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Adapting overhead lines to climate change: Are 

dynamic ratings the answer?  
 

Lucy C Craddena* and Gareth P Harrisona 
aInstitute for Energy Systems, School of Engineering, University of Edinburgh, EH9 3JL UK.  

 

Abstract 

Thermal ratings of overhead lines (OHL)† are determined by the current being carried and ambient 

climatic conditions. Higher temperatures as a result of climate change will give rise to lower ratings, 

and thus a reduction in current-carrying capacity across the electricity network. Coupled with 

demand growth and installation of renewable generation on weaker sections of the network, this 

could necessitate costly reinforcements and upgrades. Previous UK-based work applying a subset of 

data from the UK Climate Projections model (UKCP09) has indeed indicated likely reductions in the 

steady-state OHL ratings under worst-case temperature increases. In the present work, time series 

data from the full UKCP09 probabilistic climate change modelling framework, including an 

additional algorithm to incorporate hourly wind conditions, is applied to OHL ratings. Rather than 

focus purely on worst-case conditions, the potential for an increased risk of exceeding nominal 

ratings values on thermally constrained OHL is analysed. It is shown that whilst there is a small 

increase in risk under future climate change scenarios, the overall risk remains low. The model 

further demonstrates that widespread use of real-time dynamic rating systems are likely to 

represent the most cost-efficient adaptation method for lines which are frequently thermally 

constrained. 

                                                           
* Corresponding author. Tel.:+44 131 6505612  E-mail address: lucy.cradden@ed.ac.uk 

†List of acronyms used 
Acronym Definition 
ER Engineering Recommendation 
OHL Overhead line 
PET Potential evapo-transpiration 
UKCP09 UK Climate Projections 
UKMO UK Met Office 
WG Weather generator 
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I. Introduction 

The balance of evidence from climate modelling experiments suggests that average temperatures will 

rise over the coming decades as greenhouse gas concentrations increase (IPCC, 2007). A changing 

climate has potential to affect electricity systems in many ways, not least the need for low carbon 

generation. The direct and indirect effects of climate change on electricity distribution and 

transmission networks may be disruptive and requires analysis.  

Many network components such as transformers and overhead lines (OHL) are directly vulnerable 

to weather conditions. The reliability and safety of these devices are limited by their ability to 

withstand certain operational temperatures, which are in turn influenced by local ambient 

environment and loading conditions. In OHL, power flows exceeding defined limits referred to as 

‘line rating’ will cause excess heat gain and damage from sag or a reduction in strength (CIGRE 

Working Group B2.12, 2006). With the anticipated rise in ambient temperatures in the coming 

decades, the threshold temperatures for OHL are likely to be reached sooner, leading to reductions in 

power transmission capacity. Indirectly, networks are required to cope with increasing installations of 

renewable generators well as demand growth. A combination of reduced capacity with increased 

loading could necessitate costly network reinforcement. 

The issue of changing OHL ratings has featured in the literature on climate change impacts. 

Consideration has been mainly qualitative or used simple quantitative analysis; this is true of the 

original impact assessments by the Intergovernmental Panel on Climate Change (IPCC), for the US 

(Smith and Tirpak, 1989) and UK (Climate Change Impacts Review Group, 1991) and more recent 

European assessments (Rademaekers et al., 2011). These used projected mean temperature changes 

and applied them to standard OHL rating methods.  More sophisticated work by the UK Met Office 

(UKMO) and utilities (Buontempo, 2008; Harrison, 2008) used a subset of the data generated as part 

of the UK Climate Projections project (UKCP09) to explore impacts on the UK energy industry. The 



 3

data subset consisted of a version of the UKMO Unified Model driven by an atmospheric climate 

model, HadAM3P (Buontempo, 2008). Single simulations of hourly weather data for current climate 

and for a future period indicate reductions in steady state OHL ratings under future climate with 

‘worst-case’ ratings more significantly affected than the mean (Harrison, 2008). The results have been 

used by UK network operators in their climate adaptation statements (Electricity Networks 

Association, 2011) and feature in the 2012 UK Climate Change Risk Assessment (McColl et al., 

2012). The worst case reductions in OHL ratings are estimated to be 8–14% for distribution and 2–

4% at transmission by 2099. These arise from sensitivity factors of ~1.6%/°C for distribution and 

~0.8%/°C for transmission, with the difference due to higher allowed transmission operating 

temperatures. The cost of rebuilds of affected circuits is estimated to be £1.3 billion by 2080 and 

although smart grids are stated to also be part of the solution, this not elaborated on (Electricity 

Networks Association, 2011).  

