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Abstract 12 

 13 

Buildings are responsible for some 40% of the total final energy consumption in the European 14 

Union and about 40% of the world’s primary energy consumption. Hence, the reduction of 15 

primary energy consumption is important for the overall energy chain. The scope of the 16 

current work is to assess the energy efficiency measures in the residential and small 17 

commercial sector and to develop a methodology and a software tool for their optimal 18 

prioritization. 19 

 20 

The criteria used for the prioritization of energy efficiency measures in this article are the 21 

primary energy consumption and the initial investment cost. The developed methodology 22 

used is generic and could be implemented in the case of a new building or retrofitting an 23 

existing building. A multi-objective mixed-integer non-linear problem (MINLP) needs to be 24 

solved and the weighted sum method is used. Moreover, the novelty of this work is that a 25 

software tool has been developed using ‘Matlab®’ which is generic, very simple and time 26 

efficient and can be used by a Decision Maker (DM). Two case studies have been developed, 27 

one for a new building and one for retrofitting an existing one, in two cities with different 28 

climate characteristics. The building was placed in Edinburgh in the UK and Athens in 29 

Greece and the analysis showed that the primary energy consumption and the initial 30 

investment cost are inversely proportional.  31 

 32 
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1 Introduction 35 

 36 

The increase of primary energy consumption and the climate change are amongst the biggest 37 

challenges the 21st century faces. In most countries, governments have policies which aim to 38 

reduce primary energy consumption by promoting energy efficiency. Specifically, the 39 

building sector accounts for some 40% of the total final energy consumption in the European 40 

Union and some 40% of the world’s primary energy consumption  [1], [2]. The European 41 

Commission in order to rationalize the use of energy in buildings and increase energy 42 

efficiency has issued the Energy Performance of Buildings (EPBD) Directive 2002/91/EC and 43 

its recast 2010/31/EU regarding the European energy policy for the energy performance of 44 

buildings and the rational use of energy [3], [4].  45 

 46 

The reduction of energy consumption and especially primary energy consumption will 47 

contribute to the reduction of energy in the total energy chain and increase sustainability in 48 

buildings. Investing in energy efficiency is essential as the overall benefits will outweigh the 49 

initial investment cost. The building sector is large, both in terms of energy consumption but 50 

also in terms of number and type of buildings available. In general, there are two categories of 51 

buildings, namely the existing buildings that might need retrofit actions and the new building 52 

that are going to be built.  53 

 54 

In order to reduce the primary energy consumption in buildings several efficiency measures 55 

can be implemented. These measures can be divided into categories, such as those related to 56 

the building envelope, the energy systems that provide heating, cooling and hot water, the 57 

electrical appliances and the lighting systems and can be found analytically in [5]. Also, there 58 

are energy systems that can provide electricity. Those can be cogeneration units or renewable 59 

energy sources (RES) such as biomass, wind energy and solar energy. Energy efficiency 60 

measures in each category have a different contribution to the reduction of the final and 61 

primary energy consumption and also have an initial investment cost, typically higher than 62 

conventional systems. Furthermore, the building’s location plays an important role as the 63 

climate and the available RES in an area might provide different solutions for each case.  64 

 65 

Therefore, a Decision Maker (DM) needs to make a decision between many alternative 66 

choices, which is usually not easy. The DM must take into account several criteria such as 67 

financial or environmental in order to find the optimal solution according to his own 68 

preferences. Although there are many approaches to tackle such problems, in this article a 69 

multi-objective programming approach will be used. The first objective is to minimise the 70 
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primary energy consumption and the second objective is to minimise the initial investment 71 

cost. A general rule followed states that if the initial investment cost is higher in components 72 

with better energy behaviour, then the primary energy consumption will be lower resulting in 73 

more energy savings. However, it is often the case that a DM does not have unlimited 74 

resources, hence a compromise solution between these two criteria needs to be found. The 75 

main concept of this approach is to allow the DM to propose the efficiency measures that he 76 

is interested in, so as to allow him to find the optimal approaches for each category.  77 

 78 

The paper is structured as follows: Section 2 provides a literature review of research on 79 

energy efficiency measures in buildings. In Section 3 the proposed model is described. 80 

Decision variables, constraints, parameters and objective functions are presented. Section 4 81 

describes the multi-objective optimization approach used to solve the problem. Section 5 82 

presents the developed software tool, which is explained in detail. In Section 6 the performed 83 

case studies for a new building and an existing building under renovation are described and in 84 

Section 7 the results are analysed.  Section 8 concludes the paper. Moreover, in Appendix 85 

“A” the equations of the model are shown analytically, in Appendix “B” the proposed 86 

components for the buildings in the case studies are presented and finally, in Appendix “C” 87 

the values of the decision variables for the performed case studies are presented in detail. 88 

 89 

2 Literature Review 90 

 91 

Calculating energy loads in building and assessing energy efficiency measures has been 92 

researched extensively in the last years. In 2006 Chung et al. in [6] performed a study 93 

regarding benchmarking energy efficiency in commercial buildings using multiple regression 94 

analysis. In [7] Wang et al. reviewed the energy performance methods for existing buildings. 95 

In their study they quantify energy usage and propose a framework for the categorization of 96 

energy quantification methods for existing buildings. Energy quantification methods are 97 

divided into three categories, namely the calculation-based, measurement-based and hybrid 98 

quantification methods. Regarding calculation-based methods, are further divided into 99 

dynamic methods (use of basic simulation or representative simulation tools) and steady-state 100 

methods (e.g. forward modelling approach or inverse modelling approach). Typical steady-101 

state methods used for the calculation of thermal performance in buildings are the degree-day 102 

(DD) method, bin method and equivalent full-load hour method. Measurement based methods 103 

are further divided into energy bill-based methods and monitoring-based methods. Finally, 104 

hybrid quantification methods consist of calibrated simulations and dynamic inverse models. 105 

A method for assessing buildings’ energy efficiency using dynamic simulation and 106 
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experiments has been developed by Pisello et al. in [8]. They proposed a methodology for 107 

analysing the thermal performance of buildings using non-dimensional indexes. Another 108 

framework for characterizing energy efficiency measures has been developed by Trianni et al. 109 

in [9], which is based on several attributes grouped into six categories, namely economic, 110 

energy, environmental, production, implementation and interaction with other systems.  111 

 112 

The problem of designing low energy buildings and prioritizing the energy efficiency 113 

measures has been approached by many researchers throughout the years. There are many 114 

methods that can be used in order for a DM to make the optimal choice regarding which 115 

energy efficiency measures to choose. Kolokotsa et al. [10] analyse the decision support 116 

methodologies that can be used regarding the energy efficiency and management in buildings. 117 

The criteria that can be used in order to support a decision are divided in categories such as: 118 

(a) energy related: primary or final energy consumption, the heating and cooling load, 119 

electricity consumption, embodied energy; (b) cost related: direct cost, initial investment cost, 120 

life cycle cost, net present value and internal return rate of the investment; (c) environmental 121 

related: annual emissions and global warming potential, life cycle environmental potential; 122 

(d) indoor quality related: indoor temperature and humidity, CO2 concentration, ventilation 123 

rate, daylight availability, noise levels and (e) other criteria such as construction duration, 124 

security etc. 125 

 126 

In [11] Evins performed a review of the computational optimization methods that are applied  127 

to sustainable building design. His analysis shows that there is a growth in the use of 128 

optimization in sustainable building design, and more particular in the use of multi-objective 129 

optimization methods. The dominant optimization method is genetic algorithm. Most of the 130 

studies performed have energy as an objective function, followed by construction cost. 131 

Regarding area of building design, building envelope is the dominant one. Another review 132 

about the simulation-based optimization methods applied to buildings performance was done 133 

by Nguen et al. in [12] and revealed that the major drawbacks in these methods are the 134 

complexity of the problems, the high computational cost, the uncertainty of the parameters 135 

and the multi-objective design problems. Also, their results point out that the most used 136 

software packages for building simulations are EnergyPlus and TRNSYS and the most used 137 

optimization platforms are GenOpt and Matlab. 138 

 139 

Mavrotas et al. in [13] studied energy planning in buildings taking into account the 140 

uncertainty of fuel costs. They developed a linear programming model with fuzzy parameters 141 

in order to deal with the uncertainties of fuel costs, which then is transformed into an 142 
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equivalent multi-objective problem. Their analysis is mainly applied to larger energy 143 

consuming buildings where energy investment decisions may be affected significantly. 144 

 145 

Wang et al. [14] in 2005 tried to use genetic algorithms in a multi-objective programming 146 

approach for designing green buildings. Their approach was to minimise the life cycle cost 147 

and the life cycle environmental impact, by taking into account the building’s design 148 

variables of the building’s envelope. In their analysis they used genetic algorithms (GA) but 149 

as those are random the resulted Pareto Front was considered to be the values of the external 150 

population (final solutions). The study showed that optimal values for some variables change 151 

between different Pareto zones. Also, it was shown that the utility structure affects the 152 

environmental performance significantly. 153 

 154 

Chlela et al. in  [15] introduced a  methodology regarding the design of new buildings based 155 

on parametric analysis. This approach requires a design of experiments in order to perform a 156 

statistical analysis on the selected variables, resulting in the modelling of the energy 157 

consumption. 158 

 159 

In 2008, Diakaki et al. [1] built a generic methodology based on multi-objective programming 160 

approach, aiming to minimize the primary energy consumption and the initial cost of 161 

acquisition of the materials. The proposed model was limited as the only decision variables 162 

were the window types, the insulations materials and the thickness of the wall. Also, different 163 

multi-objective optimization techniques have been investigated, such as compromise 164 

programming with the Tchebyshev criterion, the global criterion method and the goal 165 

programming method.  166 

 167 

Moreover, Diakaki et al. in [16] further developed the proposed methodology in [1]. They 168 

resulted in a more detailed methodology by taking into account all the decision variables 169 

regarding the thermal envelope and the energy systems of the building (except those 170 

producing electricity). The model was based on a multi-objective programming approach 171 

regarding the prioritization of energy efficiency measures in a new building that will be 172 

constructed. The decision criteria that were used were the minimization of the primary energy 173 

consumption, the initial investment cost (cost of construction, acquisition and installation) and 174 

the CO2 emissions.  175 

 176 

A different approach aiming to optimize the thermal comfort and the energy consumption in a 177 

residential building has been presented by Magnier and Haghicat in [17].They proposed an 178 

efficient model where the decision variables are related to the thermostat settings, heating, 179 
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ventilation and air condition system (HVAC) and passive solar design. Their approach was 180 

based on the usage of a multi-objective evolutionary genetic algorithm (NSGA-II) with a 181 

simulation-based Artificial Neural Network (ANN) method. 182 

 183 

Popescu et al. in [18] studied the impact of energy efficiency measures on the economic value 184 

of buildings. They assessed investments in energy efficiency measures by measuring the 185 

payback period of investments, which they claim depends on the energy savings and the 186 

added value of the property. However, they recommend that this financial analysis should be 187 

taken into account when there is reliable evidence to support that the real-estate market reacts 188 

to energy performance of the buildings. In [19] Saari et al. investigated the financial viability 189 

of energy efficiency measures in a new detached building in Finland. They studied the impact 190 

on the construction costs and the financial viability of eight alternative design concepts.  191 

 192 

Yao in [20] studied energy optimization of building design in apartment buildings. He 193 

introduced EDH index, which measures the energy performance difference between housing 194 

units in order to evaluate proposed measures in design options aiming to reach 50% energy 195 

efficiency improvement. Kusiak et al. in [21] performed a study about modelling and 196 

optimization HVAC energy consumption in a typical office building. They used eight data-197 

mining algorithms to evaluate energy consumption, control settings and a set of parameters 198 

and they constructed four models of energy consumption. They used a single objective 199 

approach that was solved by the particle swarm optimization algorithm. 200 

 201 

Fesanghary et al. in [22] proposed a multi-objective optimization model based on harmony 202 

search algorithm. The decision criteria in that methodology were the minimization of the life 203 

cycle cost and the minimization of the carbon dioxide equivalent emissions of the building.  204 

 205 

Asadi et al. in [23] used a multi-objective optimisation programming problem trying to 206 

maximize the energy savings and to minimise the retrofit cost, after the refurbishment of a 207 

semi-detached building in Portugal. However, despite the fact that their approach was based 208 

on the Portuguese regulations of building design, it could be transferred and used for other 209 

countries as well.  210 

 211 

In [24] Chantrelle et al. developed a multi-criteria optimization tool (MultiOpt) for the 212 

renovation of buildings. MultiOpt has a graphical user interface and has a set of four criteria, 213 

namely energy consumption, thermal comfort, cost and environmental impact. It takes into 214 

account parameters related to control strategies and building envelope. For the optimization 215 

procedure genetic algorithm NSGA-II is used. 216 
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 217 

