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Abstract

Face alignment is an important feature for most fa-
cial images related algorithms such as expression
analysis, face recognition or detection etc. Also,
some images lose information due to factors such
as occlusion and lighting and it is important to ob-
tain those lost features. This paper proposes an in-
novative method for automatic face alignment by
utilizing deep learning. First, we use second order
gaussian derivatives along with RBF-SVM and Ad-
aboost to classify a first layer of landmark points.
Next, we use branching based cascaded regression
to obtain a second layer of points which is further
used as input to a parallel and multi-scale CNN that
gives us the complete output. Results showed the
algorithm gave excellent results in comparison to
state-of-the-art algorithms.

1 Introduction
Face alignment refers to the process of automatically detect-
ing landmark points on a face regardless of it’s orientation
in the image. It is a fundamental part of tasks such as at-
tribute inference on a face as shown by Kumar et al [1], for
the verification of a face as shown by Lu et al [2], for the task
of recognition of a face as shown by Huang et al [3] among
others. Recently, research work in the field of face align-
ment has shown a great amount of success. However, there
has been problems when detecting problems related to occlu-
sions, lighting problems etc. Also, a less amount of work has
been done to obtain landmarks with regards to different poses
of the face. The large majority of face alignment work is done
with regards to frontal poses of the people in the images. It is
hard to compute the landmarks when the face is rotated or at
an angle as many of the landmarks become self occluded.

The general approach is done by employing view-based
models and choose results that give a best match as shown by
Cootes et al [4], Zhu et al [5]. Non-linear statistical methods
have been demonstrated as late as shown by Kanaujia et al [5].
These, however, are slow to execute and cannot be used for
real-time applications. Landmark detection had been viewed
as an independent problem before. Popular methods involved
template fitting approaches as proposed by Zhu et al [5],Yu

et al [7], Tzimiropoulos et al [8]. Some other approaches in-
volved regression problems as shown by et al Burgos-Artizzu
et al [9], Cao et al [10], Yang et al[11]. Off late however, deep
learning has come into the picture. Sun et al [12] proposed
the use of deep CNNs for landmark detection. This approach
showed great accuracy in comparison to the older models. It
is for this reason we consider the use of deep learning to solve
this problem.

A shape constraint is essential in all method proposed. A
few salient landmarks are used in all cases for example eye
centers, mouth corners etc. These are considered to be salient
landmarks. The points along the contour of the face are
considered to be non-salient landmarks. Parametric models
were used to enforce the correlation between the landmarks
as shown by Cootes et al [4] when they used an active ap-
pearance model (AAM). These parametric models achieved
good success, however the model flexibility was a heuristic
approach. Also, the shape chosen in the initial stages is far
from equal to the target image and it is difficult to use these
models to extract the landmarks when the poses in the image
are rotated or not frontal.

For the proposed method, we do the following, 1) We do
a basic reconstruction of the facial images using two auto-
encoders that capture the main factors of inputs. The inputs
are projected into a higher dimensional feature space by uti-
lizing hidden layers. This is a basic reconstruction. 2) We use
second order Gaussian derivatives along with the model pro-
posed by Gowda et al [13] to obtain a basic image consisting
of the marker or fiducial points. 3) Next, we use a branching
based cascaded regression algorithm to obtain a second set
of landmark points based on the already located first set. 4)
Finally, we use a parallel and multi-scale CNN to obtain the
required output.

2 Related Work
Teodoro et al [14] proposed an approach to reconstruct im-
ages in general. They used variable splitting and class
adapted image priors to aid with their aim. Results were
promising. A deep learning method was proposed by Hayet
et al [15]. Though the method gave excellent results, it could
not be used for our proposed approach as we needed the al-
gorithm to spend as little time as possible on each step of the
algorithm. We used a basic reconstruction algorithm which
will be explained in the later sections. Shape regression ap-
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proaches have been dominating the face alignment research
work recently as can be seen by work proposed by Cao et al
[16] who used regression for real-time facial animation, Dol-
lar et al [17] who used cascaded pose regression, Jourabloo
et al [18] who developed a regression approach for pose-
invariant aligment, Kazemi et al [19] who used regression
trees to aid the process of face alignment, Lee et al [20] who
used cascade gaussian process regression trees.

A complex relationship exists between face shape (poses)
and image appearance of the image and this makes it diffi-
cult to obtainto determine the true shape of the face. Many
methods have been suggested to overcome this problem. One
of these was proposed by Cao et al [10] where they tried
multiple initializations and picked the best one. Another
approach was proposed by utilizing a coarse-fine search as
shown by Zhu et al [21]. We however, propose the use of mul-
tiple iterations by utilizing a cascaded shape regressor and to
re-compute the shape-indexed features. Conventionally cas-
caded shape regressors progress from one level to another in a
straight line. Each regressor attempts to fit the entire data-set.
The setback of this approach is that the regressor function
includes many gradient directions that are often conflicting.
Xiong et al [22] proposed a global supervised descent algo-
rithm which was an update on the supervised descent method
proposed by the same authors [23]. The global supervised
descent method (GSDM) splits the regressor function into
different regions. Each region consisted of similar gradient
directions. Each region had one regressor and this resulted
in multiple, independent regressors to solve the problem in
hand. They used the method for face alignment. We look
at their method and propose an approach to use a branching
based CSR.