An important feature of the UKMO analysis is that due to low confidence in the wind speed output 

from climate models, potential changes in wind speeds were omitted from the methodology 

(Buontempo, 2008; Electricity Networks Association, 2011). Instead the focus was on identifying the 

change in extreme temperatures and lowest steady state rating within the range of possibilities. This is 

valuable and fits well with prevailing practice in defining OHL ratings. However, it misses an 

opportunity to gain a much richer picture of the distribution of ratings that occur as weather patterns 

vary throughout the year and into the future. This is particularly important as emerging experience 

with dynamic ratings of OHL (Michiorri et al., 2009; Yip et al., 2009) shows much variation in 

ratings throughout the year and that wind speed plays a major role in determining ratings. With 

dynamic ratings seen as a key smart grid technology and mooted as a climate adaptation measure 

(Rademaekers et al., 2011), there is a need for a method that allows the evaluation of dynamic OHL 

ratings within the framework of future climate change scenarios. 

In addressing this challenge, the work described here makes use of the time-varying output from the 

UKCP09 probabilistic projections (which includes results from the model used in Buontempo (2008), 
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among others), supplemented by additional wind modelling, to explore scenarios of future climate 

and the implications for the thermal rating of overhead lines. It is set out as follows: Section II 

provides an overview of the state-of-the-art climate change modelling for the UK, while section III 

describes the methodology used for estimating ratings under future climate change and presents a 

simple temperature-based estimation of changes in static rating assumptions. Section IV presents the 

changes in climate as depicted by a model based on the UKCP09 weather generator. Section V 

explores the impact of these changes on OHL ratings and the risk of exceeding current assumed 

capacities. Section VI concludes the work by discussing the impacts and the scope for climate 

adaptation in the face of these changes. 

II. UK Climate Change Scenarios 

Comprehensive, high resolution modelling of potential climate change effects in the UK and 

surrounding seas is provided by the UK Climate Projections (UKCP09, 2011). These are probabilistic 

projections of change for a range of atmospheric climate variables over the coming century under 

several “equally likely” emissions scenarios defined by the IPCC Special Report on Emissions 

Scenarios (IPCC, 2000). This valuable addition to the available models of future climate data moves 

beyond established practice in climate impacts analysis that makes use of single values for changes in 

temperature or other variables by a particular future time period under a given emissions scenario. By 

combining multiple models, UKCP09 better captures the inherent uncertainty associated with the 

climate projections for “high”, “medium” and “low” emissions scenarios and fits with the trend of 

applying risk methods to infrastructure challenges.  

 

Fig. 1 Cumulative probability distribution for annual temperature change in Eastern Scotland in the 

2050s under the ‘medium’ emissions scenario 
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For specific locations and most climate variables, UKCP09 provides continuous probabilistic 

estimates of the magnitude of change. For example, Fig. 1 shows the probability function for annual 

temperature change in the 2050s under a medium emissions scenario, derived for the region of eastern 

Scotland. The probabilities shown are cumulative, such that if the 10% value is X, it is 10% likely 

that the change will be less than X (and 90% likely to be greater). If the 90% value is Y, it is 90% 

likely that the change will be less than Y (and 10% likely to be greater). The 10% and 90% levels can 

be interpreted as the likely range of changes (i.e. minimum to maximum) expected for a given 

scenario. For the case shown in Fig. 1 the 10% level corresponds to a rise of around 1.2°C, the 50% 

level to 2°C and the 90% level to 3°C. 

The information can also be presented as a UK-wide map showing changes at a given probability 

level on a 25km grid. Considering the 2050s with medium emissions again, the temperature changes 

at a 50% probability level shown in Fig. 2 indicate that over the whole year, the increase is more-or-

less likely to be between 2 and 3°C, and will be worse in the south than the north. Critically, although 

UKCP09 does now provide some probabilistic data for future wind speeds, it is accompanied by a 

“health warning” concerning the high degree of uncertainty associated with the wind projections 

(Sexton and Murphy, 2010). Wind speed appears to be one of the most difficult climate variables to 

understand under conditions of climate change, and any data used must be accompanied by suitable 

information about the potential errors. 