A more recent study was made by Malatji et al. in [25] using a multi-objective model aiming 218 

to maximize the energy savings after retrofitting a building and minimise the payback period 219 

of the investment. In this approach the energy savings were not calculated but where taken 220 

from the manufacturers’ data. They used compromise programming technique with two 221 

objectives and a genetic algorithm was used to solve the problem. Also, a sensitivity analysis 222 

was performed to investigate uncertainties in parameters such as auditing error of the 223 

facilities, variability of electricity prices, wrong calculation of energy savings, increase of the 224 

initial investment cost, and change of the interest or discount rate. 225 

 226 

Moreover, Hamdy et al. in [26] presented an efficient and time-saving simulation-based 227 

optimization method. Their methodology was referring to the nearly-zero-energy building and 228 

cost-optimal solutions of a single-family building in Finland, following the EPBD recast of 229 

2010 [4]. They tried to minimize the primary energy consumption and the difference of the 230 

life-cycle cost between a design option and a reference design for the specific climate zone.  231 

 232 

3 Model Building 233 

 234 

Diakaki et al. in [16] developed a multi–objective decision model for the improvement of 235 

energy efficiency in buildings.  In the current work we expand the model presented in [16] by 236 

taking into account the lighting systems, electrical appliances and RES. Also, it is further 237 

expanded to include the case of retrofitting an existing building. Another difference between 238 

our work and [16] is that all the decision variables are considered to be binary. In other words, 239 

we assume predetermined discrete values for the continuous variables of the model in [16] 240 

which is in most cases more realistic (e.g. the thickness of insulation has predetermined 241 

values). In this way we obtain a discretization of the decision space which is appropriately 242 

modelled using binary variables. The basic characteristics of the model are given briefly 243 

below while the full model with all the equations is presented in Appendix “A”.   244 

 245 

3.1 Decision variables 246 

 247 

The current approach consists of decision variables related to: (1) the building envelope; (2) 248 

the building’s energy system; (3) the lighting system and (4) the electrical appliances. 249 

Regarding the building envelope we have decision variables for door type, window type, wall 250 

type with different layers of materials of different type. In other words, each wall type 251 

consists of a number of known layers. The materials of these layers have specific thermal 252 
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conductivity and thickness. The same holds for the decision variables expressing the ceiling 253 

and the floor type. 254 

The building’s energy system related decision variables describe the following issues:   255 

 Heating systems: Provide only heating and can be electrical or non-electrical systems 256 

which are further categorized according to their input fuel; 257 

 Cooling systems: Provide only cooling (in this approach only electrical systems are 258 

assumed to be available) 259 

 DHW systems: Provide only hot water. They can be electrical or non-electrical, which 260 

are further categorized according to their input fuel; 261 

 Heating – cooling systems: Provide both space heating and cooling (only electrical 262 

systems are assumed to be available); 263 

 Heating – DHW systems: Provide both space heating and DHW supply. They can be 264 

electrical or non-electrical which are further categorized according to their input fuel; 265 

 Solar collector systems: Supply DHW by utilizing solar energy; 266 

 Electricity generation systems: Provide electricity using RES. 267 

 268 

The lighting system and the electric appliances are described by appropriate binary decision 269 

variables, each one expressing a specific type. 270 

 271 

3.2 Constraints 272 

 273 

The constraints of the problem are mainly the energy balances, which means the satisfaction 274 

of the energy demand for heating, cooling, DHW, lighting and electricity supply. Moreover, 275 

in order to satisfy the energy demand the appropriate equipment must be selected. Therefore, 276 

there are constraints regarding the selection of one equipment to satisfy the energy demand 277 

for the respective category. In addition, there are constraints where one piece of equipment is 278 

selected in case the same equipment can be used for multiple purposes (e.g. a heat pump for 279 

both heating and cooling). Regarding the investment cost, it is calculated depending the 280 

selected equipment for each category. The constraints can be seen in detail in Section A.2 in 281 

Appendix “A”. 282 

 283 

3.3 Parameters 284 

 285 

The parameters of the model are in general meteorological data, technical coefficients, 286 

demand data, efficiencies, standard dimensions and costs which are required in the model’s 287 

constraints and objective functions, and most of which need to be insert by the DM.  288 
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 289 

In order to calculate the energy demand air temperature, solar radiation, water temperature, 290 

number of people leaving in the house and dimensions of the building envelope are necessary. 291 

Also, for the calculation of primary energy consumption for lighting and electrical appliances, 292 

the number and operational hours of lamps and appliances are required. More technical 293 

parameters such as efficiency coefficients of the selected equipment and of the electricity grid 294 

are also necessary for the calculations. Moreover, the cost of the components is required for 295 

the calculation of the total investment cost. All the parameters are presented analytically in 296 

Appendix “A”. 297 

 298 

3.4 Objective functions 299 

 300 

In this model there are two objective functions: (a) minimization of the total annual primary 301 

energy consumption or maximization of total annual primary energy savings and (b) the 302 

minimization of the total investment cost for the interventions: 303 

1( )g x : Total annual primary energy consumption or total annual primary energy savings. 304 

2 ( )g x : Total Investment Cost 305 

 306 

The primary energy consumption is the sum of energy consumption for heating, cooling, 307 

DHW, lighting and electrical appliances. In this work, heating and cooling loads are 308 

calculated using the DD method (for more details see [7], [27]. For the case of retrofitting an 309 

existing building the methodology is similar to that of a new building. However, in this case 310 

the objectives would be to achieve maximum primary energy savings with minimal initial 311 

investment cost. Therefore, the primary energy consumption of the existing building before 312 

any retrofit action must be calculated. The objective functions are described in more detail in 313 

Section A.3 of Appendix “A” for both cases, namely, the case of a new building and the case 314 

of retrofitting an existing one. 315 

 316 

4 Multi-objective Optimization 317 

 318 

As the name suggests, multi-objective (or multi-criteria) optimization involves optimization 319 

in the presence of more than one (usually conflicting) objective functions. Multi-objective 320 

optimization problems arise in a variety of real word applications and the need for efficient 321 

and reliable methods is increasing. The main difference between single and multi-objective 322 

optimization is that in the case of latter, there is usually no single optimal solution, but a set of 323 



 Accepted Author Manuscript (AAM) 
Published in Applied Energy, Volume 139, 1 February 2015, Pages 131–150 

http://dx.doi.org/10.1016/j.apenergy.2014.11.023  

11 
 

equally good alternatives with different trade-offs, also known as Pareto-optimal (or non-324 

dominated or efficient) solutions. In the absence of any other information, none of these 325 

solutions can be said to be better than the other. Usually a decision maker is needed to 326 

provide additional preference information and to identify the “most preferred” solution. 327 

Depending on the paradigm used, such knowledge may be introduced before, during or after 328 

the optimization process. Multi-objective optimization thus has to combine two aspects: 329 

optimization and decision support. 330 

 331 

In our case the problems defined in Equation (A.100) and in Equation (A.102) is a multi-332 

objective programming problem which fall into the category of mixed-integer non-linear 333 

programming problems (MINLP). For the solution of this kind of problems we will first 334 

calculate a representation of the Pareto set and then we will select the most preferred among 335 

the Pareto optimal solutions. For the calculation of adequate representations of the Pareto set 336 

a straightforward method is the weighting method [28]–[30]. 337 

 338 

Therefore, equation (A.100) is modified as follows: 339 

         1 1min 2min
1 2 1 2

1max 1min 2max 2min

2g g
min u g , p p

g g
g

g g g g

    
               

x
x x

x
  (1) 340 

Subject to  341 

Constraints: (A.1) - (A.99) 342 

Where, 343 

x: a vector with the decision variables. 344 

1( )g x : Total annual primary energy consumption  345 

2 ( )g x : Total investment cost 346 

g1min and g2min: are the values of the criteria of (A.100) when they are optimized 347 

independently.  348 

p1 and p2: weight coefficients that reflect the relative importance of the two criteria, allowing 349 

the DM to take into account his personal preferences. The following condition for the weights 350 

must hold: 351 

 1 2 1p p    (2) 352 

 353 

g1max and g2max: are the “nadir” (=worst) values of the criteria of  Equation (A.100) and they 354 

are obtained from the payoff table (minimization of g1 provides g2max and vice versa, 355 

minimization of g2 provides g1max). The denominator (gkmax-gkmin) is necessary as range 356 

equalization factor in order to provide a normalization of the objective functions. In this way 357 
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the weight coefficients are more meaningful and they are not influenced by differences in the 358 

objective functions’ scale or by the range of the objective functions.  359 

 360 

As we told, for multi-objective optimization problems there is not a single solution. Hence the 361 

concept of Pareto optimality is used which is defined as a set of solutions that belong in a pre-362 

set classification of an optimal solution. The weighting method is a scalarization method 363 

which combines the two functions in one, allowing a DM to express his preference a priori or 364 

a posteriori and compromise between the two criteria [17]. If the weight coefficients are 365 

greater than zero then Equation (1) is sufficient for Pareto optimality [31]. 366 

 367 

In the case or retrofitting an existing building where the first objective (g1) is to maximize the 368 

energy savings equation (A.102) is modified as follows: 369 

         1max 1 2 min
1 2 1 2

1max 1min 2 ma

2

x 2 min

g g
min u g , p p

g g
g

g g g g

    
            

x x
x x   (3) 370 

Subject to  371 

Constraints: (A.1) - (A.99), (2) 372 

Where, 373 

1( )g x : Total annual primary energy savings.  374 

2 ( )g x : Total investment cost. 375 

 376 

5 Software Tool 377 

 378 

The methodology described in Section 3 has been used to develop a software tool for the 379 

optimal prioritization of energy efficiency measures for a new and an existing building. The 380 

software tool has been developed using ‘Matlab®’ and ‘Microsoft Excel®’. The novelty of this 381 

software tool is that it has the advantage of being generic and not depending on the number of 382 

components in a building (e.g. number of doors, number of windows, number of walls etc). A 383 

‘Microsoft Excel®’ spreadsheet contains all the relevant data for the analysis, i.e. the climate 384 

data, building’s characteristics and the proposed energy efficient measures.  385 

 386 

In this software tool the following assumptions have been made: (a) only four categories of 387 

electrical appliances have been used, which are: a television, an electric cooker, a refrigerator 388 

and a washing machine; (b) only three alternative choices can be proposed for each decision 389 

variable, hence the total number of decision variables is sixty three (63) and (c) only the case 390 
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of solar PV has been examined in the category of RES systems that are used to provide 391 

electricity.  392 

 393 

It is noted that the electrical energy output of a photovoltaic system is equal to [32]: 394 

 ,PRpv pv pv p pv Lv SsQ A n IF   (4) 395 

Where, 396 

Apv: the area of the photovoltaic array (m2) 397 

npv: efficiency of the panel (%) 398 

PR: performance ratio expressing the losses of the system (circuit, battery, inverter) (%) 399 

Fs,pv: shading factor (%) 400 

 401 

In order to solve this multi-objective problem ‘BONMIN’ algorithm has been used which is 402 

suitable for solving convex MINLP problems [33]. As ‘BONMIN’ is not implemented in 403 

‘Matlab®’ the ‘OPTI TOOLBOX’ has been used, which is an open-source software that can 404 

be implemented in ‘Matlab®’ and has many optimization solvers available [34]. 405 

 406 

In order to use the software tool a DM must know how to use the necessary script files and 407 

needs to have ‘Matlab®’ and the ‘OPTI TOOLBOX’ installed. The software tool can perform 408 

all the necessary calculations and export the results in a ‘Microsoft Excel®’ file. The weight 409 

factors pairs that are used are fixed and equal to: p1=1 and p2=0 to p1=0 and p2=1 with step 410 

equal to 0.05. The reasons why the weight factors pairs are fixed a priori is to provide the full 411 

Pareto front to a DM, allowing him to examine all the optimal solutions.  412 

 413 

The results obtained by using the software tool are all the values of the minimization of 414 

equation (1), the primary energy consumption, the initial investment cost and the values of the 415 

decision variables for each working pair of weight coefficients.  Moreover, for further 416 

analysis, the software tool can be used to export the results of energy demand and primary 417 

energy consumption of each category for each month by using the respected script file. 418 