CSR methods in general can be divided into 2 categories:
using off-the-shelf mapping functions (SIFT as proposed by
Lowe[24]) such as the method proposed by Tzimiropoulos
[25], and methods that learn feature mapping functions such
as using a combination of regression trees as proposed by Ren
et al [26]. We utilize a combination of regression trees in our
proposed approach, the difference in our approach is the use
of point distribution model coefficients instead of the 2-D off-
sets used in [26]. Head-pose variation is one of the biggest
problems with regards to face alignment related work. View-
based models, non-linear statistical models and 3-D shape
models have been used to address the issue. Some examples
of view-based models are work proposed in [4,5]. Examples
of non-linear statistical methods include kernel methods as
proposed by Romdhani et al [27] and mixture models as pro-
posed by Zhou et al [28]. Examples of 3-D shaped models
include work proposed by Yu et al [29].

View-based models require separate models each view-
point, however, they are quick and straightforward. They
generally partition the training set in a discontinued ad-hoc
way. Nonlinear statistical models on the other hand tend to be
too slow for practical applications. The 3-D models however
lack from availability of good data. Holi et al [30] showed
that high precision parameters are not always fundamental to
high accuracy of image classification. Krizhevsky et al [31]
used this to show a negligible drop in performance when 16-
bit or 8-bit quantization was used. Recently, Soudry et al [32]

showed that extreme quantization (binarization) of a network
was not impractical and could be used. They obtained good
results after qunaitizing to (-1,1). CNNs could be trained us-
ing binary weights for both passes i.e forward and backward
as shown by Courbariaux et al [33]. They also binarized the
activation function and got great results. We use the binariza-
tion of a CNN to obtain heatmaps. We use these heat maps to
predict landmarks on the facial images.

We follow a three step process, first we obtain a basis for
fiducial points, then we use a branching based cascaded re-
gression to obtain a second layer of landmark points. Finally,
this is used as input to our binarized CNN that gives us the
complete output.

3 Proposed Approach
3.1 Dataset
We test our algorithm on three state-of-the-art databases.
First, the Helen database is considered. It was proposed by
Le et al [33]. It consists of 2330 images and most faces are
near-frontal in the dataset. Next, we used the 300W dataset
as proposed by Sagonas et al [34]. This is a collection of in-
the-wild data-sets that were annotated with landmarks. An-
other data-set exists, the FERET dataset which was proposed
by Phillips et al [35]. This dataset included neutral expres-
sion faces and these had a uniform background. We, however,
have not used this.

3.2 First set of fiducial points
First, we detect a set of fiducial points using RBF-SVM
and Adaboost classification as shown by Gowda et al [13].
We consider obtaining the local maximum in second-order
derivatives of the image after conversion to gray scale. To do
this we introduce the use of gaussian derivatives concept. We
use three kernels Gxx, Gyy and Gxy. Using these kernels we
obtain second-order gaussian derivatives by convoluting the
image with these kernels as shown in equation (1-4).

Gσxx(x, y) =
x2 − σ2

2πσ4
e−

x2+y2

2σ2 (1)

Gσyy(x, y) =
y2 − σ2

2πσ4
e−

x2+y2

2σ2 (2)

Gσxy(x, y) =
xy

2πσ4
e−

x2+y2

2σ2 (3)

Iσij(x, y) = I(x, y) ∗Gσij(x, y) (4)

Figure 1 shows the result obtained after execution of this step.

3.3 Branching Cascaded Regression
The input to this is the output from the first step. The fiducial
points show a region of interest and this reduces the compu-
tation cost for the branching cascaded regression. We use the
model constructed by Smith et al [36] as the inspiration for
the branching cascaded regression algorithm. We first build
a point distribution model. These model a set of ’n’ shapes



Figure 1: Execution after step 1

S=[s1,...,sn] by utilizing a linear combination of bases Bs and
the mean shape as shown in (5).