 

Fig. 2 Map of changes in temperature at the 50% probability level for the 2050s under a ‘medium’ 

emissions scenario 
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For applications that require coincident changes in multiple weather variables, UKCP09 provides a 

“weather generator” (WG) (Jones et al., 2009), which produces synthetic time-series of several 

weather variables over a small area. Each ‘pseudo’ time-series are statistically representative of 30 

years of weather under a specific set of large-scale scenarios of current or future climate conditions, 

with the variables being temporally consistent with each other within each simulation. An ensemble 

of at least 100 weather generator ‘runs’ of each 30 year period are needed for statistically robust 

results. The weather generator produces consistent time-series that include temperature and 

precipitation values, but crucially, the wind speed values are not explicitly provided due to the high 

degree of uncertainty associated with the future projections. 

III. Determination of OHL ratings 

The amount of current, I, that can be carried by a given OHL conductor – the ‘rating’ – is determined 

by the energy balance of the conductor. The energy balance comprises the Joule (or ohmic) heating 

effect of the losses in the conductor qJ  due to current flow; the heating effect of incident solar 

radiation qS; and the cooling effects provided respectively by convection qc and radiation qr from the 

material surface:  

rcSJ qqqq +=+                        (1) 

The Joule heating effect is a function of the square of the current and the resistance R which itself 

varies with temperature Tc: 

)(2
cJ TRIq =                        (2) 

Beyond this, the factors affecting the heat balance arise from environmental parameters, such as 

ambient temperature, wind speed and solar radiation. Convection qc has two components: natural and 

forced convection. Natural convection is governed by the temperature difference between the surface 

of the conductor and the surrounding air and forced convection is strongly affected by wind speed and 

direction. IEEE Standard 738-2006 (IEEE, 2007) defines the heat balance calculation for assumed 

material properties and local conditions to allow the maximum rated current, I, to be determined for a 

given conductor design temperature, Tc and assumed ambient conditions: 
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UK network operators allocate seasonal ‘static’ ratings to OHLs based on ambient conditions that 

are defined in the standard Engineering Recommendation (ER) P27 (Electricity Networks 

Association, 1986). These seasonal assumptions are for mean temperatures of 20˚C in summer, 2˚C in 

winter and 9˚C in autumn and spring; solar radiation effects ignored and wind speeds assumed to be 

low at 0.5 m/s (i.e. low forced convective cooling). The conditions were determined following 

experiments and statistical analysis conducted in the early 1980s. The static ratings assumptions were 

intended to be reasonably conservative in order to minimise – but not fully eliminate – the risk of 

having a capacity lower than the assumed value at any given time. A study by Price (1983) formed 

part of the basis for the development of ER P27; the values presented by the authors indicate that ER 

P27 is based on an acceptable ‘excursion time’ of 3%, i.e. the line is allowed to exceed its maximum 

rating for 3% of the time. However, changes in ambient conditions since the early 1980s and the 

projected changes in the coming decades means that the climatic assumptions on which the figures 

were based need updating. 

  

Fig. 3 Sensitivity of rating to ambient 

temperature at low wind speeds  

Fig. 4 Sensitivity of rating to wind speed at 

seasonal temperatures 

To illustrate the influence of weather variables on OHL ratings, a simple analysis of temperature 

and wind speed has been carried out for a typical conductor used extensively in UK (sub)transmission 

and distribution networks. ‘Lynx’ is an Aluminium Cored Steel Reinforced conductor with the 

operating temperature limit set here at a maximum of 75°C (see Kopsidas et al. (2009) for 

specification). Fig. 3 shows the variation of the Lynx rating with temperature assuming the ER P27 
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conditions of no solar radiation and 0.5 m/s wind speeds; its shows a slightly non-linear inverse 

relationship with rating falling by 0.8%/°C temperature rise. This relationship largely explains why 

the ER P27 OHL ratings are lower for summer than winter months. Fig. 4 presents the conductor 

rating across a wide range of wind speeds at the ER P27 assumed seasonal temperatures of 2, 9 and 

20°C. The wind is assumed to be blowing at a 45° angle to the conductor, mid-way between the 

optimum perpendicular and worst-case parallel directions. The cooling effects of wind speed are 

considerable and particularly evident between 0 and 5 m/s where the rating at the lowest temperature 

doubles from around 600A to 1200A. 

Simple application of UKCP09 temperature changes 

To illustrate how changes in the static rating of the conductor can be inferred from the UKCP09 

probabilistic temperature change scenarios, calculations with present-day ER P27 summer and winter 

standard temperatures (20°C and 2°C), and changes in temperatures implied by the UKCP09 

temperature changes were carried out for the whole of the UK. Changing only the temperature, 

conservative assumptions about site elevation, time of day and wind speed (0.5 m/s), and solar 

radiation were applied to represent plausible summer and winter conditions. The inclusion of solar 

radiation heat gain will give more conservative outcomes than ER P27 (Electricity Networks 

Association, 1986) which omits it.  