 419 

Similarly to the provided software tool for the case of a new building described in the 420 

previous section, and based on the methodology described in Section 3 a software tool has 421 

been developed for the optimal prioritization of energy efficiency measures for the case of 422 

retrofitting an existing building.  423 

 424 

Its features are similar to the software tool for the new building. Moreover, due to the 425 

constraints described in A.3.2 (i.e. no proposed wall, floor or ceiling structures) the total 426 
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number of decision variables is reduced to fifty four (54). Instructions regarding the usage of 427 

the software tool and the spreadsheet are available within. 428 

 429 

An additional assumption for the case of retrofitting an existing building is that the DM is 430 

interested to make changes in all the categories of energy efficiency measures. This means 431 

that the software tool will provide solutions for each set of the proposed components. The 432 

software tool can perform all the necessary calculations and it can export the results in a 433 

‘Microsoft Excel®’ file. The results obtained by using the software tool are all the values of 434 

the minimization of equation (3), the maximization of the primary energy consumption 435 

savings, the minimization of the initial investment cost and the values of the decision 436 

variables for each working pair of weight coefficients.  Moreover, for further analysis, the 437 

software tool can be used to export the results of energy demand and primary energy 438 

consumption of each category for each month before and after the retrofit actions. 439 

 440 

Also, it is noted that in this software tool some variables are considered to be constant and are 441 

presented in Table 1. 442 

 443 

Parameters Value [27] 

ACH (h-1) 1.5  
ρair ሺkg/mଷሻ 1.2 

cpair (݇ܬ/݇݃   ሻ 1.0035ܭ
Ρwater ሺkg/mଷሻ 1000  

cpwater (݇ܬ/݇݃   ሻ 4.18ܭ
ܳ௛௨௠௔௡ (W) 115 

Table 1: Parameters with constant value used in this model 444 
 445 

It is noted that this software tool is for academic use. It is not developed in an integrated 446 

software platform, therefore the DM must have basic skills of Excel and Matlab. A flowchart 447 

for the operation of software tool (which is similar in both the case of a new building and an 448 

existing one) is presented in Figure 1. 449 

 450 
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Start

Insert building’s characteristics in the available excel file

Run 1st Matlab script for the calculations

Open the available Excel file with the Pareto Frontier

Run 2nd Matlab Script for energy analysis for the solution 
you are interested

Open the available Excel File to see the results

End

 451 

Figure 1: Flowchart for the use of software tool 452 

6 Case Study 453 

 454 

In order to evaluate the efficiency and the robustness of the proposed methodology and 455 

software tools, two simulations on a typical detached UK house (see Figure 2) have been 456 

carried out. The building’s characteristics are presented in Table 2. The proposed energy 457 

efficient components are presented in Appendix “B” in Table B.1 up to Table B.18. It is noted 458 

that the tables with the proposed components consist also of the data for the existing 459 

components of the building, which would be examined in the next section. The values 460 

regarding the materials, their efficiency and their corresponding cost are from several sources 461 

[5], [16], [27] and from an unofficial internet survey of several UK online retailers. 462 

 463 

The building will be considered both as a new building and as an existing building under 464 

retrofit actions. Moreover, for purposes of comparison the examined building will be placed 465 

and simulated in two different locations where the climate characteristics are very different: 466 

(a) Edinburgh in the UK and (b) Athens in Greece. The climate characteristics of Edinburgh 467 

and Athens are presented in the Table 3. Also, the variables that the DM has to define and are 468 

used for this analysis are presented in Table 4. Moreover, for reasons of simplicity it is 469 

assumed that all the temperature correction factors and shading factors are considered to be 470 

equal to 1. It is further assumed that the cost of the components is the same in both cities and 471 

it will be expressed in Great British Pounds sterling (£). 472 

 473 
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 474 

Figure 2: A typical detached house in the UK (source: [35]) 475 
 476 

Component Value  
External Wall (m2) 194 
Internal Wall (m2) 99 

First floor & ground floor ceiling(m2) 62 
Ground floor (m2) 65 

Roof (m2) 75 
First floor ceiling (m2) 65 

Windows (m2) 13 
External doors (m2) 3 

Internal Volume ܸ (m3) a 344 
Table 2: Characteristics of the examined building (source: [35])  477 

Note: 478 
a: it can be calculated from the building’s characteristics after calculating the total volume and 479 
subtracting the volume occupied by interior walls 480 
 481 

 

Air  
Temperature 

(oC)  

Daily Solar 
Radiation  

(kwh/m2/day)  

 Water 
Temperature 

(oC)  

Relative 
Humidity  

(%) 
EDI a ATH a EDI a,b ATH a,b EDI c ATH d EDI a ATH a 

January 3.9 7.4 0.57 1.39 9 11.3 83.6% 69.5% 
February 4.2 7.8 1.28 1.91 9 10.9 80.5% 64.4% 

March 5.6 10.8 2.19 2.78 10 11.8 78.2% 56.7% 
April 7.3 15.8 3.32 3.85 13 14.3 77.0% 47.4% 
May 10.1 21.5 4.58 5.01 14 17.7 77.0% 39.9% 
June 12.9 26.4 4.56 5.27 16 21.6 77.2% 34.5% 
July 14.9 28.6 4.31 4.93 18 24.7 78.9% 33.9% 

August 14.7 28.0 3.68 4.62 17 25.4 79.1% 36.5% 
September 12.5 24.2 2.54 3.93 16 24.2 80.7% 41.6% 

October 9.5 18.9 1.45 2.49 15 21.1 82.6% 51.5% 
November 6.4 13.1 0.74 1.54 13 16.9 83.7% 63.7% 
December 4.5 8.7 0.44 1.22 12 13.5 85.0% 71.2% 

Table 3: Climate Characteristics of Edinburgh (EDI) and Athens (ATH) 482 
Notes: 483 
a: source [36]  484 
b: Daily solar radiation is assumed to be falling at the optimal angle of the area and is calculated with 485 
the methodology described in [37] 486 
c: source [38] 487 
d: source [39] 488 
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 489 

Parameter 
Value 

Parameter 
Value 

EDI ATH EDI ATH 

ூܶு (oC) 18 [32] 18 [39] Number of People 4 4 

ூܶ஼  (oC) 24 [32] 26  [39] ሶ݉ ௪ (l/day) 60 [5] 60 [5] 

Tୈୌ୛ (oC) 60 [32] 60 [32] ngrid (%) 35 [16] 35 [16] 

݄௜	ሺܹ/݉ଶ[27]  8.3 [27]  8.3 (ܭ    

݄௢	ሺܹ/݉ଶ[27]  28 [27]  28 (ܭ    
Table 4: Parameters used in the case studies that are set by the DM  490 

 491 

7 Results 492 

 493 

7.1 The Case of a New Building 494 

 495 

The obtained results from the simulations are presented in Table 5. The values of the decision 496 

variables for each working pair of weight coefficients can be seen analytically in Appendix 497 

“C” from Table C.1 up to Table C.4. It is noted that the software tool took 4 and 4.1 minutes 498 

in a ‘Windows 8.1” operating system, supported by a 3.07GHz i7 processor and 12GB RAM, 499 

to run the simulations for the case of Edinburgh and Athens respectively. This time includes 500 

the input of the necessary data, all the optimizations and the exportation of the results to the 501 

Excel spreadsheet file; hence it can be seen that the proposed method and software tool can be 502 

time efficient. 503 

 504 

min[u(g1(x),g2(x))] 
p1 p2 

Primary Energy 

Consumption 

(MJ/year) 

Initial Investment Cost  

(£) 

EDI ATH EDI ATH EDI ATH 

0.000 0.000 1.00 0.00 58,499 59,147 53,006 52,031 
0.028 0.019 0.95 0.05 58,684 59,274 41,260 40,485 
0.054 0.042 0.90 0.10 58,684 59,526 41,260 38,815 
0.079 0.064 0.85 0.15 58,857 59,526 40,860 38,815 
0.104 0.084 0.80 0.20 59,382 59,976 40,042 37,797 
0.119 0.103 0.75 0.25 63,705 59,976 34,642 37,797 
0.128 0.123 0.70 0.30 63,705 59,976 34,642 37,797 
0.137 0.142 0.65 0.35 63,705 60,199 34,642 37,597 
0.145 0.161 0.60 0.40 63,705 60,199 34,642 37,597 
0.154 0.159 0.55 0.45 63,705 65,542 34,642 33,867 
0.163 0.166 0.50 0.50 63,778 65,542 34,613 33,867 
0.171 0.166 0.45 0.55 63,778 69,768 34,613 32,197 
0.180 0.165 0.40 0.60 63,778 70,003 34,613 32,126 
0.184 0.164 0.35 0.65 68,799 70,342 33,483 32,071 
0.178 0.162 0.30 0.70 85,765 70,342 30,562 32,071 
0.162 0.148 0.25 0.75 85,765 79,158 30,562 30,469 
0.135 0.126 0.20 0.80 99,117 90,519 29,020 29,020 
0.106 0.100 0.15 0.85 102,030 90,519 28,809 29,020 
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min[u(g1(x),g2(x))] 
p1 p2 

Primary Energy 

Consumption 

(MJ/year) 

Initial Investment Cost  

(£) 

EDI ATH EDI ATH EDI ATH 

0.075 0.072 0.10 0.90 102,030 93,926 28,809 28,809 
0.043 0.042 0.05 0.95 102,030 93,926 28,809 28,809 
0.000 0.000 0.00 1.00 126,899 116,093 28,509 28,509 

Table 5: Values of the primary energy consumption and initial investment cost for each working pair 505 
using for the case of a new building in Edinburgh (EDI) and Athens (ATH) 506 

 507 

From Table C.1 up to Table C.4 it can be seen that when the primary energy consumption 508 

criterion is independently minimized the components which have the best energy behaviour 509 

are selected. This means the components of the building’s envelope (doors, windows, wall 510 

structure, floors structure and ceilings structure) with the lowest Uvalue are selected, and the 511 

energy systems with the higher generation efficiency. For instance, it can be seen that the 512 

Door 2 has been selected, the window type 2 which is a low-e window and so forth. However, 513 

it is observed that there are differences at each city. In Athens the window 3 that has lower 514 

SHGC is selected for all the working pairs of weight coefficients. This happens as in Athens 515 

the solar radiation is higher than in Edinburgh which causes a significant increase in cooling 516 

demand. By contrast, in Edinburgh the window with the lowest Uvalue is most frequently 517 

selected (when the primary energy consumption criterion is more important) in order to 518 

minimize heating demand.  519 

 520 

In the category of the building’s energy systems, in both cities the heating-DHW system 3 is 521 

selected which is a highly efficient heat pump with a COP 4 and the electrical cooling system 522 

3 that has is an air-condition system with a COP 3. Also, the LED proposed lamps are chosen 523 

to provide lighting as they have the lowest power. The same applies for all the electrical 524 

appliances.  In both cities solar collector 1 and photovoltaics 3 have been chosen as they can 525 

produce more hot water and electricity respectively. 526 

 527 

On the other hand, when the cost criterion is minimized independently, the components with 528 

the lowest investment cost are selected. As shown in Table 5 the solution is the same for both 529 

cities. The building’s envelopes components with the highest Uvalue and the energy systems 530 

with the lowest efficiency are selected. A low efficiency heating-cooling system has been 531 

selected and a low efficiency oil-based boiler to provide hot water. In addition, a fluorescent 532 

lamp and electrical appliances with the lowest cost that have the highest power have been 533 

selected. 534 

 535 
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The Pareto frontier that includes the values of primary energy consumption and total 536 

investment cost for all the working weighting pairs is shown in Figure 3 and it represents all 537 

the optimal solutions. It can be seen clearly that the initial investment cost and primary energy 538 

consumption of a building are inversely proportional. The higher the total investment cost, the 539 

lower the primary energy consumption. When the primary energy consumption criterion is 540 

more important the components with the best energy behaviour are selected, but as the cost 541 

criterion gets more important cheaper components are selected, which confirms the general 542 

hypothesis and shows that the methodology and the developed software are robust. It is 543 

suggested that the most preferred solutions for the DM are those indicated in the diagram of 544 

the Pareto frontier, because for these cases a small reduction of the investment cost does not 545 

increase primary energy consumption dramatically.  546 

 547 

 548 

Figure 3: The Pareto Frontier using the weighted sum method for the case study of a new building in 549 
the cities of Edinburgh and Athens. 550 