S′ = µs + Bsps (5)
Here, all the parameters are computed from S via Principal

component analysis (PCA). The shapes are aligned using the
method proposed by Kunert et al [35]. This helps to remove
variations due to rotation, scaling and translation. We how-
ever use additional vectors to incorporate these changes back
into the model. We then develop a model that gives weightage
to both shape and visibility of the landmark points as p=Cq
where C is the correlation between shape and visibility and
q is the new parameter space. We construct a binary tree to
be used as our branching cascade regressor. The update at a
cascade level ’t’ in a BCR node k is executed by R(t,k). Each
node in the BCR will have its shape regressor and a point
distributed model. Every BCR node models around a subset
of training faces that are similar and this helps to decrease
the complexity involved for the regressor and point distribu-
tion model as there will be fewer parameters. The input to a
regressor t is a feature-descriptor d(I,s) that uses the relative
shape of an image I with respect to a shape s and captures
features out of the shape difference. An updated shape esti-
mate is obtained as the output. Equations (6-10) represent the
process explained.

∆qt = Rtdt(I, st−1) (6)

qt = qt−1 + ∆qt (7)[
pts
ptv

]
= Ctqt (8)

st = µts + Btsp
t
s (9)

vt = µtv + Btvptv (10)
Each R is obtained by solving a ridge regression problem.

Here q’ is the ideal parameter update for face i and Nt refers
to the training faces that are part of the BCR node that is
currently being tested. After learning ’R’ for each node, the
training set is partitioned into two sets each overlapping with

the other and one set for each child node. This gives each
child node a simpler objective function with regards to re-
gression. Finally, we train a RBF-SVM to predict the par-
tition labels from ’d’ which refers to the feature descriptors.
The SVM output is shown in (11).

yt = wt
T

dt(I, st−1) + bt (11)

If the output value is negative then the left child node is
taken else the right one is taken.

3.4 Parallel and multi-scale CNN
We use the model proposed by Bulat et al as inspiration to
construct our parallel and multiscale CNN. Figure 2 shows
how an example of how a multiscale and parallel network
looks.

Figure 2: Sample multi-scale and parallel network

The binarization of the network layer is done as shown in
(12).

I ∗W ≈ (sign(I) ⊕ sign(W )) ∗ α (12)
I is the input tensor, W is the layer weights and alpha is a
scaling factor. The first and last layer of the CNN is kept real
whereas the rest are binarized. Our CNN consists of 8 layers
followed by 2 fully connected layers to learn global features.
The convolution operation is performed as shown in (13).

yl =
∑
n

knl ∗ xn + bl (13)

Here, x corresponds to the input map and y to the output
map. ’kij’ corresponds to the convolution kernel between i-th
input map and j-th output map. ’b’ corresponds to the bias of
the output map and ’*’ is used to represent convolution. We
need to minimize the loss function represented in (14).

L =
1

2
(f − f ′)2 (14)

Here ’f’ corresponds to the ground truth and f’ corresponds
to the predicted landmark locations. The gradient of loss is
back-propogated to update the CNN to minimize the error
rate.



3.5 Architecture
The entire architecture of the system is shown in figure 3.

Figure 3: Sample multi-scale and parallel network

First, the input image is sent through a fiducial point clas-
sifier. The output from there is passed as input to a branching
cascade classifier. This is done so that the regions of interest
are predetermined and this reduces the computational cost for
the next stage, the branching cascade regressor. The output
from here is sent as input to a parallel and multi-scale CNN
whose layers are binarized to reduce computational cost.

4 Experimental Results and Analysis
We compare our outputs based on the mean error percentage
with outputs from Kazemi et al [19], Xiong et al [23], Yu et al
[37], Zhu et al[21] and Ren et al [26]. Table 1 corresponds to
the comparison for 300-W dataset for the 68 landmarks based
images.

Method Common Subset Challenging subset Full set

Kazemi et al [19] - - 6.40
Xiong et al [23] 5.59 15.38 7.51
Yu et al [37] 10.11 19.57 11.96
Zhu et al [21] 4.75 9.98 5.78
Ren et al [26] 4.93 11.96 6.31
Proposed 4.78 8.74 5.60

Table 1: Accuracy comparison using 300-W

Table 2 corresponds to the results obtained for Helen
dataset.

Method 194 landmarks 68 landmarks

Kazemi et al [19] 4.91 -
Xiong et al [23] 5.89 5.48
Yu et al [37] - 9.89
Zhu et al [21] 4.75 4.65
Ren et al [26] 5.43 -
Proposed 4.67 4.62

Table 2: Accuracy comparison using Helen data-set

5 Conclusion
The proposed algorithm follows three stages. First, a simple
fiducial point detection algorithm is used to obtain regions

of interest. Next, we use a branching cascaded regression to
obtain a second layer of output. Finally, a multi-scale and
parallel CNN is used to obtain the final output. Novelty in
the approach includes detecting of regions of interest which
helped to reduce computational cost for the cascading regres-
sion algorithm, using a branching cascaded regression algo-
rithm and finally using a multi-scale CNN which has not been
used to the best of our knowledge with regards to face align-
ment. Also, such ensembles have never been tried before.
The results of the algorithm showed that the algorithm per-
formed better than recent state-of-the-art approaches.
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