 
Fig. 5 Change in ‘worst case’ static rating of Lynx OHL at summer maximum temperatures alone for 

2080s at 90% probability. 

The changes in ratings are much greater in summer than winter and changes in ratings for summer 
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maximum temperatures are greater than those from mean summer changes. Changes by 2020 are 

relatively small but progressive warming means that the highest changes are to be expected by 2080. 

The most severe 90% probability case for summer maximum temperatures in the 2080s suggests 

static ratings will reduce by up to 11% across the UK. The existing UK north-south temperature 

gradient is enhanced in future scenarios with proportionately smaller changes in the north (Fig. 5). 

The approach and results are broadly similar to those presented by the UKMO and utilities 

(Buontempo, 2008; Harrison, 2008), who for the 2080s medium emissions scenario suggest OHL de-

rating of between 7 and 11% (the higher values quoted earlier apply to the high emissions scenario). 

However, concentrating purely on a single ratings value for a whole season and looking at 

temperature change alone misses the potentially much more significant impact of the full range of 

weather conditions including wind speed (Fig. 4). Without explicit consideration of the frequency of 

occurrence, it is difficult to discern enough detail from this analysis to assign appropriate future 

seasonal ratings. 

IV. Probabilistic Assessment of OHL Ratings 

To better understand how the determination of line rating may have to change under future climate 

conditions, a probabilistic framework has been devised that makes use of the UKCP09 weather 

generator (WG). The WG has been used to create 100 thirty-year time series datasets of hourly 

temperature and solar radiation data for each of the present and future periods (Jones et al., 2009). 

Three representative locations have been chosen for analysis: 1Ed is a semi-urban area in the east of 

Scotland; 2Gy is a region in south-east England in the vicinity of distribution-connected offshore 

wind farms; and 3Wa is a rural area in Wales with many small onshore wind farms.  

As mentioned earlier, there are no wind speed data provided from the UKCP09 WG. To fully 

analyse real-time ratings under current and future scenarios, hourly wind conditions must be included 

in the calculation along with temperature and solar radiation to obtain the best approximation to real 

situations. Here, wind speeds have been derived from the WG data using a method originally applied 

for building services applications (Eames et al., 2011; Watkins et al., 2011). The WG produces daily 
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values for potential evapo-transpiration (PET) which is a function of wind speed among other 

variables. Knowledge of the other contributing factors allows a daily wind speed to be reconstructed 

from the PET values. The WG calculates PET using the well-known Penman-Monteith method: 

)34.01(

)(
273

900
)(408.0

2

2

u

eeu
T

GR
PET

asn

++∆

−
+

+−∆
=

γ

γ
                            (4) 

where Rn is the net radiation at ground level (MJ/m2/day); G is the soil heat flux density (MJ/m2/day); 

T  is the mean 2m air temperature (°C); u2 is 2m wind speed (m/s); es and ea are the saturated and 

actual vapour pressures respectively (kPa); ∆  is the gradient of the vapour pressure-temperature curve 

at the mean air temperature (kPa/K); and γ  is the psychrometric constant (kPa/K). The calculation of 

the various components is given in some detail in Nandagiri and Kovoor (2005). The parameter G is 

computed on a daily basis using the mean temperature difference between successive days multiplied 

by 0.38 MJ/m2/day/K (Watkins et al., 2011). Equation (4) is rearranged to find daily 2m mean wind 

speed which is transferred to typical OHL height (10m) using the log-law profile: 

( ) ( )00210 2ln10ln zzuu = .                       (5) 

This assumes a local surface roughness equivalent to short grass (z0 = 0.008m). Corrections are 

required to the resulting wind time series to account for specific computational issues (Eames et al., 

2011; Watkins et al., 2011).  Eames et al. (2011) identifies points where the differential of PET with 

respect to wind speed is very high, with insensible wind speeds. Similarly, ‘negative’ PET is not 

possible with values truncated at 0mm/day which in the reverse calculation leads to erroneous wind 

speeds. In these cases, the data is linearly interpolated. 