 551 

The minimal and maximum total initial investment cost comes to £28,509 and £53,006 552 

respectively in Edinburgh and £28,509 and £52,031 respectively in Athens.  The minimal and 553 

the maximum primary energy consumption in Edinburgh is 58,499 MJ/year and 126,899 554 

MJ/year respectively; while the minimal and the maximum primary energy consumption in 555 

Athens is 59,147 MJ/year and 116,093 MJ/year respectively. Furthermore, it can be noticed 556 

that the primary energy consumption in Athens and Edinburgh is similar although the climate 557 

characteristics are different, however there are major differences between the energy 558 

categories.  559 

 560 
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The importance of the climate characteristics can be seen in more detail by comparing the 561 

energy demand and primary energy consumption of the building in each city. In Figure 4 the 562 

contribution of each energy category to the total annual energy demand is presented for the 563 

case of weight coefficients (p1, p2)=(0.35, 0.65). As previously mentioned, the DM can use 564 

the software tool to obtain the energy demand and energy consumption analytically for any 565 

working pair of weight coefficients, according to his own preferences. In this analysis, the 566 

particular working pair of weight coefficients has been chosen because is in the area of the 567 

most preferred optimal solutions. 568 

 569 

It is shown that if the building is located in Edinburgh the heating energy demand is the 570 

dominant category, whilst when the building is located in Athens the cooling energy demand 571 

is higher because of the difference in Degree-days in the two cities. In Figure 5 the primary 572 

energy consumption share of each category is presented. It is observed that in Edinburgh the 573 

primary energy consumption for heating has the highest contribution to the total primary 574 

energy, whilst in Athens the primary consumption for the electrical appliances is the highest. 575 

The importance of the chosen components is significant as they can have a major impact on 576 

primary energy consumption. For instance, although in Athens the DHW demand is lower 577 

than in Edinburgh the primary consumption is higher due to the choice of a less efficient 578 

component for the hot water. 579 

 580 

 581 

  (a)      (b) 582 

Figure 4: Annual Energy Demand (MJ/year) for the case of a new building (a) Edinburgh and (b) 583 
Athens, for the case of weight coefficients (p1,p2)=(0.35, 0.65). 584 

 585 
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  586 

  (a)      (b) 587 

Figure 5: Annual Primary Energy Consumption (MJ/year) for the case of a new building in (a) 588 
Edinburgh and (b) Athens, for the case of weight coefficients (p1,p2)=(0.35, 0.65). 589 

 590 

Moreover, solar photovoltaics are chosen for both cities for this case. Electricity generation 591 

from RES is important as it can reduce the primary energy consumption significantly. The 592 

annual generation from PV in Athens is some 3,856 MJ/year while in Edinburgh is only 2,938 593 

MJ/year which shows that Athens has much higher potential for utilizing solar energy. 594 

 595 

7.2 The Case of Retrofitting an Existing Building 596 

 597 

In this case, the examined building that has been used in the previous section is assumed to be 598 

an old existing building in the broader area of Edinburgh and Athens respectively. As 599 

mentioned before, the proposed components for each category and the components of the 600 

existing buildings are presented from Table B.1 up to Table B.18. It is noted that the existing 601 

building has low energy efficient components and is uninsulated. 602 

 603 

Using the developed software tool for the case of retrofitting an existing building, the primary 604 

energy consumption of the existing building has first been calculated. The total annual 605 

primary energy consumption savings for the existing building when is located in Edinburgh 606 

and Athens is calculated to be 600,369 MJ/year and 290,801 MJ/year respectively. 607 

 608 

The obtained results from the simulations are presented in Table 6. The values of the decision 609 

variables for each working pair calculated after the optimizations can be seen analytically in 610 

Appendix “C” in the Table C.5 up to the Table C.8. It is noted that the software tool took 4.9 611 

and 4.2 minutes to run the simulations for the case of Edinburgh and Athens respectively. For 612 

comparison purposes with the case of a new building in Table 6 is also presented the primary 613 

energy consumption after the retrofit actions for the building placed in the city of Edinburgh 614 

and Athens respectively. 615 
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 616 

min[u(g1(x),g2(x))] 
p1 p2 

Primary Energy 

Consumption Savings 

(MJ/year) 

Primary Energy 

Consumption 

(MJ/year) 

Initial 

Investment 

Cost (£) 

EDI ATH EDI ATH EDI ATH EDI ATH 

0.000 0.000 1.00 0.00 540,687 229,875 59,682 60,927 19,085 18,310 
0.029 0.039 0.95 0.05 535,593 229,091 64,776 61,710 12,438 15,422 
0.040 0.053 0.90 0.10 513,246 219,281 87,123 71,521 8,347 9,951 
0.041 0.067 0.85 0.15 497,410 218,942 102,959 71,859 6,735 9,896 
0.040 0.072 0.80 0.20 495,933 197,873 104,436 92,928 6,635 6,886 
0.039 0.070 0.75 0.25 495,933 197,528 104,436 93,274 6,635 6,846 
0.038 0.068 0.70 0.30 495,933 196,830 104,436 93,972 6,635 6,796 
0.037 0.066 0.65 0.35 495,933 194,121 104,436 96,680 6,635 6,635 
0.036 0.063 0.60 0.40 495,933 194,121 104,436 96,680 6,635 6,635 
0.035 0.060 0.55 0.45 495,933 194,121 104,436 96,680 6,635 6,635 
0.033 0.056 0.50 0.50 488,830 194,121 111,539 96,680 6,535 6,635 
0.031 0.053 0.45 0.55 480,872 194,121 119,497 96,680 6,435 6,635 
0.028 0.050 0.40 0.60 470,262 194,121 130,107 96,680 6,335 6,635 
0.024 0.047 0.35 0.65 470,262 194,121 130,107 96,680 6,335 6,635 
0.021 0.042 0.30 0.70 470,262 180,550 130,107 110,251 6,335 6,435 
0.017 0.036 0.25 0.75 470,262 171,035 130,107 119,766 6,335 6,335 
0.014 0.029 0.20 0.80 470,262 171,035 130,107 119,766 6,335 6,335 
0.010 0.022 0.15 0.85 470,262 171,035 130,107 119,766 6,335 6,335 
0.007 0.015 0.10 0.90 470,262 171,035 130,107 119,766 6,335 6,335 
0.003 0.007 0.05 0.95 470,262 171,035 130,107 119,766 6,335 6,335 
0.000 0.000 0.00 1.00 470,262 171,035 130,107 119,766 6,335 6,335 

Table 6: Values of the primary energy consumption savings and the initial investment cost for each 617 
working pair of weight coefficients for the case of retrofitting an existing building in Edinburgh (EDI) 618 

and Athens (ATH) 619 
  620 

From Table C.5 up to the Table C.8 it is shown that when the primary energy consumption 621 

criterion is independently minimized the components with the best energy behaviour are 622 

selected, which is similar to the analysis presented in the previous chapter. In this case the 623 

initial investment cost is lower as the wall structure, floor structure and ceiling structure are 624 

not included in the retrofit actions. It is noted that the differences between Edinburgh and 625 

Athens that existed in the previous chapter still apply. For instance, when the energy criterion 626 

is independently minimized the components of the building envelope with the lowest Uvalue 627 

e.g. in Edinburgh the door number 2, window number 2, insulation material number 1 and so 628 

forth are selected, whilst in Athens window number 3 is again selected in all cases. The same 629 

energy systems as in the case of a new building have also been selected. 630 

 631 

On the other hand, when the cost criterion is minimized independently, the components with 632 

the lowest initial investment cost are selected (e.g. door number 1, insulation number 3 etc.), 633 

and the energy systems that were chosen in the case of the new building, which are the same 634 

for both cities. Solar photovoltaics and solar collector systems are not selected for this case. It 635 

is observed that when the primary energy consumption savings criterion is more important the 636 

components with the best energy behaviour are selected, but as the cost criterion gets more 637 
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important the cheaper components are selected, which confirms the general hypothesis and 638 

showing that the methodology and the developed software is robust. This means that the more 639 

you invest in energy efficient measures the higher the energy savings are and the lower the 640 

primary energy consumption becomes, which is similar to the case of a new building 641 

presented in the previous section.  642 

 643 

The minimal and the maximum total initial investment cost of the components is £6,335 and 644 

£19,085 respectively in Edinburgh and £6,335 and £18,310 respectively in Athens.  The 645 

minimal and the maximum primary energy consumption savings in Edinburgh are 470,262 646 

MJ/year (78%) and 540,687 MJ/year (90%) respectively which means that the primary energy 647 

consumption is between 59,682 MJ/year to 130.107 MJ/year. In Athens the minimal and the 648 

maximum primary energy consumption savings are 171,035 MJ/year (59%) and 229,875 649 

MJ/year (79%) respectively, resulting in primary energy consumption between 60,927 650 

MJ/year to 119,766 MJ/year. In the case of retrofitting an existing building the initial 651 

investment cost is lower than the case of the new building presented in the previous chapter 652 

because the wall structure, floor structure and ceiling structure are not included in the retrofit 653 

actions. 654 

 655 

The results for the other weight coefficients working pairs are in-between those values. The 656 

Pareto frontier diagram shown in Figure 6 for the case of the retrofitting an existing building 657 

in Edinburgh and Athens respectively represents all the optimal solutions. It can be indicated 658 

that also in this case the initial investment cost and primary energy consumption of a building 659 

are inversely proportional.  660 

 661 
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 662 

Figure 6: The Pareto Frontier using the weighted sum method for the case study of retrofitting an 663 
existing building in Edinburgh 664 

 665 

The possibility of primary energy consumption savings is high in both cities but is greater in 666 

Edinburgh than in Athens due to the differences in climate characteristics.  This is indicated 667 

with further analysis of the energy demand and of the primary energy consumption of each 668 

category. Figure 7 and Figure 8 present the energy demand and the primary energy 669 

consumption of the existing building before and after the retrofit actions in Edinburgh and 670 

Athens for the case of working weight coefficients (p1, p2)=(0.95, 0.05) and (p1, p2)=(0.85, 671 

0.15) respectively. Those working pairs have been chosen as they belong in the area with the 672 

most preferred optimal solutions. It can be seen that when the best energy efficient measures 673 

are selected the energy demand is reduced significantly, resulting in high primary energy 674 

savings.  675 

 676 

    677 

   (a)      (b) 678 

Figure 7: Annual Energy Demand before and after the retrofit for an existing building in (a) 679 
Edinburgh and (b) Athens, for the case of working weight coefficient (p1,p2)=(0.55, 0.45)  680 

 681 
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      682 

   (a)      (b) 683 

Figure 8: Annual primary energy consumption before and after the retrofit for an existing building in 684 
(a) Edinburgh and (b) Athens, for the case of working weight coefficient (p1,p2)=(0.55, 0.45) and (p1, 685 

p2)=(0.65 0.35) for Edinburgh and Athens respectively 686 
 687 

8 Conclusions 688 

 689 

8.1 Main Findings  690 

 691 

The minimization of energy demand and primary energy consumption in the building sector is 692 

essential in order to reduce the energy consumption in the overall energy supply chain and 693 

lead to sustainability in buildings. The reduction of primary energy in buildings will also 694 

contribute in the achievement of the policy goals set by the UK Government and the 695 

European Commission by the EPBD. Moreover, if less primary energy is used from fossil 696 

fuels then the carbon dioxide emissions would also get reduced.  697 

 698 

The scope of the present article is to expand a previously developed methodology to 699 

optimally prioritize energy efficiency measures in terms of their energy behaviour and the 700 

initial cost and also develop a software tool to be used by a DM. The methodology is generic 701 

and can be used in order to optimally prioritize the energy efficiency measures for the case of 702 

a new building and for the case of retrofitting an existing one. As described in Section 3, the 703 

proposed methodology is depended on previous work with a more limited number of energy 704 

efficiency measures and it was further expanded to take into account more categories of 705 

energy efficiency measures, and also to analyse the case of retrofitting an existing building. 706 

