W iff for each v 2 V there is a w 2W with v 
lits

w, and

for each w 2W there is a v 2 V with v 
lits

w.
(47)

An action ↵ is monotone iff, whenever v 
changes↵

w, then ↵v 
changes↵

↵w.

16 In contrast with the situation in Lemma 3 there is no simple form for this parallel composition,
as—and this is the point of conditional effects—the set of variables changed is not uniform
across states.

17 In practice, mutual independence is established statically, through syntactic analysis of mono-
tonicity, applying lemma 4 and remark 3.



Iterating a monotone operator with finite action leads us to a fixed point. We define,
as usual, ↵0 = null,↵

k+1 = (↵k ; ↵). The action ↵†, of iteration to fixpoint of a
monotone action, ↵, is given by ↵†(v) = ↵

n(v) where, n is the smallest number such
that ↵n+1(v) = ↵

n(v) (which exists, thanks to monotonicity).

Definition 13. An extended ADL action
�
requireP ; (|||i2I



i

)†
�

is formed from a precondition, P followed by the parallel composition of a finite set of
conditional effects,



i

= (when cond

i

(change lits

i

; require eff

i

)) (48)

where cond

i

and eff

i

are monotone in all literals lits

j

(including the case where i = j).

The monotonicity conditions suffice to ensure that the 
i

are mutually independent, and
(|||i2I



i

) is monotone.

4 Domain Logic

An abstract state-space is of little use, until we connect fluents with meanings. The
usual way to make this connection, common to the various approaches in the literature,
is to make the fluents represent the values of atomic sentences (ground atoms) of some
logic. We do the same.

We use first-order logic as an example of a domain logic; a state of the world cor-
responds to a first-order structure, or model. To connect with the state logic described
above, we illustrate how a state-space is derived from some family of first-order struc-
tures. A similar procedure could be used to connect our state-logic to a variety of other
logics.

Let L be a first-order language, without function symbols. Let X be a finite set. We
consider structures for L with X as underlying set, and encode these structures as states
of a state-space. Recall that such a structure is given by providing an interpretation—
a relation on X , of appropriate arity—for each relation symbol of L. We add to L
constant symbols for the elements of X and take as boolean state-variables the atomic
sentences formed by applying relation symbols to these constants. Each state, v, thus
assigns a truth value to each of these atomic sentences; these truth values determine the
interpretations of the relation symbols in a corresponding structure, M(v).

The fluents, or state-variables, are atomic sentences, or ground atoms of the domain
logic. Note that each sentence ' of the domain logic determines a constraint: {v |
M(v) ✏ '}. We (gently) abuse notation by writing the formula itself in place of this
constraint, and thus allow sentences of the domain logic to occur as formulæ of the
state logic. An atomic sentence of the domain logic thus occurs as an atomic formula
of the state logic both as a constraint and as a boolean state-variable. These two are
given identical semantics by equation (3). Similarly, a boolean combination of sentences
generates a constraint semantically equivalent to the same boolean combination of the
constraints generated by the constituent sentences, so this notational abuse is innocuous.



Note that the domain logic, with variables and quantifiers ranging over elements
of X is quite different from the state logic, whose variables are the fluents. However,
the two logics interact syntactically and semantically. Syntactically, the variables and
atomic formulæ of the state logic represent sentences of the domain logic. Semantically,
each sentence of the domain logic is characterised, up to equivalence for the family of
models encoded, by the constraint associated to it above. Taking this constraint as the
semantics for a domain logic sentence, we see that where the two logics meet syntacti-
cally, they agree semantically.

We can extend this approach to a language with function symbols. We extend the
example above to add a single, binary function symbol, f , leaving the reader to gen-
eralise. For each pair, a, b, of elements of X , we add a fluent, or state-variable, named
f(a, b), whose value ranges over elements of X . In the domain logic, the values of the
various fluents f(a, b) where a, b 2 X determine the interpretation of f in the corre-
sponding structure. In the state logic, the choice of name for the fluent ensures semantic
and syntactic alignment for the atomic formulæ f(a, b) = c.

Lemma 5. Let ' and A be sentences of the domain logic, where A is a ground atom.
Then the constraint corresponding to ' is independent of the fluent corresponding to A

unless A is a substitution instance of some atomic formula occurring in '. Furthermore,
if A arises only as a substitution instance of atomic formulæ that occur positively in ',
then the constraint will be monotone in the fluent.

If f is a function symbol, then ' is independent of the fluents coding values of f

unless f occurs in '.

This lemma provides the basis for syntactic control of interference.