In order to obtain an hourly time step, a further model is required. There is little or no explicit 

relationship between wind speed and other WG variables, such as temperature (Buontempo, 2008; 

Eames et al., 2011) that could be used to generate hourly wind profiles from daily mean values. 

Season does appear to affect the profile, however. Here, a modified version of the method in Eames et 

al. (2011) has been applied. For the locations described in the previous section, hourly weather 

observations have been extracted from an 11 year (2000-2010) hindcast from a numerical weather 
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forecast model (known as ‘WRF’) (Hawkins, 2012). For each daily 10m wind speed derived from the 

WG PET value, all the daily mean wind speeds from the WRF model that occur in the same season 

and lie within 0.5m/s are identified. A 24-hour profile for wind speed and direction is then selected at 

random from all the qualifying days. 

Wind speeds, particularly at a local level applicable to electricity networks, are difficult to model 

under climate change conditions (Harrison et al., 2008; Sailor et al., 2008; Pryor  and Barthelmie, 

2010; Cradden et al., 2012). However, it is felt that the wind speeds derived here will indicate the 

extent of the typical cooling effect of wind on OHL limits. The weather forecast model used has been 

thoroughly validated under current conditions (Hawkins, 2012), and analysis of the statistics of the 

hourly wind climate generated by the PET calculation model using the control period runs of the WG 

match historical statistics for the sites. Alongside providing appropriate mean and variance, the 

adequate preservation of the temporal autocorrelation of wind speeds was also confirmed. Future 

modelled wind conditions cannot, obviously, be verified. A caveat therefore is that these future wind 

speeds are given as an indicator of the potential for extra capacity on the network and for using wind 

cooling factors to mitigate the effects of higher ambient temperature. They are not necessarily fully 

representative of the wind climate expected under conditions of climate change as presently, it is not 

possible to provide confident estimates of this. A schematic diagram showing the inputs to and 

outputs from the final model is shown in Fig. 6. 

 

Fig. 6 Schematic of hourly OHL ratings model 
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Projected changes in temperature 

In this section, the seasonal weather conditions depicted by the WG output under both current and 

future scenarios are analysed. These will be compared to assumptions made by network operators, in 

order to understand if these assumptions will require adjustment in future. The highest risk events for 

a thermally constrained OHL will occur when temperatures are extremely high and wind speeds 

simultaneously low. Table 1 presents the mean temperatures and wind speeds for winter and summer 

seasons at each of the three sites. ‘1Ed’, being a more urban site, and a little way inland, has lower 

wind speeds than the other two sites in both summer and winter. ‘2Gy’ has the highest wind speeds, 

and ‘3Wa’ slightly lower. In terms of temperature, 2Gy is the warmest, followed by 1Ed, and 3Wa has 

the lowest seasonal temperatures. The future patterns for temperature are similar at all three sites – 

increasing by around 2-3°C. As would be anticipated given the model used, the changes in wind are 

more subtle and not consistent in any one direction per season or per site.  

Table 1 Mean winter and summer wind speeds and temperatures for all three sites for current and 

2050s climate 

 1Ed 2Gy 3Wa 
Current 2050s 

med 
Current 2050s 

med 
Current 2050s 

med 
Mean wind speed ( m/s) Summer 4.26 4.07 4.71 4.88 4.35 4.35 

Winter 5.35 5.25 6.68 6.60 6.24 6.32 
Mean temperature (°C) Summer 14.5 17.0 15.2 17.9 13.5 16.1 

Winter 3.59 5.72 4.33 6.52 3.27 5.20 
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Fig. 7 Seasonal distributions of hourly temperature for the 1Ed site under current and 2050s climate 

The seasonal distributions for temperature at the 1Ed site are shown in Fig. 7, with the mean 

temperatures marked on the plots (as vertical lines). Typically, summer and autumn have increases of 

a larger magnitude than spring and winter, but all seasons demonstrate a shift of the distribution 

towards higher temperatures whilst retaining a similar distribution shape. The same pattern of a 

shifting of the distributions to the right occurs at all sites, to a fairly similar degree at each. This 

analysis compares well with the country-wide mean projections as described previously, confirming 

that the enhanced weather generator produces hourly data that is consistent with the general pattern of 

the whole UKCP09 model. 