Many criteria exist to assess the energy efficiency measures but in the current article only the 707 

primary energy consumption and the initial investment cost have been used, resulting in a 708 

multi-objective optimisation problem. 709 

 710 

Moreover, two software tools have been developed to allow the DM to propose energy 711 

efficiency measures and prioritize them according to his own preferences, in the case of a new 712 

building and of retrofitting an existing one. In order to solve the MINLP multi-objective 713 
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problem the weighted sum method has been used and the ‘bonmin’ algorithm has been 714 

chosen. The software tools have been examined in two case studies, each for a new and 715 

existing building, and they have been proven to be robust and time efficient. The analysis 716 

showed that the more someone invests in energy efficiency the lower the primary energy 717 

consumption becomes. Hence, a DM according to his own preferences can find the most 718 

preferable solution from the provided Pareto front. 719 

 720 

8.2 Proposals for Future Work 721 

 722 

As previously mentioned, the two decision criteria used in this methodology are the primary 723 

energy consumption and the initial investment cost. However, there are also many other 724 

criteria that refer to energy efficiency measures (e.g. life cycle cost or operating cost).  A DM 725 

would probably be more interested in reducing the operating costs and his bills. Moreover, 726 

environmental criteria could be also used such as the carbon dioxide emissions. As the 727 

climate is one of the major challenges the planet faces a software tool that takes into account 728 

the life cycle cost of the components and the carbon dioxide emissions or the global warming 729 

potential might be preferable. It must be noted that our software tool could be expanded to 730 

being capable of dealing with more than two objective functions (criteria). 731 

 732 

Another constraint of the developed methodology is that it assumes that the loads are 733 

constant, i.e. it is a steady-state approach. A methodology that would examine the energy 734 

demand variations on a time basis would provide more accurate results but it would be more 735 

difficult to solve. Also, the software tool can be further expanded to include wind energy or 736 

CHP units and more categories of electrical appliances. Moreover, the software tool can be 737 

further developed and become a software package in a more compact form that could be 738 

executed independently without the need of a DM having ‘Matlab®’ installed. 739 

 740 
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Nomenclature 

 

Symbol Description Unit 

   

ACH Air changes per hour h-1 

ASLC Area of a solar collector m2 

Awin Area of a window m2 

BLC Building load factor W/K 

COSTCEIL Initial investment cost for ceilings £ 

COSTCS Initial investment cost for a cooling system £ 

COSTDOR Initial investment cost for doors £ 

COSTEA Initial investment cost for electrical appliances £ 

COSTFLO Initial investment cost for floors £ 

COSTHCS Initial investment cost for a heating-cooling system £ 

COSTHS Initial investment cost for a heating system £ 

COSTHWS Initial investment cost for a heating-DHW system £ 

COSTLIGHT Initial investment cost for lamps £ 

COSTRES Initial investment cost for a RES power system £ 

COSTSLC Initial investment cost for a solar collector £ 

COSTWAL Initial investment cost for walls £ 

COSTWIN Initial investment cost for windows £ 

cpair Specific heat of air at constant pressure kJ/kg/K 

cpwat Specific heat of water at constant pressure kJ/kg/K 

CSm Indicator for cooling demand each month - 

Fcm,wn Window correction factor for movable devices % 

FF,wn Frame factor of a window % 

fgrid Percentage of electricity supply from the grid % 

Fs shading factor of a solar collector % 

Fs,wn Shading factor of a window % 

fuse Factor indicating the usage of a device each day h/day 

h Heat transfer convection coefficient W/m2K 

hi indoors combined convection-radiation coefficient W/m2K 

ho outdoors combined convection-radiation coefficient W/m2K 

HS,m Indicator for heating demand each month - 

ISL Solar radiation kWh/m2/day 



 Accepted Author Manuscript (AAM) 
Published in Applied Energy, Volume 139, 1 February 2015, Pages 131–150 

http://dx.doi.org/10.1016/j.apenergy.2014.11.023  

31 
 

Symbol Description Unit 

   

k Thermal conductivity W/mK 

l Thickness of a material M 

݉௪ሶ  Daily need of hot water L/day 

݊௘௖௦௜,௘௖௦௝
ா஼ௌ 	 Efficiency of an electric system ecsj of category ecsi % 

݊௘௛௦௜,௘௛௦௝
ாுௌ  

Efficiency of an electric system ehsj of category ehsi for 

heating 
% 

݊௘௛௖௦௜,௘௛௖௦௝
ாு஼ௌ  

Efficiency of an electric system ehcsj of category ehcsi for 

heating-cooling 
% 

݊௘௛௪௦௜,௘௛௪௦௝
ாுௐௌ  

Efficiency of an electric system ehwj of category ehwi 

used for heating- DHW 
% 

݊௘௪௦௜,௘௪௦௝
ாௐௌ  

Efficiency of an electrical system ewj of category ewi for 

DHW 
% 

ngrid Average efficiency of power generation of the grid % 

݊௡௘௛௦௜,௡௘௛௦௝
ோுௌ  

Efficiency of a non-electric system nehsj of category nehsi 

used for heating 
% 

݊௡௘௛௪௦௜,௘௛௪௦௝
ோுௐௌ  

Efficiency of a non-electric system nehwsj of category 

nehwsi used for heating-DHW 
% 

݊௡௘௪௦௜,௘௪௦௝
ோௐௌ  

Efficiency of a non-electric system newsj of category 

newsi used for DHW 
% 

݊௦௟௖௜,௦௟௖௝
ௌ௅஼  

Efficiency of a non-electric system nehwsj of category 

nehwsi used for heating-DHW 
% 

݊௧௢௧
	  Total efficiency of a CHP unit % 

PL Power Rate of a Lamp W 

q'' Heat Flux W/m2 

QC Annual primary energy consumption for cooling MJ/year 

QCD Annual cooing demand  MJ/year 

ܳ௘௟
஼  

Annual primary energy consumption for cooling 

consumed by an electrical system 
MJ/year 

QDHW Annual primary energy consumption for DHW MJ/year 

QdSLC,m Energy provided by a solar collector for DHW MJ/month 

Qea Heat emitted from appliances W 

QH Annual primary energy consumption for heating MJ/year 

ܳ௡௘௟,௙௨௘௟
ு  

Annual primary energy consumption for heating from a 

non-electrical system using a specific fuel 
MJ/year 
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Symbol Description Unit 

   

ܳ௘௟
ு  

Annual primary energy consumption for heating from an 

electrical system  
MJ/year 

QHD Annual heating energy demand MJ/year 

Qhuman Heat emitted from people W 

QINHG,m Internal heat gain each month kWh/month 

Qlamp electricity consumption of a lamp kWh/day 

QL Annual primary energy consumption for lighting MJ/year 

QLD Annual energy demand for lighting MJ/year 

QSL,m Solar heat gain each month kWh/month 

QT,m Heat transmission losses each month kWh/month 

Qven,m Ventilation losses each month kWh/month 

ܳ௘௟
ௐ 

Annual primary energy consumption of an electrical 

system for DHW 
MJ/year 

ܳ௡௘௟,௙௨௘௟
ௐ  

Annual primary energy consumption for DHW by a non-

electrical system 
MJ/year 

QWD Annual energy demand for DHW MJ/year 

T Temperature  oC 

td Duration of a month in days days/month 

TDCW Temperature of cold water inlet to the DHW system oC 

TDHW Supply temperature of hot water by the DHW system oC 

TIH Internal design temperature for heating season oC 

tL Operation time of a lamp h/day 

tm Month duration in hours h/month 

To,m Average air temperature of each month oC 

U Overall heat transfer coefficient W/m2K 

V Internal volume of the building m3 

WSm Indicator for DHW demand each month binary 

ௗݔ
஽ைைோ Decision variable for doors binary 

௘௔௜,௘௔௝ݔ
ா஺  Decision variable of electric appliance eaj of category eai binary 

௘௖௦௜,௘௖௦௝ݔ
ா஼ௌ  

Decision variable for an electrical cooling system ecsj of 

categories ecsi 
binary 

௘௛௦௜,௘௛௦ݔ
ாுௌ

j 
Decision variable for an electrical heating system ehsj of 

categories ehsi 
binary 

௘௛௖௦௜,௘௛௖௦௝ݔ
ாு஼ௌ  Decision variable for an electrical heating-cooling system binary 
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Symbol Description Unit 

   

ehcsj of category ehcsi 

௘௛௪௦௜,௘௛௪௦௝ݔ
ாுௐௌ  

Decision variable for an electrical heating-DHW system 

ehwsj of category ehwsi 
binary 

௛ݔ
ி௅ை Decision variable for floor structure h binary 

௟௜,௟௝ݔ
௅  Decision variable of lamp lj of category li binary 

௡௘௛௦௜,௡௘௛௦ݔ
ோுௌ

j  
Decision variable for a non-electrical heating system nehsj 

of categories nehi 
binary 

௡௘௛௪௦௜,௡௘௛௪௦௝ݔ
ோுௐௌ  

Decision variable for a anon-electrical heating-DHW 

system nehwsj of category nehwsi 
binary 

 ௥஼ாூ௅ Decision variable for ceiling structure r binaryݔ

௥௘௦௜,௥௘௦௝ݔ
ோாௌ  

Decision variable for a RES energy system resj of 

category resi 
binary 

௦௟௖௜,௦௟௖௝ݔ
ௌ௅஼  

Decision variable for a solar collector system slcj of 

category slci 
binary 

௭௧ݔ
ௐூே Decision variable for windows type z binary 

 ௪ௐ஺௅௅ Decision variable for wall structure w binaryݔ

௔௜௥ߩ
	  Air density kg/m3 

௪௔௧ߩ
	  Water density kg/m3 
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Appendix “A”: Equations of the model 

 

A.1 Decision Variables 

 

A.1.1 Building Envelope 

 

a. Doors 

 

Let D be the available number of alternative type of doors. A decision variable	ݔௗ
஽ைைோ where, 

݀ ൌ 1,… ,  :is defined such as ,ܦ

 
1 ,  if door type  is selected 

0, 
DOOR
d

d
x

else


 


  (A.1) 

 

It is assumed that the available proposed doors are of the same type and only one can be 

selected, which leads to the following constraint: 

 
1

1 
D

DOO

d
d

Rx


   (A.2) 

 

b. Windows 

 

Let Z be the available number of alternative type of windows (e.g. double glaze, low-e) where 

each consists of Tz sub-types (e.g. xenon-filled, vacuum-filled). A decision variable 
WIN
stx  

where   ݖ ൌ 1,… , ܼ and ݐ ൌ 1,… , ௭ܶ	is defined such as:    

 
1 ,  if window sub-type  of type  is selected 

0, else
WIN
zt

t s
x


 


  (A.3) 

 

It is assumed that the available window types are of the same type and only one may be 

selected, which leads to the following constraint: 

 
1 1

1 
zTZ

WIN
zt

z t

x
 

   (A.4) 

 

c. Walls 
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Let W be the available number of alternative types of structures of wall structures. A decision 

variable 
WALL
wx  where ݓ ൌ 1,… ,ܹ is defined such as: 

 
1 ,  if wall structure  is selected 

0, else
WALL
w

w
x


 


  (A.5) 

 

It is assumed that from the available wall structures only one may be selected, which leads to 

the following constraint: 

 
1

1  
W

WALL
w

w

x


   (A.6) 

Furthermore, each wall structure consists of ܹܰܮ௪ number of known layers (with ݈݊ݓ ൌ

1,… ௪). The materials of these layers have specific thermal conductivities ݇݇௪,௡௪௟ܮܹܰ,
௟ௐ஺௅௅ 

ሻ and thicknesses ݈௪,௡௪௟ܭ	݉/ܹ)
௟ௐ஺௅௅ (݉ሻ.  

 

Also let ௪ܻ
	  (with ݕ ൌ 1,… , ௪ܻ) be the number of unknown layers (e.g. insulation) layer 

where their materials have to be chosen between the available ones. For each unknown layer 

there are ௪ܲ௬ (with pൌ ݓ of structure ݕ 1,… , ௪ܲ௬) alternative materials available and only 

one is allowed to be chosen for the respected structure. Therefore, the following decision 

variable and constraint are defined:  

 
1 ,  f material  is selected for layer  of wall structure  

0, else
mWALL
wyp

i p y w
x


 


  (A.7) 

 

  
1

 1, ,   1, ,  
wyP

mWALL WALL
wyp w w

p

x x y Y w W


         (A.8) 

 

The thickness of the unknown layers of materials ௪ܻ
	  is considered to be predefined Also, each 

of  material	ܿ	of	layer	ݕ	of	wall	structure	ݓ has ݇௪௬௖௠ௐ஺௅௅ (ܹ/݉	ܭሻ thermal conductivity 

and ݈௪௬௖௟ௐ஺௅௅ thickness. 