Domain constraints and non-frame fluents. Often, we are interested in actions oper-
ating on models for some first-order theory, rather than all abstract structures. For ex-
ample, our theory might include the domain constraint, switchModel ⌘ isLight $
isOn(switch1)� isOn(switch2), which allows either switch to toggle the light on/off.
So, changes to the fluents isOn(switch1) or isOn(switch2) may entail changes to
isLight, which must change value, if neccessary, to satisfy the constraint.

To represent this we can add change isLight to the changes of each ADL action,
to allow changes to this non-frame fluent, and impose the domain constraint on the out-
come by performing require switchModel before imposing the post-conditions of
the action. In this way, the non-frame fluent may be used in the pre- and post-conditions
of an action.

This approach can accommodate several non-frame fluents and numerous domain
constraints, using one preparatory change and one conclusive require to bracket
the changes of each action.

One challenge of knowledge representation for reasoning about action is to select
appropriate frame fluents, which are generally subject to the law of inertia, and non-
frame fluents, which are not—and whose values should therefore ordinarily be deter-
mined by those of the frame fluents.

A simple dichotomy between frame and non-frame fluents ignores the possibility
that a given fluent may be changed, sometimes as a direct consequence of an action,



and sometimes as a consequence of other changes. A more refined approach would be
to model causal relationships between fluents explicitly, as a directed acyclic graph,
and allow a fluent to change (to accommodate domain constraints) whenever any of its
ancestral causes changes. This would give a “poor logician’s model” of causality (cf.
[15]). A similar issue arises in the theory of database updates, where the analogue of
domain constraints are called integrity constraints. For example, in [16], where Fagin
et. al. suggest a prioritised hierarchy of integrity constraints, which treats the problem
as an issue of belief revision, rather than update.

5 Appraisal

To return to the packing problem.

Before setting off on a trip, I pack a power adapter for my laptop (because
I will need it and don’t believe I have one packed already). Packing something
ensures, non-deterministically, that it is in either my briefcase or my suitcase.
I pack, place myself, briefcase and suitcase in the car, and drive the car from
here to there. On arrival, I carry briefcase and suitcase from the car to my
hotel room. Unpacking, I find not one, but two adapters, one in the briefcase,
one in the suitcase. I realise that my earlier belief was mistaken: I had already
packed an adapter. I hope my son won’t mind that I have them both and he has
none!

We start with everything here: power-adapter, car, suitcase, briefcase, self. What
features are required to represent and reason about this scenario? Packing the power
supply is modelled by a non-deterministic combination of four classic STRIPS actions
(either of the supplies in either of the cases). Putting the cases in the car is simple, a
classic STRIPS action suffices for each.

When the car moves, things become more complicated. We can use a classic ADL
conditional effect to account for the fact that the cases, and self, move with the car. The
action

Move(Z,X,Y) = (require At(X,Z);

allow(not At(X,Z), At(Y,Z));require(not At(X,Z) ^ At(Y,Z))) (49)

requires a conditional effect

(when In(Z,W)

(allow (not At(X,W), At(Y,W)); require(not At(X,W) ^ At(Y,W))) (50)

To model the movement of the power adapters we use our extended ADL and add a
further conditional effect

(when (In(W,V) ^ At(Y,W))

(allow (not At(X,V), At(Y,V)); require(not At(X,V) ^ At(Y,V))) (51)



This does nothing without iteration—on the first iteration, the first of our conditional
effects updates the location of the briefcase; on the second iteration the location of the
power supply is changed. For this example, that is the end. The potential for arbitrarily
deep nestings of objects means that we may need correspondingly many iterations—but
we don’t need to add any more conditional effects.

Progressing, through the sequence of actions leading to arrival at the hotel, an initial
assumption that neither of the cases contains a power adapter, leads to a set of possible
present states, none of which include two power adapters at the hotel. Regressing the
observation of two adapters back down the sequence of actions, to the start of the story,
leads to a set of states consistent with the current observation, all of which include an
adapter packed in either one or other of the cases. Reconciling this knowledge with
the earlier inconsistent belief is not a topic we will venture into here. However, just
forgetting the earlier belief is one practical option. Progressing the new set back to the
present leads to the useful conclusion that there are no adapters left at home.

This simple example requires all the features we have introduced. Our implementa-
tion [7] of the state logic uses BDDs to represent conditions. A standard BDD package
can straightforwardly support all the operations described in the paper. These integrate
smoothly with the use of BDDs to support planning (op cit.).

The frame problem [17] is a fundamental issue in the representation of actions. The
STanford Research Institute Problem Solver (STRIPS) [5] was introduced as a com-
putationally tractable solution to the frame problem. STRIPS has a clear and concise
semantic basis, but is operational, rather than logical, in flavour. Moreover, only very
simple actions can be formalised within the STRIPS framework.