The changes in the frequency of higher temperatures and low wind conditions relative to the 

seasonal assumptions of P27 are given in Table 2. With respect to current conditions, the 3Wa 

location has the lowest frequencies of high temperatures in all seasons, whilst 2Gy has the highest 
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frequencies of high temperatures, but the fewest occurrences of low wind speeds. The 1Ed site has the 

highest risk of low wind speeds in both summer and winter. Under the 2050s medium emissions 

scenario, similar patterns persist among the locations. The 2Gy site has the highest risk of exceeding 

seasonal temperatures, and 3Wa the lowest – but there is still a significant increase at all sites in terms 

of this particular risk. The changes in wind, again as expected, are less clear, but there does appear to 

be an increase in the instances of summer low wind conditions at 1Ed, but a decrease at the other two 

sites, whilst the winter low wind occurrences decrease at all three sites. 

Table 2 Percentage frequency of specific weather conditions under current 2050 medium emissions 

scenario 

 1Ed 2Gy 3Wa 

Current 2050s Med Current 2050s Med Current 2050s Med 

Summer >20°C 7.42 23.45 8.92 28.93 7.14 21.14 

Autumn > 9°C 56.00 74.18 64.86 85.25 45.33 68.28 

Winter >2°C 67.39 84.76 74.81 91.38 61.25 77.60 

Spring >9°C 36.74 56.19 38.83 58.44 32.48 46.16 

Summer wind <0.5 m/s 2.16 2.39 1.18 0.87 2.04 1.70 

Winter wind < 0.5 m/s 2.12 1.84 0.67 0.62 1.45 1.36 

Summer >20°C & wind 

<0.5 m/s 

0.08 0.31 0.14 0.23 0.06 0.15 

Winter > 2°C & wind 

<0.5 m/s 

1.00 1.31 0.47 0.56 0.61 0.83 

V. Projected changes in OHL rating 

In order to understand how the projected temperature changes may impact on OHL ratings, the ratings 

method described in IEEE (2007) has been used with the time series of hourly current and future 

weather scenarios. Fig. 8 shows the resulting distribution of dynamic, or “real-time”, hourly ratings 

calculated from the WG weather data under the current scenario and the future 2050s medium 

emissions scenario for the 1Ed site. Unlike the temperature distributions, the drop in the mean rating 

is generally quite small, and qualitatively, the change in the distributions appears minimal. There is 

some evidence of more frequent lower ratings in all seasons, but it is a more minor change than the 

temperature shifts would suggest.  



 15

 

Fig. 8 Seasonal distributions of hourly ratings the 1Ed site under current and 2050s climate 

Table 3 Minimum seasonal ratings (i.e. worst-case) 

 1Ed 2Gy 3Wa 

 Current rating 
(A) 

2050s med 
rating (A) (% 

change) 

Current rating 
(A) 

2050s med 
rating (A) (% 

change) 

Current rating 
(A) 

2050s med 
rating (A) (% 

change) 
Summer 390 341 (−12.6) 413 371 (−10.2) 380  359 (−5.5) 

Autumn 420 405 (−3.6) 442 402 (−9.0) 408 386 (−5.4) 

Winter 486 488 (+0.4) 508 492 (−3.1) 476 466 (−2.1) 

Spring 424 401 (−5.4) 434 423 (−2.5) 405 412 (+1.7) 

Table 3 indicates that, in agreement with Buontempo (2008) the biggest changes will affect the 

minimum summer ratings, i.e. those which occur at the highest temperature/lowest wind conditions, 

by up to 12% at the 1Ed site, 10% at 2Gy and 5% at 3Wa. These changes are larger than the effect on 

the mean ratings – for example, the drop in the summer mean rating at 1Ed is around 3%, indicating 

that the tail of the distribution on the left might be extended in future. 
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The changes – albeit small – that are apparent may be best appreciated in terms of changes in the 

level of risk to the network operator. Currently, using the assumptions of seasonal temperatures 

presented in the previous section, the Distribution Network Operators (DNO) effectively accept a 

level of risk on lines that are frequently thermally constrained. This is represented by the number of 

hours in which the maximum capacity, as calculated using local hourly weather parameters, is less 

than that which would be derived using the standard seasonal assumptions, including conservative 

wind speed. Should the load on the line exceed the actual real-time rated capacity at this time, load 

must be shed or the line may exceed its maximum allowable temperature and incur damage. Under 

future conditions of typically higher temperatures (but, notably, with fairly similar wind climate) it 

would be anticipated that the risk level would increase. 