 

d. Ceilings 

 

Similarly to walls, let ܴ be the number of available alternative structures of ceilings. A binary 

decision available 
L

r
CEIx  where ݎ ൌ 1,… , ܴ	is defined such as: 

 
1 ,  if ceiling structure  is selected 

0, else
CEI

r

L
r

x 




  (A.9) 
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Also, it is assumed that only one ceiling structure may be selected from all the proposed 

ceiling structures, which leads to the following constraint: 

 
1

1  
R

CEIL

r

rx


   (A.10) 

 

Also, let ܰܮܥ௥ be the number of the known layers of the ceiling structure ݎ with	݈݊ܿ ൌ

1,… ௥). The materials of these layers have specific thermal conductivities ݇݇௥,௡௖௟ܮܥܰ,
௟஼ாூ௅ 

ሻ and thicknesses ݈௥,௡௖௟ܭ	݉/ܹ)
௟஼ாூ௅ (݉ሻ which are already known.  

 

Also there is a number ܨ௥	 (with	݂ ൌ 1,… ,  ) of unknown layers where their materials have to	௥ܨ

be chosen between the available ones. For each unknown layer ݂ of structure ݎ there are ܣ௥௙ 

(with ܽ ൌ 1,… ,  ௥௙) alternative materials available and one can be selected for the chosenܣ

structure. Therefore, the following decision variable and constraint are defined: 

 
1 ,  f material  is selected for layer  of ceiling structure r 

0, else
mCEIL
rfa

i f
x


 


  (A.11) 

   

1

1, ,   1, ,  R
rfA

mCEIL CEIL
rrfa

a
rx x f F r



         (A.12) 

 

The thickness of the unknown layers of materials ܨ௥	 is considered to be predefined Also, each 

of  material	a	of	layer	݂	of	ceiling	structure	ݎ has ݇௥௙௔
௠஼ாூ௅ (ܹ/݉	ܭሻ thermal conductivity 

and ݈ௗ௙௔
௠஼ாூ௅	thickness. 

 

e. Floors 

 

Similarly to the approach for walls and ceilings, let ܪ	be the number of available alternative 

structures of floors, which leads to the decision variable 
FLO
hx  where ݄ ൌ 1,…  is defined ܪ,

as: 

 
1 ,  if floor structure  is selected 

0, else
FLO
h

h
x


 


  (A.13) 

 

Also, it is assumed that only one floor structure may be selected from all the proposed floor 

structures, leading to the following constraint: 
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1

1
H

FLO
h

h

x


   (A.14) 

 

Each floor structure ݄ consists of ܰܮܨ௛ layers (with ݂݈݊ ൌ 1,…  ௛). The materials ofܮܨܰ,

these layers have specific thermal conductivities ݇݇௛,௡௙௟
௟ி௅ை ሻ and thicknesses ݈௛,௡௙௟ܭ	݉/ܹ) 

௟ி௅ை  (݉ሻ 

are already known. 

 

Also there is a number ܧ௛
	  (with ݁ ൌ 1,… , ௛ܧ

	 ) of unknown layers where their materials have 

to be chosen between the available ones. For each unknown layer ݁ of structure ݄ there are 

 .௛௘ alternative materials available and one can be selected for the chosen structureܩ

Therefore, the following decision variable and constraint are defined:  

 
1 ,  if material  is selected for layer of floor structure  

0, else
mFLO
heg

g e h
x


 


  (A.15) 

 

   

1

1, ,   1, ,  
heG

mFLO FLO
heg h h

g

x x e E h H


         (A.16) 

 

The thickness of the unknown layers of materials ܧ௛
	  is considered to be predefined Also, each 

of  material	g	of	layer	݁	of	floor	structure	݄ has ݇௛௘௚
௠ி௅ை (ܹ/݉	ܭሻ thermal conductivity and 

݈௛௘௚
௠ி௅ை thickness. 

 

A.1.2 Building’s energy systems 

 

The energy systems categories that are assumed to be available in this methodology are: 

 Heating systems: Provide only heating and can be electrical or non-electrical systems 

which are further categorized according to their input fuel; 

 Cooling systems: Provide only cooling (in this approach only electrical systems are 

assumed to be available) 

 DHW systems: Provide only hot water. They can be electrical or non-electrical, 

which are further categorized according to their input fuel; 

 Heating – cooling systems: Provide both space heating and cooling (only electrical 

systems are assumed to be available); 

 Heating – DHW systems: Provide both space heating and DHW supply. They can be 

electrical or non-electrical which are further categorized according to their input fuel; 

 Solar collector systems: Supply DHW by utilizing solar energy; 
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 Electricity generation systems: Provide electricity using RES. 

 

The decision variables regarding the above systems are defined as follows: 

Let ܫܵܪܧ be the available categories of electrical heating systems which include ܬܵܪܧ௘௛௜ 

systems, and let ܰܫܵܪܧ be the available categories of non-electrical heating systems 

including ܰܬܵܪܧ௡௘௛௦௜ different systems, where ݄݁݅ݏ ൌ 1,… , ݆ݏ݄݁ ,ܫܵܪܧ ൌ 1,… ,  ,௘௛௦௜ܬܵܪܧ

݅ݏ݄݁݊ ൌ 1,… ݆ݏ݄݁݊ ,ܫܵܪܧܰ, ൌ 1,…  ௡௘௛௦௜. Then the binary decision variables definedܵܪܧܰ,

are: 

 , 

1 ,  if  an electrical heating system  of category  is selected

 

0, else

EHS
ehsi ehsj

ehsj ehsi

x


 



  (A.17) 

 

 , 

1 ,  f a non-electrical heating system  of category  is selected 

0, else
NEHS
nehsi nehsj

i nehsj nehsi
x


 


 (A.18) 

 

 

 Let ܫܵܥܧ be the available categories of electrical cooling systems which include 

݅ݏܿ݁ ௘௖௦௜ systems whereܬܵܥܧ ൌ 1, … , ݆ݏܿ݁ and ܫܵܥܧ ൌ 1,… ,  :௘௖௜ܬܵܥܧ

 , 

1 ,  if an electrical cooling system  of category  is selected 

0, else
ECS

ecsi ecsj

ecsj ecsi
x 





  (A.19) 

 

 Let ܫܹܵܧ be the available categories of electrical DHW systems categories which 

includes ܬܹܵܧ௘௪௦௜ systems and the let ܰܫܹܵܧ be the available categories of non-electrical 

DHW systems consisting of ܰܬܹܵܧ௡௘௪௦௜ different systems, where  ݁݅ݏݓ ൌ 1,… ,  ,ܫܹܵܧ

݆ݏݓ݁ ൌ 1, … , ݅ݏݓ݁݊ ,௘௪௜ܬܹܵܧ ൌ 1,… ݆ݏݓ݁݊ and ܫܹܵܧܰ, ൌ 1, …  :௡௘௪௜ܬܹܵܧܰ,

 , 

1 ,  if  a DHW system  of category  is selected 

0, else
EWS
ewsi ewsj

ewsj ewsi
x


 


  (A.20) 

 

   (A.21) 

 , 

1 ,  if a non-electrical DHW system  

of category  is selected 

0, else

NEWS
newsi newsj

newsj

x newsi


 



  (A.22) 
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 Let ܫܵܥܪܧ be the available categories of electrical heating - cooling systems 

consisting of ܬܵܥܪܧ௘௛௖௦௜ systems, where ݄݁ܿ݅ݏ ൌ 1,… , ݆ݏ݄ܿ݁ and ܫܵܥܪܧ ൌ

1,… ,  :௘௛௖௜ܬܵܥܪܧ

 
1 ,  if  an electrical heating-cooling system  of category  is selected
 

, 
0, else

 
ehcsj ehcsiEHCS

xehcsi ehcsj




 


  (A.23)

  

 Let ܫܹܵܪܧ be the available categories of electrical heating – DHW systems 

consisting of ܬܹܵܪܧ௘௪௜ systems and let ܰܫܹܵܪܧ be the available categories of non-

electrical heating–DHW systems consisting of  ܰܬܹܵܪܧ௡௘௛௪௦௜ different systems, where 

݅ݏݓ݄݁ ൌ 1,… , ݆ݏݓ݄݁ ,ܫܹܵܪܧ ൌ 1,… , ݅ݏݓ݄݁݊ ,௘௛௪௦௜ܬܹܵܪܧ ൌ 1,…  and ܫܹܵܪܧܰ,

݆ݏݓ݄݁݊ ൌ 1,…  :௡௘௛௪௦௜ܬܹܵܪܧܰ,

 
, 

1 ,  if  an electrical heating – DHW system  

of category  is selected

 

0, else

EHWS
ehwsi ehwsj

ehwsj

ehwsi
x



 



  (A.24) 

 

 
, 

1 ,  if  a non-electrical heating – DHW system 

 of category  is selected

 

0, else

NEHSW
nehwsi nehwsj

nehwsj nehwsi
x



 



  (A.25) 

 

 

 Let ܵܫܥܮ be the available categories of solar collector systems consisting of ܵܬܥܮ 

different systems, where ݈݅ܿݏ ൌ 1,… , ݆݈ܿݏ and ܫܥܮܵ ൌ 1,… ,  :ܬܥܮܵ

 ,

1 ,  if solar collectory  of category  is selected 

0, else
SLC
slci slcj

slcj slci
x


 


  (A.26) 

 

 Let ܴܫܵܧ  be the available categories of RES electricity generation systems consisting 

of ܴܬܵܧ௥௘௖௜  different systems, where ݅ݏ݁ݎ ൌ 1,… , ݆ݏ݁ݎ and ܫܵܧܴ ൌ 1,… ,  :௥௘௦௜ܬܵܧܴ

 
,  

1 ,  if  RES power generation system

  of category  is selected  

0, else

RES
resi resjx resj resi


 



  (A.27) 

 

Some of the systems described above could belong into more than one categories. Therefore, 

some additional constraints are required in order to allow for the selection of only one system 

for each purpose: 
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 Space heating system amongst those available: 

 
, , ,  

1 1 1 1 1 1

, 
1 1 1

ehi ehi ehci

ehwsi

EHSJ NEHSJ EHCSJEHSI NEHSI EHCSI
EHS NEHS EHCS
ehsi ehsj nehsi nehsj ehcsi ehcsj

ehsi ehsj nehsi nehsj ehcsi ehcsj

EHWSJEHWSI NEHWSI
EHWS
ehwsi ehwsj

ehwsi ehwsj nehwsi n

x x x

x

     

  









     

   ,  
1

 1
ehwsiNEHWSJ

NEHWS
nehwsi nehwsj

ehwsj

x



  (A.28) 

 

 Space cooling system amongst those available: 

 , , 
1 1 1 1

1 
ecsi ehciECJ EHCSJECSI EHCSI

ECS EHCS
ecsi ecsj ehcsi ehcsj

ecsi ecsj ehcsi ehcsj

x x
   

       (A.29) 

 

 DHW system amongst those available: 

 
, , , 

1 1 1 1 1 1

, 
1 1

 1

ewi ehsi ehwsi

ehwsi

EWSJ NEWSJ EHWSJEWSI NEWSI EHWSI
EWS NEW EHWS
ewsi ewsj newi newj ehwsi ehwsj

ewsi ewsj newsi newsj ehwsi ehwsj

NEHWSJNEHWSI
NEHWS
nehwsi nehwsj

nehwsi nehwsj

x x x

x

     

 

 

 

     

 
  (A.30) 

 

 Solar collector system to provide DHW amongst those available if would be 

beneficial to choose one: 

 
1 1

, 1
SLCI SL

sl

CJ
SLC

slci s
ci slcj

lcj

x
 

    (A.31) 

 

 RES electricity system amongst those available if one would be beneficial. It is noted 

that it is assumed that the building would be connected to the grid: 

 , 
1 1

1  
ehciRESJRESI

RES
resi resj

resi resj

x
 

    (A.32) 

 

A.1.3 Lighting systems 

 

Let	ܫܮ  be the number of available categories of lighting systems, consisting of ܬܮ௟௜ types of 

lamps. Then the decision variable , 
L
li ljx , where ݈݅ ൌ 1,… , ݆݈ and ܫܮ ൌ 1,… ,  ௟௜ is definedܬܮ

such as: 

 , 

1 ,  if lamp type  of category  is selected 

0, else
L
li lj

lj li
x


 


  (A.33) 
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Assuming that from the available lamps only one can be selected the following constraint is 

defined: 

 , 
1 1

1 
liLJLI

L
li lj

li lj

x
 

   (A.34) 

 

A.1.4 Electrical appliances 

 

Let ܫܣܧ be the number of available categories electrical appliances consisting ܬܣܧ types of 

appliances available. Then the decision variable , 
EA
eai eajx , where ݁ܽ݅ ൌ 1,… , ݆ܽ݁ and ܫܣܧ ൌ

1,… ,  : ௘௔௜, is defined such asܬܣܧ

 , 

1 ,  if  the electric appliance  is selected of category  
 

0, else
EA
eai eaj

eaj eai
x


 


  (A.35) 

 

Assuming that from the available electrical appliances only one can be selected for each 

category the following constraints are defined: 

 , 
1

1
eaiEAJ

EA
eai eaj

eaj

x


   (A.36) 

  , 
1 1

,  1, ,   1, , 
eaiEAJEAI

EA
eai eaj eai

eai eaj

x EAI eaj EAJ eai EAI
 

          (A.37) 

 

A.2 Constraints 

 

A.2.1 Primary Energy consumption  

 

The total annual  primary energy consumption in a building is the primary energy used for 

heating, cooling, DHW, lighting and electrical appliances [32]: 

 

 T H C DHW L AQ Q Q Q Q Q       (A.38) 

 

A.2.1.1 Primary Energy Consumption for Heating  

 

Annually, the total annual primary energy consumption for heating would be equal to: 
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 , 
1

H grid FUEL
Hel

H nel fuel
fuelgrid

Q f
Q Q

n 

     (A.39) 

where: 

ܳ௘௟
ு : Energy consumed by an electrical system for heating purposes (MJ/year) 

gridf : Percentage of electricity supply from the grid (RES electricity supply does not 

contribute to primary energy consumption). 