Our treatment is formally close to that of Pednault [6]. In particular, we address the
ramification problem through a combination of conditional effects, domain constraints,
and non-frame fluents. However, our analysis allows us to extend its scope by introduc-
ing unbounded iteration to fixpoint for monotone actions.

The novel contributions here are: the separation of state-logic and domain-logic,
which clarifies the state-transition semantics introduced by Pednault; the application
of a unified logical treatment of update as bounded existential quantification to the
static analysis of iteration and interference; the incorporation of non-determinism and
concurrency; and the introduction of unbounded iteration as an extension of existing
techniques for addressing the ramification problem.

6 Future Work

In this paper we use classical first-order predicate calculus as a domain logic—but more
expressive logics with similar truth-functional semantics could be substituted for this
straightforwardly, mutatis mutandis. It is also possible to extend this approach to modal
domain logics, with Kripke-style semantics. An extension to a probabilistic account, in
which a probability distribution on the set of states takes over the rôle played here by
the subsets of state space, that we have called conditions, requires a new account of
actions as functions from distributions to distributions [18]. Conditions play the role of
events, to which a distribution assigns probabilities. The action require', where '
is a condition, has a direct analogue, corresponding to the operation of conditioning on



'. The action change x̄ is generalised to a family of operations, parametrised by the
probability distributions on the finite set of possible values of x̄.

References

1. Herzig, A., Lang, J., Marquis, P., Polacsek, T.: Updates, actions and planning. In Nebel, B.,
ed.: IJCAI’01, Seattle, Washington, USA, Morgan Kaufmann (2001) 119–124

2. Kartha, G.N., Lifschitz, V.: Actions with indirect effects (preliminary report). In Doyle,
J., Sandewall, E., Torasso, P., eds.: KR’94: Principles of Knowledge Representation and
Reasoning. Morgan Kaufmann, San Francisco, California (1994) 341–350

3. Sandewall, E.: Features and Fluents. Number 30 in Oxford Logic Guides. Oxford University
Press (1994)

4. Lin, F., Reiter, R.: Forget it! In Greiner, R., Subramanian, D., eds.: Working Notes, AAAI
Fall Symposium on Relevance, Menlo Park, California, American Association for Artificial
Intelligence (1994) 154–159

5. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem proving.
Artificial Intelligence (1971) 189–208

6. Pednault, E.P.D.: ADL and the state-transition model of action. J. Logic Computat. 4(5)
(1994) 467–512

7. Fourman, M.P.: Propositional planning. In: Workshop on Model-
Theoretic Aproaches to Planning, AIPS 2000. (2000) EDI-INF-RR-0034
http://www.inf.ed.ac.uk/publications/report/0034.html.

8. Pednault, E.P.D.: ADL: Exploring the middle ground between STRIPS and the situation cal-
culus. In Ronald Brachman, Hector Levesque, R.R., ed.: Proc. First Int’l Conf. on Principles
of Knowledge Representation and Reasoning. (1989) 324–332

9. Shanahan, M.: The frame problem. In Zalta, E.N., ed.: The Stanford
Encyclopedia of Philosophy. Stanford University (Spring 2006) URL =
http://plato.stanford.edu/archives/spr2006/entries/frame-problem/.

10. Marx, K.: Theses on Feuerbach. In: Ludwig Feuerbach and the End of Classical German
Philosophy, 1886;. Volume 1 of Marx/Engels Selected Works. Progress Publishers (1845)

11. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: Formula-variable indepen-
dence and forgetting. JAIR 18 (2003) 391–443

12. Lang, J., Marquis, P.: Complexity results for independence and definability in propositional
logic. In Cohn, A.G., Schubert, L., Shapiro, S.C., eds.: KR’98: Principles of Knowledge
Representation and Reasoning, San Francisco, California, Morgan Kaufmann (1998) 356–
367

13. Edelkamp, S., Helmert, M.: MIPS: The model-checking integrated planning system. AI
Magazine 22(3) (2001) 67–72

14. Mueller, E.T.: Event calculus reasoning through satisfiability. J Logic Computation 14(5)
(2004) 731–745

15. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press (2000)
16. Fagin, R., Ullman, J.D., Vardi, M.Y.: On the semantics of updates in databases. In: Proc.

Second ACM SIGACT-SIGMOD, ACM (1983) 352–365
17. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial

intelligence. In Meltzer, B., Michie, D., eds.: Machine Intelligence 4. Edinburgh University
Press (1969) 463–502 reprinted in [19].

18. Fourman, M.P.: Logics for action and belief. in preparation (2007)
19. McCarthy, J.: Formalization of common sense, papers by John McCarthy edited by V. Lifs-

chitz. Ablex (1990)