 Using the WG output for the scenario corresponding to current conditions, the seasonal risks are 

defined as the frequency of occurrence of the actual real-time rating falling below the stated nominal 

seasonal steady-state rating. It is shown in Table 4 that the risks do increase in each season, but – as 

might be anticipated by looking at the changes in the distributions (Fig. 8), not by very much. The 

most significant change is an increase of 0.8% in summer at the 1Ed site, whilst the summer risk 

actually appears to decrease by a very small amount at the 2Gy site. Overall, the 1Ed site has the 

highest risk of having a capacity lower than its nominal rating; this is due to its typically lower wind 

speeds. 

Table 4 Percentage risk of real time rating being lower than nominal rating 

 1Ed 2Gy 3Wa 

 Current 2050s med Current 2050s med Current 2050s med 

Summer 2.50 3.29 1.62 1.61 2.27 2.35 

Autumn 4.84 5.52 1.40 1.63 2.42 2.75 

Winter 3.93 3.97 1.12 1.24 1.99 2.10 

Spring 3.60 4.15 1.83 2.08 2.08 2.17 

 
The change in risk can also be visualised as the non-exceedence probability of the static value for the 

season, seen in Fig. 9 for 1Ed in summer, where the probability of being below the assumed summer 

rating of 574A increases from 2.5 to 3.3%. 
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Fig. 9 Cumulative distribution plot for 1Ed ratings in the summer season – left panel shows the 

whole CDF, right panel zoomed in on lower left ‘critical’ portion 

VI. Adaptation 

The changes in ratings demonstrated by the probabilistic assessment framework for the 2050s under a 

medium emissions scenario, suggest that despite some significant increases in the seasonal mean 

temperatures, the additional risk incurred by the DNO of exceeding OHL ratings is still small. By 

adopting a more comprehensive approach than previous studies, using hourly values of all the 

important weather conditions, the apparent influence of wind speed – above the conservative 

assumptions of ER P27 – is shown to be important. Examining temperature changes alone whilst 

ignoring the effect of wind cooling, might overestimate the impact of climate change and lead to 

expensive interventions that are unnecessary. Also, since the sensitivity of rating to wind speed is 

higher, the analysis highlights that it is in those areas with lower wind speed where the risk of 

breaching the static assumption is greatest and these may require additional attention. It is imperative 

to stress that whilst the confidence in the model of wind speeds for the current conditions is high, the 

nature of the investigations of wind speeds under the influence of climate change is tentative. By 

interpreting the scenarios and sites explored in this work as potential ‘case studies’ with a high degree 

of uncertainty, some important issues are raised, including how to best adapt to any changes that 

might occur in order to mitigate the increased risks. 

 One such adaptation method would be to adjust the seasonal static ratings to maintain a similar 

level of future risk as is currently deemed acceptable. For the 1Ed site with the highest present-day 
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risk level, values for ratings from the ‘2050s Medium’ scenario that correspond to the current 

seasonal risk levels are shown in Table 5. The percentages correspond reasonably to the assumption 

of 3% of operating time above the nominal rating, as was apparent in the ER P27 values and Price 

(1983), perhaps with the Autumn risk being slightly greater than expected. The magnitude of the 

adjustments under the climate change scenario is small, losing only a few percent of the capacity at 

most. This may be trivial for many OHL that are not typically thermally constrained. 

Table 5 Adjustments to seasonal static ratings based on current acceptable risk 

1Ed Current risk Current rating (A) Future rating for 
equivalent risk (A) 

% Change in rating 

Summer 2.50% 574 556 3.1% 
Autumn 4.84% 623 610 2.1% 
Winter 3.93% 651 650 0.1% 
Spring 3.60% 623 610 2.1% 

 
 For those lines that are thermally constrained, the small decrease in nominal rating might be more 

problematic. The increasing penetration of renewable generation on the distribution network – mainly 

wind power, but it is also likely that solar PV will become more prevalent – increases the potential for 

the network to be operating at higher capacities, and thus a greater number of OHL may be thermally 

constrained. As a result of the conservative wind speed assumption in the ER P27 calculations, the 

true capacity often exceeds the nominal static rating, as shown for sample years under current and 

future scenarios in Fig. 10. There is a substantial amount of unexploited headroom available which a 

dynamic (or real-time) rating system could provide access to. In Ochoa et al. (2010) it was 

demonstrated that building dynamic rating into a ‘smart grid’ operating algorithm to allow the extra 

wind cooling available at times of high wind power generation to be fully recognised was potentially 

very effective. If the lines analysed in this work were to be particularly stressed by increasing wind (or 

solar) power connections, there is a small increase in the risk of the current exceeding the ER P27 

nominal ratings under future climate change scenarios. Dynamic rating systems offer the opportunity 