݊௘௟: The average efficiency for the electricity supply from the grid to the building (it is 

assumed to be 0.35 [16] 

ܳ௡௘௟,௙௨௘௟
ு : Energy consumed by a non-electrical system using a fuel (where ݂݈݁ݑ ൌ

1,… ,  (MJ/year) (ܮܧܷܨ

 

The energy consumed by an electrical and a non-electrical system can be calculated as: 

 
H HD
el elQ Q SEH   (A.40) 

 , , 
H HD
nel fuel nel fuelQ Q SEH   (A.41) 

 

where: 

ܳு஽: The total annual heating energy demand (MJ/year) 

 

 
, , , 

1 1 1 1 1 1, , , 

ehsi ehci ehwi
EHS EHCS EHWSEHSJ EHCSJ EHWSJEHSI EHCSI EHWSI
ehsi ehsj ehcsi ehcsj ehwsi ehwsj

el EHS EHCS
ehsi ehsj ehcsi ehcsj ehwsi ehwsjehsi ehsj ehcsi ehcsj ehwsi ehw

x x x
SEH

n n n     

   
        

   
      EHWS

sj

 
  
 

 

 (A.42) 

 

 
, , 

, 
1 1 1 1, , 

ehi ehwsi
NEHS NEHWSNEHSJ NEHWSJNEHSI NEHWSI
nehsi nehsj nehwsi nehwsj

nel fuel NEHS NEHWS
nehsi nehsj nehwsi nehwsjnehsi nehsj nehwsi nehwsj

x x
SEH

n n   

   
       

   
      (A.43) 

 

 ௡௘௟,௙௨௘௟: The efficiency of the chosen system for heatingܪܧܵ	݀݊ܽ	௘௟ܪܧܵ

, 
EHS
ehsi ehsjn , , 

EHC
ehci ehcjn , , 

EHW
ehwi ehwjn : The efficiency (%) of the electrical systems ehsj, ehcsj and 

ehwsj of the respected categories ehsi, ehcsi and ehwsi 

, 
NEHS
nehsi nehsjn , , 

NEHW
nehwi nehwjn : The efficiency (%) of the non-electrical systems nehsj  and nehwsj of 

the respected categories nehsi and nehwsi 

 

The annual heating demand can be calculated by summing the demand of each month: 
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12

1

HD HD
m

m

Q Q


   (A.44) 

 

The heating demand for each month is equal to the sum of heat losses, i.e. monthly 

transmission ்ܳ,௠ (kWh/month) and ventilation losses ܳ௏ாே,௠ (kWh/month), minus internal 

heat gains ܳூேுீ,௠ (kWh/month) and solar gains ܳௌ௅,௠ (kWh/month) [16]. Regarding the 

solar gains only the direct solar gains from window are taken into account and not the indirect 

(such the absorbance of solar radiation of the walls) despite they might offer a small heat gain 

[40]: 

 

 
 , , , , ,    

0,  

m T m VEco N m INHG m SLnv mHD
m

HS Q Q Q Q if positive
Q

els

F

e

   


  (A.45) 

 

  , ,  T m IH o m mQ BLC T T t    (A.46) 

 , , ( / 360) 0VEN m air pair IH o m mQ c ACH V T T t      (A.47) 

  , , ,INHG m people people m eah m mQ n Q Q t    (A.48) 

  , m , , , ,  ,  
1 1 1

zTWN Z
WIN WIN WIN

SL wn F wn S wn CM wn SL wn m d zt
wn

z
z t

tQ A F F F I t x g
  

 
  

 
    (A.49) 

 

where: 

  

 ௠: Parameter indicating if heating is required for month ݉ (binary variable with values 1ܵܪ

or 0) 

Fconv: conversion factor (MJ/kWh) 

  Building load coefficient (W/K) :ܥܮܤ

ூܶு: Internal design temperature for heating season (K) 

௢ܶ,௠: Average external temperature of month ݉ (K) 

 ௠: Month duration in hours (h/month)ݐ

 ௗ: Month duration in days (days/month)ݐ

 ௔௜௥: Air density ሺkg/mଷሻߩ

ܿ௣௔௜௥: Specific heat of air (݇݃݇/ܬ	ܭሻ 

 Air changes per hour (݄ିଵሻ :ܪܥܣ

ܸ: Internal Volume of the Building (݉ଷሻ 
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݊ݓ ଶሻ, where݉) ݊ݓ ௪௡ௐூே: Area of windowܣ ൌ 1,… ,ܹܰ  

 (%) ி,௪௡: Window frame factorܨ

 (%) ௌெ,௪௡: Window shading correction factorܨ

 (%) ஼ெ,௪௡: Window correction factor for movable devicesܨ 

 under a certain tilt and orientation (kwh/m2/day) ,݊ݓ	ௌ௅,௪௡,௠: Solar radiation on windowܫ

݃௦௧
ௐூே: Effective total solar energy transmittance (%) of window sub-type ݐ of type ݖ 

݊௣௘௢௣௟௘: number of people living in the building 

ܳ௛௨௠௔௡,௠: Heat emitted per person from radiation (W/person)  

ܳ௘௔௛,௠: Heat emitted by electrical equipment  

 

Moreover the BLC of a building can be calculated as: 

 com com com
com

BLC A U b   (A.50) 

Where 

  is a building envelope component :݉݋ܿ

 ௖௢௠: surface area (݉ଶሻܣ

௖ܷ௢௠: total heat transfer coefficient ሺܹ/݉ଶܭሻ 

ܾ௖௢௠: temperature correction factor, between 0 for unheated surfaces (e.g. floors or 

basements) 

 and 1 for components that face outside air 

 

In detail the BLC is equal to: 

 

 

       

       
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dr d wn z t
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Z

d d

O FLO FLO
fl fl h h

fl h

BLC A b x U A b x U

A b x U A b x U

A b x U

    

   

 

 

 



   

   

 

  (A.51) 

 

In this methodology the overall heat transfer coefficient ௧ܷ௢௧௔௟ is used in order to take into 

account the phenomenon of heat transfer by convection and radiation mechanisms. For doors 

and windows the manufacturers usually provide the ܷ௩௔௟௨௘ instead of the thermal 

conductivity and the thickness. For multi-layer components the calculation of the total heat 

transfer coefficient (ܹ/݉ଶܭሻ takes into account the thickness of each layer, the thermal 
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conductivity and the inside and outside heat convection coefficient to air. Therefore the 

following equations are used:  

 

1

DOOR
v

i value, door o

1 1 1
U

h U h


 

    
 

  (A.52) 

 

1

WIN

w

i value, win o

1 1 1
U

h U h



  
 
 
 

  (A.53) 
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
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    (A.56) 

where hi and ho represent the combined convection radiation coefficients ሺܹ/݉ଶܭ) 

 

A.2.1.2 Primary Energy Consumption for Cooling 

 

Similarly to the heating energy consumption calculations the total annual primary energy 

consumption for cooling can be calculated as: 

 

C

el
C

Q
Q

grid

grid

f

n
   (A.57) 

 

Where: 

ܳ௘௟
஼ : Energy consumed by an electrical system used for cooling (MJ/year) 

 

The energy consumed by an electrical system can be calculated as: 

 
C CD
el elQ Q SEC   (A.58) 

 

where: 

ܳ஼஽: The total annual cooling energy demand (MJ/year)  
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ecsi ehciECS EHCSECSJ EHCSJECSI EHCSI

ecsi, ecsj ehcsi, ehcsj
el ECS EHCS

ecsi, ecsj ehcsi, ehcsjecsi 1 ecsj 1 ehcsi 1 ehcsj 1

x x
SEC

nn   

   
       

   
      (A.59) 

 

 ௘௟: The efficiency of the chosen system providing cooling energyܥܧܵ

ECS
ecsi, ecsjn , 

EHCS
ehcsi, ehcsjn : The efficiency (%) of the electrical systems ecsj, ehcsj of the respected 

categories ecsi and ehcsi 

 

The total annual cooling energy demand can be calculated by summing the cooling energy 

demand of each month: 

 
12

1

CD CD
m

m

Q Q


   (A.60) 

 

The cooling energy demand for each month is equal to the sum of heat losses, i.e. monthly 

transmission ்ܳ,௠ (kWh/month) and ventilation losses ܳ௏ாே,௠ (kWh/month), minus internal 

heat gains ܳூேுீ,௠ (kWh/month) and solar gains ܳௌ௅,௠ (kWh/month). The calculation of 

cooling energy demand is similar to the one for heating energy demand, but in this case the 

sol-air temperature is used which takes into account the effect of solar radiation on the outside 

temperature [27]: 

 
 , , , , ,    

0, 

m conv INHG m SL m T m VEN mCD
m

CS F Q Q Q Q if positive
Q

else

   


  (A.61) 

 

 
, , 

, 

( - /3600

( - /3600

)

)

VEN m air pair IC o m m

air fg I o m m

Q c ACH V T T t

h ACH V w w t





  

     (A.62) 

  , ,  T m IC sol air m mQ BLC T T t    (A.63) 

 , ,
sol

sol air m o m
o

a q
T T

h


 


   (A64) 

 

 ௠: Parameter indicating if heating is required for month ݉ (binary variable)ܵܥ

ூܶ஼: Internal design temperature for cooling season (K) 

݄௙௚: latent heat of vaporization (usually 2340 kJ/kg) 

) ௜: Specific humidity indoorsݓ
kgwat

kgair
൘ ) 
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) ௢,௠: Specific humidity outdoorsݓ
kgwat

kgair
൘ ) 

௦ܶ௢௟ି௔௜௥: Sol-air temperature (K) 

ܽ: Absorptivity of the material 

௦௢௟ሶݍ : Solar radiation (W/m2) 

 

A.2.1.3 Primary Energy Consumption for Domestic Hot Water 

 

The total annual primary energy consumption for DHW supply would be equal to: 

 
FUELW

Wel
DHW nel, fuel

fuel 1

Q
Q Q

grid

grid

f

n 

     (A.65) 

 

where: 

ܳ௘௟
ௐ: Energy consumed by a DHW system using electricity (MJ/year) 

ܳ௡௘௟,௙௨௘௟
ௐ : Energy consumed by a DHW system using a fuel, ݂݈݁ݑ ൌ 1,… ,  (MJ/year) ܮܧܷܨ

 

The energy consumption of an electrical and a non-electrical system can be calculated as: 

 
W WD
el elQ Q SEW   (A.66) 

 , , 
W WD
nel fuel nel fuelQ Q SEH   (A.67) 

 

where: 

ܳௐ஽: The total annual energy demand for DHW (MJ/year) 

 

 
, , 

1 1 1 1, , 

ewsi ehwsi
EWS EHWSEWSJ EHWSJEWSI EHWSI
ewsi ewsj ehwsi ehwsj

el EWS EHWS
ewsi ewsj ehwsi ehwsjewsi ewsj ehwsi ehwsjn n

x x
SEW

   

   
       

   
      (A.68) 

 
, , 
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1 1 1 1, , 

ehi ehwsi
NEWS NEHWSNEWSJ NEHWSJNEWSI NEHWSI
newsi newsj nehwsi nehwsj

nel fuel NEWS NEHWS
newsi newsj nehwsi nehwsjnewsi newsj nehwsi nehwsj

x x
S

n
W

n
E

   

   
       

   
      (A.69) 

 

ܧܵ ௘ܹ௟	ܽ݊݀	ܵܧ ௡ܹ௘௟,௙௨௘௟: The efficiency of the chosen system providing hot water 

, 
EWS
ewsi ewsjn , , 

EHW
ehwi ehwjn : The efficiency (%) of the electrical systems ewsj and ehwsj of the 

respected categories ewsi and ehwsi 
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, 
NEWS
newsi newsjn , , 

NEHW
nehwi nehwjn : Denotes the generation efficiency (%) of the non- electrical systems 

newsj  and nehwsj of the respected categories newsi and nehwsi 

 

The annual DHW energy demand can be calculated by summing the demand of each month: 

  
12

1

WD DHW
m

m

Q DQ


   (A.70) 

 

The net DHW demand for each month is equal to the average monthly hot water demand 

minus the energy a solar collector system provides (in case one is selected): 

 
 m dhwu, m dSLC,m dhwu, m dSLC,mDHW

m

WS Q Q ,    Q Q
DQ

0, 

convF if

else

   


  (A.71) 

 

Where: 

 

ܹܵ௠: Parameter indicating if DHW is required for month ݉ (binary variable ) 

dhwu, mQ : average monthly demand for DHW supply (MJ/month) calculated as: 

  dhwu, m w w pw DHW DCW, m mQ m ρ c T T t    (A.72) 

 

ሶ݉ ௪: Rate of consumption of hot water at each day (	݉ଷ/ݏሻ 

Tୈୌ୛: The base temperature set for the DHW system (K) 

Tୈେ୛,୫: The temperature of the cold water supply at month m (K) 

ρ୵: The water density (݇݃/݉ଷሻ 

c୮୵: Specific heat of water (݇݃݇/ܬ	ܭሻ 

 

dSLC,mQ : the monthly hot water demand (MJ/month) provided from a solar collector system 

(in case one is selected) 

 
SLCI

SLC SLC
dSLC,m SLC S, SLC SL, SLC, m d slcj, slci slcj, slci

slci 1

Q A F I t x nconvF


    (A.73) 

Aௌ௅஼: Area of solar collector (m2) 

 (%) ௌ,ୗ୐େ: Correction factor for shadingܨ

 of category slci, under a ݆݈ܿݏ	ௌ௅,ୗ୐େ,௠: Solar radiation incident on a solar collector typeܫ

specific tilt and orientation (kwh/m2/day) 

݊௦௟௖௝,௦௟௖௜
ௌ௅஼ : efficiency of a solar collector type ݆݈ܿݏ of the category ݈݅ܿݏ (%) 
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A.2.1.4 Primary Energy Consumption for Lighting  

 

The total annual primary energy consumption for lighting purposes is calculated as: 

 
L
el

L

Q
Q

grid

grid

f

n
   (A.74) 

where: 

Qୣ୪
୐ : is the annual electrical energy consumed for lighting (MJ/year) 

 

The electrical energy consumption for providing lighting is equal to: 

 
L LD

el elQ Q SEL   (A.75) 

where: 

ܳ௅஽: Total annual demand for electricity for lighting (MJ/year) 

௘௟ܮܧܵ ൌ 1, assuming no losses of electricity from supply to consumption 

 

The annual energy demand for lighting can be calculated by summing the demand of each 

month: 

 

 
12

LD LD

m

m 1

Q Q


   (A.76) 

 

It is assumed that the lamps would be operating the same number of hours each day and 

consequently all the months of the year. The energy consumption of lamps can be calculated 

as: 

  
liLJL LI

LD L
m L, l use, l li, lj

l 1 li 1 lj 1

Q t P f xcon dvF
  

     (A.77) 

 

l ൌ 1,… , L: Number of lamps 

P୐,୪: Lamp power rating (kW) 

f୳ୱୣ,୪: Time that the device is used (h/day) 

 

A.2.1.5 Primary Energy Consumption for Electrical appliances 

 

The total annual primary energy consumption for the operation of the electrical appliances is 

calculated as: 
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elQ

Q
grid

ri

A

d

A

g

f

n
   (A.78) 

Where: 

Qୣ୪
஺ : is the annual energy (electricity) consumed for operation of electrical appliances 

(MJ/year) 

 

The electrical energy consumed for operation of electrical appliances is: 

 
A AD

el elQ Q SEA   (A.79) 

Where: 

ADQ : Total annual demand for electricity for operation of electrical appliances (MJ/year) 

௘௟ܣܧܵ ൌ 1, assuming no losses of electricity from supply to consumption 

 

The annual energy demand for the operation of electrical appliances can be calculated by 

summing the demand of each month: 

 
12

AD AD
m

m 1

Q Q


   (A.80) 

 

It is assumed that the electrical appliances would be operating the same number of hours each 

day and consequently all the months of the year. The energy consumption of electrical 

appliances can be calculated as: 

    

 
eaiEAJ

AD EA
m d,  m A, eai use, eai load, eai eai, eaj

eai 1 eaj 1

Q t P f f x
EAI

convF
 


 
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 

    (A.81) 

 

P୅,ୟ: Electric appliance power rate (W) 

f୳ୱୣ,ୟ: Time that the device is used (h/day) 

f୪୭ୟୢ,ୟ: Load factor of the device (%) 

 

A.2.1.6 Electricity supply 

 

The total annual demand for electrical energy is equal to the electricity consumption for 

heating, cooling, DHW, lighting, and operation of the electrical appliances: 
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D H C W L A

EL el el el el elQ Q Q Q Q Q       (A.82) 

 

The annual electricity demand of the electrical systems consists of the average demand for 

electricity supply from the grid	ܳ௘௟,௚௥௜ௗ, reduced by the electricity provided by a RES 

system	ܳ௘௟,௔௟௧, in case one is selected and is operating: 

 

 
ehciRESJRESI

RES

el,  alt el, resi, resj resi, resj

resi 1 resj 1

Q Q x
 

     (A.83) 

Where 

ܳ௘௟,௥௘௦௜,௥௘௦௝: electricity generation from a RES system resj of category resi (MJ/year) 

 

The renewable sources that could be used to provide electricity are solar energy (photovoltaic 

systems) or wind energy (wind turbines). Moreover, it is further assumed that all the 

electricity generated from RES would be either used in the building or exported to the grid 

[32]. Therefore, the total supply from the grid would be equal to:  

 

 
 D D

EL el,  alt EL el,  alt
el, grid

Q Q ,  Q Q
Q

0,

if

else

   


  (A.84) 

 

A.2.2 Initial Investment Cost  

 

As it was mentioned before, several approaches regarding the cost have been made in such 

models. Similarly to [16] in this model the initial investment cost is used which is defined as 

the initial cost of acquisition of the components and the cost of installation. The initial 

investment cost for the proposed components would be equal to: 
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


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 



  (A.85) 

 

Independently, the cost for each component can be calculated as: 
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1 1

ehciRESJRESI
RES RES
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 
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  , , 
1 1

L
liLJLI

L L
LIGHT li lj li lj

li lj

COST x CST
 

    (A.98) 

 

  , , 
1 1

eaiEAJEAI
EA EA

EA eai eaj eai eaj
eai eaj

COST x CST
 

     (A.99) 

 

Where, 

DOOR
vC : the initial investment cost for a door of type d (£/m2) 

WIN
ztC : the initial investment cost for a window of sub-type t of type z (£/m2) 

, 
mWALL
w nwlCK , r, 

mCEIL
nclCK , , 

mFLO
h nflCK : the initial investment costs for the materials used in the 

known layers nwl, of wall structure w, ncl of ceiling structure r and nfl layers of floor 

structure h (£/m2) 

mWALL
wypC , 

mCEIL
rfaC , 

mFLO
hegC : the initial investment costs for the material p that is used in the 

unknown layer y of wall structure w, the material a that is used in the unknown layer f of 

ceiling structure r and the material g that is used in the unknown layer e of floor structure h 

(£/m2) 

, 
EHS

ehsi ehsjCST , , 
NEHS

nehsi nehsjCST  : the initial investment cost for the electrical heating system ehsj of 

category ehsi and the non-electrical heating system nehsj of category nehsi (£) 

, 
ECS

ecsi ecsjCST : the initial investment cost for the electrical cooling system ecsj of category ecsi 

(£) 

, 
EWS

ewsi ewsjCST , , 
NEWS

newsi newsjCST : the initial investment cost for the electrical DHW system ewsj of 

category ewsi and the non-electrical DWH system newsj of category newsi (£) 

, 
EHCS

ehcsi ehcsjCST : the initial investment cost for the electrical heating-cooling system ehcsj of 

category ehcsi (£) 
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, 
EHWS

ehwsi ehwsjCST , , 
NEHSW

nehwsi nehwsjCST : the initial investment cost for the electrical heating-DHW 

system ehwsj of category ehwsi and the non-electrical heating-DWH system nehwsj of 

category nehwsi (£) 

,
SLC

slci slcjCST : the initial investment cost for the solar collector system slcj of category slci (£) 

, 
RES

resi resjCST : the initial investment cost for the RES electricity system resj of category resi (£) 

, 
L

li ljCST : the initial investment cost for the lamp lj of category li (£) 

, 
EA

eai eajCST : the initial investment cost for the electrical appliance eaj of category eai (£) 

 

A.3 Objective Functions  

 

A.3.1 The Case of a New Building 

 

In order to determine the optimal prioritization of the energy efficiency measures in a new 

building, the primary energy consumption and the initial investment cost criteria must be 

minimized according to the procedure described in subsections A.2.1 and A.2.2 respectively: 

 
 
 

1 T

2

min g Q

min g INVCOST

   
   

x

x
  (A.100) 

Subject to  

Constraints: (A.1) - (A.99) 

 

A.3.2 The Case of Retrofitting an Existing Building 

 

For the case of retrofitting an existing building the methodology is similar to that of a new 

building. However, in this case the objectives would be to achieve maximum primary energy 

savings with minimal initial investment cost. Therefore, the primary energy consumption of 

the existing building before any retrofit action must be calculated. 

 

The primary energy consumption of an existing building is calculated with the methodology 

described in subsection A.2.1. However, in this case there are no decision variables. Also, the 

constraints regarding the components of the building’s envelope as were set in subsection 

A.2.1 might not apply as an existing building theoretically might have more than one type of 

doors, windows etc. The procedure used in Section A.2.1 is followed similarly: 
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The total annual primary energy consumption of an existing building can be calculated using 

equation (A.38) and is equal to: 

 _T pre H C DHW L AQ Q Q Q Q Q       (A.101) 

Where: 

்ܳ_௣௥௘: The annual primary energy consumption before any retrofit action. 

 

Moreover, it is assumed that an existing building before retrofit would not have RES to 

provide electrical energy. 

 

To calculate the primary energy consumption after the retrofit actions (்ܳ_௣௢௦௧ሻ on a building 

the procedure in subsection A.2.1 is followed again. Moreover, it is assumed that in the case 

of retrofitting an existing building the wall, ceilings and floor structures would not be 

changed. Hence, the decision variables (A.5), (A.9) and (A.10) have already value equal to 1. 

Insulation layers may exist in some components but also they could be applied to the other 

components.  

 

The initial investment cost of the components for retrofitting a building, represents the cost 

acquisition and installation of the proposed components and can be calculated similarly to 

subsection A.2.2. The variables , 
mWALL
w kwlCK , , 

mCEIL
d kclCK and , 

mFLO
d kflCK are equal to 0 as they 

already exist. 

 

The criteria to find the best solution are the energy savings and the initial cost of the 

investment. In this case energy savings must be maximized and the investment cost must be 

minimized: 

 
 
 

1 T _ pre T _ post

2

max Q Q

min INVCOST

g

g

   
   

x

x
  (A.102) 

Subject to 

Constraints: (A.1) - (A.99), except those excluded in this subsection. 

Given that QT-pre is a constant parameter of the model, the first objective function of (101) is 

actually equivalent to the first objective function of (99).  

 

Appendix “B” 

 

Available online. 
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Appendix “C” 

 

Available online. 