to both eliminate the risk of this occurring when the weather conditions do not permit it, and open up 

additional capacity when they do. They offer the additional advantage that they can be retrofitted 

relatively quickly to existing circuits without upgrading the line itself. It is of particular note that a 

real-time ratings system has been recently fitted in the vicinity of the 2Gy site to allow extra 
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headroom to be exploited when winds are particularly strong and a local offshore wind farm requires 

high capacity on the distribution network (Yip et al., 2009). The cost avoided by implementing a 

dynamic rating system in this case rather than a network reinforcement or upgrade in this case was 

stated to be ‘in the region of £5 million’ (Electricity Networks Association, 2008). The Electricity 

Networks Association (2011) suggests the typical cost of upgrading or replacing lower voltage OHLs 

in general to be around £30-40k per km.  The relative cost of implementing a real-time ratings system 

is shown in CIGRE JWG B2/C1.9 (2010) to be significantly lower than alternative options, although 

the amount of capacity increase available is limited compared to that which can be obtained by some 

of the reconstruction options.  

 
Fig. 10 Sample year of dynamic hourly ratings calculated from the weather generator runs for 1Ed 

showing current (upper) and future (lower) occurrences where dynamic rating < static assumptions 

 
 Another issue that requires consideration is the possibility of changing patterns of consumer 

demand. Currently, peak demand in the UK occurs during very cold winter spells when space-heating 

requirements are highest. Shifting that demand peak to summer (or at least increasing the current 

summer demand) due to a demand for space cooling as temperatures increase, increases the risk of 

reaching the nominal OHL rating more often. For example, the number of days where the summer 

temperature reaches 20°C rises from 7-9% under current conditions to 20-30% in the climate change 
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scenario presented. It is highly likely that the UK would follow trends established in other western 

countries with higher summer temperatures and begin to utilise air-conditioning more heavily. The 

need for extra capacity may then become more wide-spread – further analysis would be required to 

ascertain the risks of this capacity being required during low-wind spells, in order to understand if 

dynamic ratings would offer any benefit. 

Conclusions 

Using the UKCP09 climate projections via the WG with additional wind modelling, this work has 

shown that the likely effects of climate change on the thermal limits of the OHL in the UK are 

relatively modest. The effects on OHL that do not often operate close to the thermal limits will be 

minor, perhaps necessitating a small reduction in the nominal ratings. The difficulties in future, 

however, may become more apparent if a number of additional factors coincide – namely rising 

temperatures, increasing renewable penetrations, and the possibility of rising demand for space 

cooling. In such circumstances, dynamic rating of thermally-limited conductors may present a cheaper 

alternative to network reinforcement. This study highlights that in the coming decades, calculations of 

the risk of exceeding the thermal limits on OHL may require re-evaluation more frequently, using 

more up-to-date weather data. The model developed presents a suitable method for doing so, and as 

the science progresses to produce ever more accurate projections of future climate, this can be 

expanded. 

It is important to highlight the limitations to the study. The daily mean and maximum temperatures 

are given by the WG at a height of 1.5m above ground level and conductors fitted to wood pole and 

lattice towers will be at higher elevations (8m+) and experience slightly lower temperatures. 

However, the temperature lapse rate is generally noticeable over larger vertical distances and it is 

likely that projected temperature changes would be similar at higher levels, giving changes of 

comparable magnitude. The analysis was limited to three locations; further work would benefit from 

additional locations and climate change scenarios. More in-depth analysis would directly include 

modelling of power flows on the line resulting from variations in demand and generation to allow the 
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frequency and extent of overloading and constraints to be assessed. This will be particularly important 

given the potential changes in power flows resulting from wind, marine and solar PV connections, 

new demand patterns and the effect of smart grid controls. More detailed models of conductor 

temperature and sag would also be valuable. While the Lynx conductor is largely used on distribution 

and sub-transmission networks, the implications are similar for transmission lines of different 

construction and conductor temperature limits.  

The analysis presented here relates to the UK and its current and potential future climate. So far 

much of the climate change research suggests modest and uncertain changes in UK wind speeds but 

wind projections for other parts of the world e.g., the USA (Sailor et al., 2008) suggests more 

significant changes in wind speeds. As such, more significant impact on OHL ratings and consequent 

benefits from dynamic ratings may be more apparent elsewhere. The probabilistic assessment 

framework developed and applied here could be re-applied elsewhere, given similar WG-type weather 

data. 
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